Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3889270 A
Publication typeGrant
Publication dateJun 10, 1975
Filing dateJul 10, 1973
Priority dateJul 15, 1972
Also published asDE2234823A1, DE2234823B2, DE2234823C3
Publication numberUS 3889270 A, US 3889270A, US-A-3889270, US3889270 A, US3889270A
InventorsHoffmann Klaus, Konig Hans-Dieter, Meyer Rudolf
Original AssigneeAgfa Gevaert Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ink jet recording material
US 3889270 A
Abstract
Ink jet images are produced by spraying the recording substrate with a fine jet of a coloured liquid which is mudulated according to the image. The new type of recording material consists of a transparent or opaque substrate and an image receiving layer is formed by a molecular disperse or colloidal disperse substance. It is important that the image receiving layer should be wetted by the coloured liquid and that, after spraying, the coloured liquid should penetrate the layer to a depth of at least several microns. Ink jet images of high quality can be obtained with such a recording material.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

Hoifmann et a1.

[ June 10, 1975 INK JET RECORDING MATERIAL lnventors: Klaus Hofimann; Hans-Dieter Kb'nig; Rudolf Meyer, all of Leverkusen, Germany Agfa-Gevaert Aktiengesellschaft, Leverkusen-Bayerwerk, Germany Filed: July 10, 1973 Appl. No.: 378,014

Assignee:

Foreign Application Priority Data July 15, 1972 Germany 2234823 US. Cl. 346/1; 117/37 LE; l17/93.4 A; 1l7/93.4 NC;117/155 UA; 117/156;

Int. Cl G01d 15/18; GOld 15/20 Field 01 Search 346/1, 75, 135; 117/155 UA, 156, 157, 37 LE, 93.4 NC

References Cited UNITED STATES PATENTS 1/1967 Lewis et a1 346/75 11/1968 Stalter 117/156 3,411,925 11/1968 Lauterbach 117/156 3,415,671 12/1968 Rice 117/156 3,523,818 8/1970 BlumenthaL. 346/135 3,535,202 10/1970 Huang 117/156 3,554,781 l/1971 Matsukawa 117/156 3,655,527 4/1972 Curran et al..... 204/2 3,715,219 2/1973 Kurz et al. 117/93.4 A

Primary Examiner-Michael Sofocleous Attorney, Agent, or F irm--Connolly and Hutz [5 7] ABSTRACT Ink jet images are produced by spraying the recording substrate with a fine jet of a coloured liquid which is mudulated according to the image. The new type of recording material consists of a transparent or opaque substrate and an image receiving layer is formed by a molecular disperse or colloidal disperse substance. It is important that the image receiving layer should be wetted by the coloured liquid and that, after spraying, the coloured liquid should penetrate the layer to a depth of at least several microns. Ink jet images of high quality can be obtained with such a recording material.

8 Claims, No Drawings INK JET RECORDING MATERIAL This invention relates to a recording material for inkjet images which are produced by spraying a fine jet of a coloured liquid which is modulated according to the image. The recording material basically comprises a transparent or opaque substrate and an image receiving layer on this substrate.

A recording technique has recently become known by the term ink-jet, process, in which technique a very fine jet of coloured liquid sprayed from a capillary tube is modulated in density according to theimage by an electric field. The jet of coloured liquid from the capillary impinges on the substrate at a high velocity (approximately 20 m/sec). The ink jet process has been described, for example, in German Auslegeschrift DT-AS No. 1,271,754 and in British Patent Specification No. 1,123,587.

It has now been found that the quality of the image depends to a large extent on the properties of the recording material. The materials used for recording substrates have previously been paper or synthetic resin materials resembling paper in consistency or transparent foils, depending on whether the image to be produced is a transparency or an image viewed by reflected light.

The practice has already been adopted of improving the quality of the images viewed by reflected light by adding white or tinted pigments to the paper. In the case of paper which hasnot been coated, however, it is observed that the droplets of coloured liquid break on the surface of the paper or the ink solution spreads out so that the quality of the image is deleteriously affected as regards its resolution and visual density and the colours are matt and dull. If for the production of colour images, several different dye solutions are sprayed simultaneously or at short intervals onto the substrate, there is the added risk that the solutions will not dry or be absorbed by the surface sufficiently rapidly but will intermingle. In that case, cloudy irregularities are observed, especially in the case of large coloured or black areas. In addition, the colours sprayed on uncoated surfaces are generally not smudge-proof.

The substrates used for the production of transparencies by the ink-jet process are generally transparent foils (e.g. Cellite or polyester) but these foils generally have the disadvantage that their surfaces repel dye solutions, and the ink droplets coalesce to larger drops on the surface. Continuous colour surfaces are therefore not obtained.

