Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3888177 A
Publication typeGrant
Publication dateJun 10, 1975
Filing dateFeb 15, 1974
Priority dateNov 4, 1971
Publication numberUS 3888177 A, US 3888177A, US-A-3888177, US3888177 A, US3888177A
InventorsJesse F Tyroler
Original AssigneeUs Army
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Flare system
US 3888177 A
Abstract
A flare system is produced which comprises a flare composition having at least two primary i.e. predominant color emitters which produce one apparent color and a filter which will eliminate the wavelength of at least one of the emitted colors, such that the burning flare appears to be an identical color of an ordinary state of the art flare to the naked eye whereas when viewed through a filter a completely different color will appear.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

UIlltBd States Patent 1 [111 3,888,177 Tyroler June 10, 1975 [54] FLARE SYSTEM 3,667,850 6/1972 Smith er al 356/186 3,706,6ll l2/l972 Hastings l49/7O [75] Jesse 3,755,680 8/1973 Smith et al 250/226 [73] Assignee: The United States of America as represemed FY the Secretary Primary ExaminerMalcolm F. Hubler Army1 washmgtom Assistant Examiner-S. C. Buczinski 22 Filed; 15 4 Attorney, Agent. or FirmNathan Edelberg; Robert P.

Gibson; A. Victor Erkkila [57] ABSTRACT [62] Division of Ser. No. 195,880, Nov. 4. l97l abandoned. A flare system is produced which comprises a flare composition having at least two primary i.e. predomil l H /3 [OZ/3 nant color emitters which produce one apparent color 356/186 and a filter which will eliminate the wavelength of at [51] Int. Cl. F423 4/26; 0 1 least one of the emitted colors, such that the burning [58] F ld Of ar flare appears to be an identical color of an ordinary 3 2/373. state of the art flare to the naked eye whereas when 1 viewed through a filter a completely different color I [56] References Cited appear UNITED STATES PATENTS 4 Claims, 2 Drawing Figures 3 327,l24 6/l967 Plum 250/226 IMO z 2 m A Z I) 3 1 m6 0 z s m I m 5 2 2 u 0 Lu 2 u 2 ff 4 m lxlO w I Z 5 2 4 LL] CI "l 1 i l i l lxlO WAVELENGTH IN MICRONS FIG.2

WAVELENGTH IN MICRONS 5 5 m 3 2 Am 2 m X WAVELENGTH IN MICRONS FLARE SYSTEM The invention described herein may be manufactured. used and licensed by or for the Government for governmental purposes without the payment to me of any royalty thereon.

This is a division ofapplication Ser. No. 195.880 filed Nov. 4, I97], now abandoned.

BACKGROUND OF THE INVENTION In the past surface flares of various colors have been used to outline friendly troop positions when air support was required. This enabled the pilots to identify the front line positions of friendly troops and reduced the possibility of bombing or strafing friendly troops. To counter this enemy forces soon learned to ignite similarly colored flares which succeeded in confusing the pilots and rendered air support ineffectual. To solve this problem I have invented a special flare system which comprises a flare composition having at least two primary i.e. predominant color emitters which in combination will produce a colored flame matching the color of ordinary colored flares to the naked eye and a filter which will eliminate at least one of the primary colors such that the color of the flame is different when viewed through the filter than the color of the ordinary flare.

In a physical sense, color is determined by the wavelength(s) or spectral energy distribution contained in a light beam. In principle. it is possible to produce any color by a suitable combination of three primary col ors, one from the middle of the visible spectrum (green) and one from either end (blue-violet and red). Proper proportions of red and green light will produce yellow and if the proper amount of blue-violet light is added. white light is produced. Elements used to color pyrotechnic flames for military uses are strotium, producing red; barium, producing green; and sodium. producing yellow. Copper (blue or green) has also been used. Lithium (red). boron (green). thallium (green), rubidum (red), and cesium (blue), are also strong color producers but their use is not practical because of cost, toxicity. or nature of their compounds.

Color intensifiers which are mainly chlorinated or ganic compounds, e.g. hexachloroethane (C CL hexaehlorobenzene (C -CL dechlorane (C CLrzl and polyvinylchloride (CH CHCL), are used to increase the color in the pyrotechnic flame.

It is therefore an object of this invention to provide a flare system comprising a pyrotechnic composition with at least two color emitters and a filter which will eliminate at least one of the colors emitted.

Another object is to provide a flare system which will provide a means for determining enemy and friendly forces.

Other objects and many of the attendant advantages of this invention will be readily appreciated as the same become better understood by reference to the following detailed description.

DESCRIPTION OF THE INVENTION According to my invention a new flare system is introduced which comprises a special flare composition and optical filter. The flare composition when ignited appears to the naked eye to be one distinctive color but in reality is a combination of primary colors produced by at least two different color emitters in the pyrotechnie composition. The desired color is obtained by the Compound Parts By Weight Barium Nitrate 3t) Strontium Nitrate l3 Potassium Perchlorate 9 Magnesium Atomi/ed 50/[00 l5 Magnesium Atomized 30/50 l5 Dechlorane (C CL l3 Vinyl Alcohol Acetate Resin 4 A copolymcr ol pol \\inyl alcohol l 18'?) and polHiltyl acetate Hi2! I The above ingredients are added together and mixed in a circular blending pan with a heavy muller wheel. After the mixing is complete the composition is loaded into a flare canister of desired size. The igniting means may be one conventional to the art such as a squib initia'tor.

