Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3889804 A
Publication typeGrant
Publication dateJun 17, 1975
Filing dateMar 14, 1973
Priority dateMar 14, 1973
Publication numberUS 3889804 A, US 3889804A, US-A-3889804, US3889804 A, US3889804A
InventorsLeonard E Ravich
Original AssigneeGorham Int Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Disposable towel
US 3889804 A
Abstract
This invention relates to a disposable wet towel characterized by an ability to evolve heat immediately prior to use or in use such that the temperature of the towel is increased by as much as 25 DEG or more above ambient when applied to the skin. The evolution of heat is due to the admixture of a reducing agent and an oxidizing agent reactive with said reducing agent which agents are kept separated prior to use of the towel and mixed when the towel is put into use. The agents and products resulting from the reaction thereof are not irritating to the skin. The invention also provides pouches for storing said towels prior to use which pouches contain means for maintaining said oxidizing agent and reducing agent isolated from each other.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1 June 17, 1975 Ravich DISPOSABLE TOWEL [75] Inventor: Leonard E. Ravich, Boston, Mass.

[73] Assignee: Gorham International, lnc.,

Gorham, Maine [22] Filed: Mar. 14, 1973 [21] Appl. No.: 341,277

[52] US. Cl. 206/223; 206/22l; 206/222; 401/] [51] Int. Cl B65d 81/32 [58] Field of Search 206/219, 221, 812, 222, 206/223, 205, 209, 210, 525; 15/104.93; 128/399 [56] References Cited UNITED STATES PATENTS 2,779,465 l/l957 Anderson 206/223 X 3,038,473 6/1962 Ladd 206/222 X 3,343,664 9/1967 Poitras 206/219 3,414,927 12/1968 Worcester 206/812 X 3,638,786 2/1972 Borecki et al. 206/219 Primary Examiner-Leonard Summer Attorney, Agent, or Firm-Robert L. Goldberg [5 ABSTRACT This invention relates to a disposable wet towel characterized by an ability to evolve heat immediately prior to use or in use such that the temperature of the towel is increased by as much as 25 or more above ambient when applied to the skin. The evolution of heat is due to the admixture of a reducing agent and an oxidizing agent reactive with said reducing agent 7 which agents are kept separated prior to use of the towel and mixed when the towel is put into use. .The agents and products resulting from the reaction thereof are not irritating to the skin. The invention also provides pouches for storing said towels prior to use which pouches contain means for maintaining said oxidizing agent and reducing agent isolated from each other.

8 Claims, 4 Drawing Figures PATENTEDJUN 17 I975 FIGZ FIGI

FIG?) A W F DISPOSABLE TOWEL BACKGROUND OF THE INVENTION This invention relates to wet disposable towels capable of evolving heat upon use to effect a temperature Wet disposable towels are known in the art. Typically, they are of paper and are stored in an airtight pouch such as an aluminum foil pouch lined with a protective liner such as polyethylene. When desired for use, the pouch is torn open and the wet towel removed. Such towels are usually impregnated with an aqueous solution containing various additives such as perfumes, astringents, humectants and frequently menthol to give a cooling effect when applied to the skin.

SUMMARY OF THE INVENTION The subject invention provides a wet disposable towel that evolves heat immediately prior to or during use such that it is above ambient temperature when applied to the skin. The evolution of heat is accomplished by bringing together a reducing agent and an oxidizing agent such that an exothermic chemical reaction results. The amount of heat evolved and the corresponding temperature rise is in part determined by the relative concentrations of the oxidizing agent and the reducing agent. The invention also provides pouches for storing said towels prior to use which pouches contain means for maintaining said oxidizing agent and reducing agent separated from each other.

Accordingly, one object of the present invention is to provide a self-heating, hot disposable towel for application to the skin.

Another object is to provide a towel impregnated with a two part of aqueous solution, one part of which contains an oxidant and the other part of which contains a reducing agent reactive therewith such that upon mixing of the two parts, there is the evolution of heat.

A further object of the invention is to provide a pouch containing a towel, an aqueous solution of an oxidizing agent and an aqueous solution of a reducing agent reactive with said oxidizing agent to produce heat, said pouch characterized by means to maintain said oxidizing agent and reducing agent separate from each other.

Other objects and advantages of the invention will be in part apparent from the description which follows.

DESCRIPTION OF THE DRAWINGS With reference to the drawings, FIG. 1 represents both a front view and a cross-sectional view of a pouch containing a towel in accordance with one embodiment of the invention;

FIG. 2 represents a cross-sectional view of a pouch containing a towel in accordance with an alternative embodiment of the invention;

FIG. 3 represents still another cross-sectional view of a pouch in accordance with a further embodiment of the invention; and

FIG. 4 represents a dispenser for said pouches containing said towels.