It is an object of this invention to find an improved recording material for reflection copies and for transparencies. The individual properties in which improvement is required are:

l. The power of resolution should be increased.

2. The dye solution should not run after it has been sprayed on the surface and it should be fixed as quickly as possible on, or also in, the image receptor layer.

3. The smudge resistance should be increased.

4. A gloss effect is desired in order to achieve high visual density of reflection and high colour brilliance in reflection copies.

5. Uniform optical densities should be achieved in transparencies.

In a recording material which comprises a transparent or opaque substrate and an image receiving layer on this substrate, these conditions are substantially fulfilled if the image receiving layer comprises, according to the invention, of a moleculae disperse or colloidal disperse substance which is wetted by the coloured liquid and into which the sprayed coloured liquid preferably penetrates to a depth of at least several microns.

The image receiving layer preferably consists of a protein, polysaccharide, cellulose or cellulose derivative, polyvinyl alcohol or a copolymer of vinyl alcohols. Image receiving layers of gelatine, albumen or casein are found to be particularly suitable. Very good results.

have also been obtained with an image receiving layer consisting of a hydrophilic silica gel.

For reflection copies, it is advantageous to add dyes and/or white toners to the image receiving layer to increase the degree of whiteness. v

For reflection copies, the recording material may be further improved by=v treating the image receiving layer with substances which produce a directional reflection in the optically visible wavelength range. Such a gloss effect can advantageously be produced by casting the image receiving layer on a layer of a polyolefine such as polyethylene or a polypropylene. An alternative method of producing a glass effect consists of pouring a layer of polyolefin or'polypropylene onthe image receiving layer after the recording has been made. A glossy surface on the image receiving layer can also be produced by heating in a glaiing press or by calender- The new recording material fulfils the above mentioned requirements very satisfactorily and-in particular the resolution and brilliance can be substantially in,-

creased. t

To test the image quality of the recording material, an ink (aqueous solution of a cyan, magenta or yellow dye) which has a viscosity of 1.2 cp at room temperature is sprayed at a pressure of 40 excess atmospheres through a glass capillary which has anopening of 7 pm. The scanning velocity, i.e. the relative velocity between the recording substrate and the ink-jet, is 5 m/sec. With scan line densities of 10 lines per mm, viewing densities on reflection copies of between 1.0 and 1.3 are obtained in the case of a single colour. Reflection copies of very high quality were obtained under these conditions in the following image receiving layers:

EXAMPLE 1 A suitably pigmented paper (e.g. the photographic raw paper weighing g/m manufactured by Schoeller, Burg Gretesch) was coated with a gelatine layer with the addition of AGEPON as wetting agent and chrome alum as hardener. The layer had a thickness of 10 pm when dry. The dye penetrated the layer to a depth of about 4 pm, as shown by a thin layer section under the microscope. The depth of penetration of the dye could be adjusted by varying the quantity of hardener added. In the case of the reflection copies, it was seen under the microscope that the track of a single scan line had a width of less than 50 um whereas in uncoated paper this track spread to a width of about ,u.m. When the ink was sprayed under the conditions defined above, viewing densities obtained on reflection copies were 1.1 for a single colour as compared with 0.7 in the case of an uncoated paper surface.

EXAMPLE 2 The pigmented paper was coated with a 5 pm thick layer of silicic acid sol (K100, Farbenfabriken Bayer) Y 3 with the addition of AGEPON as wetting agent. The depth of penetration of the dye solution was approximately equal to the thickness of the layer. The viewing density under reflected light was about l.2 for one colour.

EXAMPLE 3 Gelatine and barium sulphate (ratio: 1:10) were mixed with water to form a spread coating suspension (temperature -50 to 60C). Hardener (chrome alum) were added to this supsension and in addition white toner and pigment dyes. were added to adjust the suspension to the optimum degree of whiteness. The suspension was then applied to the raw paper to produce a layer which has a thickness of pm when dry. The dye penetrated the layer to a depth of about 6 um. The viewing densities under reflected light were in the region of 1.1.

EXAMPLE 4 The pigmented paper was first covered with a coating of polyethylene as gloss layer. .Over this, a layer of gelatine was cast as described in Example 1. Brilliant colours were obtained and the viewing density was increased to 1.3.

. EXAMPLE 5 Before application of the ink-jet image, the layer prepared according to Example 3 was passed over a calendering press in which the rollers were heated to about C. A glazing effect was thereby obtained and the viewingdensities under reflected light were increased to 1.3 as in Example 3.