The composition when ignited will burn with a yellow flame such as the one produced by a standard military flare which employs sodium nitrate as a color emitter. This result is due to the hue produced when the red (strontium nitrate) and green (barium nitrate) emitters are combined.

The filter chosen for the above composition is a Corning C.Sv 367. The Coming C.Sv 3-67 is a sharp cutoff filter described by its transmission curves shown in FIGS. 1 and 2.

FIGS. 1 and 2 represent a spectral distribution of a standard yellow (Na) and the example flare composition (Ba and Sr) respectively. The green color region has a spectral energy wavelength between 0.50 and 0.53 microns, the yellow region between 0.56 and 0.61 microns and the red region between 0.60 and 0.68 mi' erons.

More particularly FIG. I is a curve of a standard (NaNO flare with its energy peak in the yellow (0.56 0.61) region. By transmitting this emitted spectral energy through a Corning 3-67 glass filter (as represented by the dotted line in FIG. 1) the yellow region is transmitted unhindered leaving the flare its original yellow color.

In the special flare illustrated in FIG. 2 however. the filter eliminates the green region (0.51 0.53) produced by the barium so that all that remains is the red region (0.60 0.68). Unfiltered, the green region and red region combine to produce a yellow color very closely matching the color of the pure yellow flare to the naked eye.

Although the example above involves a red-green color emitter composition. it is evident that other color combinations together with selected filters are available to practice my invention.

Thusly, through the practice of my invention a flare system is produced which will create the capability of discrimination between enemy and friendly flares. This system (both flare composition and filter) will provide a means of coding a flare color to avoid duplication by the enemy.

I wish it to be understood that I do not desire to be limited to the exact detail of construction shown and described for obvious modification will occur to a per son skilled in the art.

I claim:

I. A method for discriminating between visible, apparently identically colored flares, wherein a polyemitter flare composition has at least two predominant color emitters which in combination produce a visible color apparently identical when viewed with the eye to that produced by another flare composition having a different predominant color emitter which comprises viewing the ignited flare compositions through a filter capable of eliminating the spectral wavelength of at least one of the predominant color emitters of the polyemitter flare composition, such that when viewed with the eye through the filter the polyemitter composition has a different color than the other flare composition.

2. The method of claim 1, wherein the polyemitter flare composition consists essentially of barium nitrate emitting green spectral wavelengths essentially between 0.51 and 0.53 micron and strontium nitrate emit ting red spectral wavelengths essentially between 0.60 and 0.68 micron. and the other flare composition consists essentially of sodium nitrate emitting yellow spec- Constituent Parts H Weight Barium Nitrate 3t] Strontium Nitrate l3 Potassium Perchlorate 9 Magnesium Atomi/ed SUHUU 15 Magnesium Atomized 30/50 l5 Deehlorane I 3 Vinyl Alcohol Acetate Resin 4.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3327124 *Jul 31, 1962Jun 20, 1967Plum William BMethod for facilitating the identification of icbm nose cones and for discriminating against decoys by spectral analysis
US3667850 *Nov 23, 1970Jun 6, 1972Us ArmyFlare radiometer
US3706611 *Aug 26, 1965Dec 19, 1972Secr DefenceMethod of making pyrotechnic composition containing a polysulphide polymer
US3755680 *Sep 10, 1971Aug 28, 1973Us ArmyFlame color signature apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4881464 *Mar 6, 1989Nov 21, 1989The United States Of America As Represented By The Secretary Of The ArmySignal or rescue flare of variable luminosity
US5435224 *Apr 4, 1979Jul 25, 1995The United States Of America As Represented By The Secretary Of The NavyInfrared decoy
US5587552 *Nov 9, 1993Dec 24, 1996Thiokol CorporationInfrared illuminating composition
US5639984 *May 22, 1996Jun 17, 1997Thiokol CorporationInfrared tracer compositions
US5912430 *Feb 10, 1995Jun 15, 1999Cordant Technologies Inc.Pressable infrared illuminant compositions
US6123789 *Feb 10, 1995Sep 26, 2000Cordant Technologies Inc.Castable infrared illuminant compositions
US6190475 *Jan 6, 2000Feb 20, 2001Cordant Technologies Inc.Castable infrared illuminant compositions
US6230628 *Oct 29, 1998May 15, 2001The United States Of America As Represented By The Secretary Of The ArmyInfrared illumination compositions and articles containing the same
US7878796 *Nov 10, 2007Feb 1, 2011La Torre Innovations LLCColored flame candle
US8894409Jun 29, 2012Nov 25, 2014La Torre Innovation LLCColored flame candle
US20110086320 *Dec 17, 2010Apr 14, 2011La Torre Justin SColored flame candle
WO1995005572A1 *Jul 4, 1994Feb 23, 1995Buck Werke Gmbh & Co.Adaptation of the infra-red signature of a decoy target, and flare composition used for this purpose
Classifications
U.S. Classification102/336, 149/19.91, 356/417, 149/116
International ClassificationC06B33/00, F42B4/26, C06C15/00, F21K5/00
Cooperative ClassificationF42B4/26, C06B33/00, C06C15/00, F21K5/00, Y10S149/116
European ClassificationC06B33/00, F42B4/26, F21K5/00, C06C15/00