What we claim is:

1. In a process for information recording comprising producing a fine jet of colored liquid, directing the jet of colored liquid onto a recording medium, modulating the density of the applied jet by an electric field in accordance with the information to be recorded, the improvement comprising the recording medium consisting of a support with an image-receiving layer, wherein the image-receiving layer is a molecular'or colloidal disperse substance, which is wetted by the colored liquid and into which the colored liquid penetrates to a depth in the order of a few microns.

2. A process according to claim] wherein the image receiving layer comprises a protein, a polysaccharide, cellulose, a cellulose derivative, a polyvinyl alcohol, a copolymer of vinyl alcohols or a hydrophilic silica gel.

3. A process according to claim 2 wherein the image receiving layer comprisesgelatin, albumen or casein.

'4. A process according toclaim 1 wherein a white toner is added to the image receiving layer.

5. A process according to claim 1 wherein the image receiving layer is treated with a substance which produces a directional reflection in the optically visible wave-length range.

6. A process according to claim 5 wherein the image receiving layer is cast on a polyolefine layer.

7. A process according to claim 5 wherein a layer of polyoleflne is cast on the image receiving layer after the recording has been made.

8. A process according to claim 5 wherein a glossy surface is imparted to the image receiving layer by heating in a glazing press or by calendering.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3298030 *Jul 12, 1965Jan 10, 1967Clevite CorpElectrically operated character printer
US3409453 *Oct 31, 1966Nov 5, 1968Miles LabProcess for production of a coating composition comprising dialdehyde polysaccharideand substituted polysaccharides
US3411925 *Mar 24, 1966Nov 19, 1968Kimberly Clark CoOxidized starch-protein composition and methods for producing and using the same
US3415671 *Sep 29, 1965Dec 10, 1968Lowe Paper CoProcess and apparatus for producing high gloss coated paper
US3523818 *Dec 11, 1967Aug 11, 1970Clevite CorpRecording instrument resinous film
US3535202 *Feb 16, 1968Oct 20, 1970Westvaco CorpProcess of inhibiting discoloration of paper and paperboard by cross-linking carbohydrates with melamine or urea formaldehyde resins
US3554781 *Jan 24, 1968Jan 12, 1971Fuji Photo Film Co LtdMethod of producing pressure-sensitive recording papers
US3655527 *Sep 14, 1970Apr 11, 1972Bell Telephone Labor IncElectrolytic printing using polyvinyl alcohol
US3715219 *Sep 23, 1969Feb 6, 1973Teletype CorpElectrostatically improvement in electo static printing
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4269891 *Jun 28, 1979May 26, 1981Fuji Photo Film Co., Ltd.Recording sheet for ink jet recording
US4308542 *May 14, 1980Dec 29, 1981Fuji Photo Film Co., Ltd.Ink jet recording method
US4503111 *May 9, 1983Mar 5, 1985Tektronix, Inc.Hydrophobic substrate with coating receptive to inks
US4649064 *Mar 10, 1986Mar 10, 1987Eastman Kodak CompanyRapid-drying recording element for liquid ink marking
US4956223 *Feb 18, 1987Sep 11, 1990Canon Kabushiki KaishaRecording medium and recording method utilizing the same
US5045864 *Dec 3, 1990Sep 3, 1991Eastman Kodak CompanyInk-receiving transparent recording elements
US5084338 *Dec 3, 1990Jan 28, 1992Eastman Kodak CompanyTransparent image-recording elements containing ink-receptive layers
US5084340 *Dec 3, 1990Jan 28, 1992Eastman Kodak CompanyTransparent ink jet receiving elements
US5126194 *Dec 3, 1990Jun 30, 1992Eastman Kodak CompanyInk jet transparency
US5126195 *Dec 3, 1990Jun 30, 1992Eastman Kodak CompanyTransparent image-recording elements
US5190805 *Sep 20, 1991Mar 2, 1993Arkwright IncorporatedAnnotatable ink jet recording media
US5756226 *Sep 5, 1996May 26, 1998Sterling Diagnostic Imaging, Inc.Transparent media for phase change ink printing
US5888635 *Aug 29, 1997Mar 30, 1999Arkwright IncorporatedFull range ink jet recording medium
US6086700 *May 22, 1998Jul 11, 2000Agfa-Gevaert N.V.Transparent media for phase change ink printing
US6099956 *Jul 17, 1998Aug 8, 2000Agfa CorporationRecording medium
US6129785 *Jun 13, 1997Oct 10, 2000Consolidated Papers, Inc.Low pH coating composition for ink jet recording medium and method
US6140406 *Jun 12, 1998Oct 31, 2000Consolidated Papers, Inc.High solids interactive coating composition, ink jet recording medium, and method
US6153288 *Jul 24, 1997Nov 28, 2000Avery Dennison CorporationInk-receptive compositions and coated products
US6157865 *Jun 13, 1997Dec 5, 2000Mattel, Inc.User-created curios made from heat-shrinkable material
US6180255Feb 5, 1998Jan 30, 2001Agfa Gevaert N.V.Structured media for phase change ink printing
US6203153Feb 28, 1996Mar 20, 2001Hewlett-Packard CompanyMethod and apparatus for printing on gelatin coated media
US6258451Nov 20, 1998Jul 10, 2001Agfa Gevaert N.V.Recording medium
US6261669Jan 7, 1999Jul 17, 2001Arkwright IncorporatedFull range ink jet recording medium
US6309709Mar 13, 2000Oct 30, 2001Agfa GevaertTransparent media for phase change ink printing
US6346333Feb 21, 2000Feb 12, 2002Jose E. ValentiniStructured media for phase change ink printing
US6465081Apr 16, 2001Oct 15, 20023M Innovative Properties CompanyImage receptor sheet
US6656545May 18, 2000Dec 2, 2003Stora Enso North America CorporationLow pH coating composition for ink jet recording medium and method
US6713550Aug 27, 2001Mar 30, 2004Stora Enso North America CorporationMethod for making a high solids interactive coating composition and ink jet recording medium
US6720043Aug 21, 2000Apr 13, 2004Ferrania, S.P.A.Receiving sheet for ink-jet printing comprising a gelatin and saccharides combination
US6808767Apr 19, 2001Oct 26, 2004Stora Enso North America CorporationHigh gloss ink jet recording media
US6811253Aug 3, 2000Nov 2, 2004Ilford Imaging Uk LimitedInk jet printing method
US6869658Sep 12, 2001Mar 22, 2005Zanders Feinpapier AgRecording material bearing an embedded image
US6902268Nov 15, 2000Jun 7, 2005Ilford Imaging Switzerland GmbhPrinting process
US7097287May 8, 2002Aug 29, 2006Matsushita Electric Industrial Co., Ltd.Ink jet device, ink jet ink, and method of manufacturing electronic component using the device and the ink
US7370956Dec 30, 2003May 13, 2008Kodak Il Ltd.Method and media for printing aqueous ink jet inks on plastic surfaces
US7655296Jul 27, 2006Feb 2, 20103M Innovative Properties CompanyInk-receptive foam article
US7671116Aug 15, 2005Mar 2, 2010Q.P. CorporationComposition for forming ink-receiver layer, method of producing the same, and printing base
US7820282Mar 30, 2007Oct 26, 20103M Innovative Properties CompanyFoam security substrate
EP0696516A1Jun 19, 1995Feb 14, 1996Arkwright Inc.A full range ink jet recording medium
EP0827840A2 *Sep 2, 1997Mar 11, 1998Sterling Diagnostic Imaging, Inc.Transparent media for phase change ink printing
EP0958932A1 *May 8, 1999Nov 24, 1999STERLING DIAGNOSTIC IMAGING, Inc.Transparent media containing silica for phase change ink printing
EP1186435A1 *Sep 12, 2000Mar 13, 2002ZANDERS Feinpapiere AGRecording material bearing an embedded image
EP1634721A1Sep 6, 2005Mar 15, 2006Konica Minolta Holdings, Inc.Ink-jet recording sheet
EP1800884A1 *Aug 15, 2005Jun 27, 2007Q.P. CorporationComposition for forming ink-receiver layer, method of producing the same and printing base
EP1849618A1Apr 27, 2006Oct 31, 2007FUJIFILM Manufacturing Europe B.V.Crosslinked polymer sheets and methods for making such
WO1987005265A1 *Feb 25, 1987Sep 11, 1987Eastman Kodak CoRapid-drying recording element for liquid ink marking
WO2002022373A1 *Aug 24, 2001Mar 21, 2002Zanders Feinpapiere AgRecording material bearing an embedded image
WO2004087435A1Dec 30, 2003Oct 14, 2004Creo Il LtdMethod and media for printing aqueous ink jet inks on plastic surfaces
WO2006019079A1Aug 15, 2005Feb 23, 2006Mineo HasegawaComposition for forming ink-receiver layer, method of producing the same and printing base
Classifications
U.S. Classification347/105, 427/457, 347/101
International ClassificationB44D3/18, B41M5/00, B41M5/52, B41M5/50
Cooperative ClassificationB41M5/52, B41M5/5254, B41M5/5218, B44D3/18, B41M5/5236
European ClassificationB44D3/18, B41M5/52