DESCRIPTION OF THE PREFERRED EMBODIMENTS The material used for the towel and the pouch containing said towel are in accordance with the materials of the prior art. Thus, paper is the preferred towel material though cloth or a non-woven fabric may be used and a foil such as aluminum foil lined with polyethylene, for example, is the preferred pouch material. The pouch must be airtight.

In order to obtain a heat rise immediately prior to or during use of the towel of the invention. there are brought together two solutions in contact with the towel which undergo an exothermic chemical reaction. In accordance with the invention, these materials are an oxidizing agent and a reducing agent, said agents being reactive with each other.

The oxidizing agent may be any one of a wide variety of materials depending upon the precise requirement of the particular composition in which it is used. Among the oxidants that may be used are hydrogen peroxide, urea hydrogen peroxide, sodium peroxide, sodium perborate, sodium persulfate, ammonium persulfate, potassium persulfate and mixtures of the foregoing.

The quantity of oxidizing agent and reducing agent contained in the liquid composition impregnated into the hot towel will depend in part upon how much heat is desired and in part upon the nature of the byproducts which may result from the reaction. It is generally desirable that the amount of reducing agent be at least as great as the amount required for stoichiometric reaction with all of the oxidizing agent present in the liquid composition. It is generally preferred that 5 to 10 mole percent excess of the reducing agent be present in order to insure complete reaction of all of the oxidizing agent. In some cases, however, the quantity of the oxidizing agent initially present may be greater than the stoichiometric quantity required for reaction with all of the reducing agent because, due to the nature of the reducing agent, it may be desirable to isnure complete utilization thereof. In these cases, up to 10 mole percent excess oxidant may be employed, said oxidant being consumed preferably within 15 seconds when used with a mixture of a reducing agent, catalyst for the reaction and other materials. Both the oxidizing agent and reducing agent, as well as the by-products formed from said reaction, should be harmless to the skin.

The concentration of the oxidizing agent and reducing agent in the total aqueous composition impregnated into the towel will depend upon the amount of heat required to heat up the composition and towel, and the rate at which the heat is dissipated. As little as 0.8 percent by weight of oxidant based upon the total weight of the aqueous composition impregnating the towel will suffice when a stoichiometrically equivalent quantity of reducing agent is used. However, at least 1 percent is preferred and in general, the amount is that amount necessary to heat the towel at least 25F. above ambient temperature. As the proportion of the oxidizing agent and reducing agent is increased, the rate of heat generation approaches a maximum which varies depending upon the particular materials used. Once the maximum rate of heating has been achieved, further increase in the amount of oxidizing agent and reducing agent has no substantial further effect on the heating rate although the total quantity of heat evolved and hence the ultimate temperature to which the hot towel is heated may still increase. In the case of hydrogen peroxide or urea hydrogen peroxide, which materials are the preferred oxidants, it is desirable to avoid concentrations above 10 percent by weight.

dant solution during storage.

Because of the special characteristics required of compositions applied to the skin, there are only a lirnited number of reducing agents which may be employed. These characteristics include an ability to react with the oxidizing agent to provide rapid and adequate heat evolution, stability during normal storage, freedom from objectionable color and odor, freedom from toxicity, from physiological activity, from irritancy and sensitization. As noted above, the amount of heat evolved preferably is sufficient to raise the temperature of the entire composition impregnating the towel by approximately 25F. above ambient temperature during a period of 30 seconds, preferably 15 seconds or less after mixing. Although there exists a substantial number of reductants which exhibit the first three of the foregoing characteristics, most of them lack to an appreciable extent one or more of the remaining characteristicsQThe reductants which have been found to possess all of the foregoing characteristics are thiourea and compounds having the structure in which R, may be hydrogen, lower alkyl, lower hydroxy alkyl, lower alkoxy, or lower alkanoyl, and R may be any of the foregoing except hydrogen and may in addition by phenyl. Among such compounds are l-phenyl-2-thiobarbituric acid, l-phenyl-ethyl-2- thiobarbituric acid, l-methyl2-thiobarbituric acid, 1- methyl-S-ethyl-2-thiobarbituric acid, l-methyl-S-ethyl- 2-thiobarituric acid, l-ethyl-5-ethyl-2-thiobarbituric acid, l-phenyl-5-methyl-2-thiobarbituric acid, and the like, all of which are soluble in weakly alkaline aqueous media. The oxidants which may be used with the foregoing reductants to produce the desired results include hydrogen peroxide and urea hydrogen peroxide.

Preferably, the oxidant is present in an amount from 0.8 to about 2 percent by weight of the total aqueous composition. The proportions of oxidant and reductant relative to each other are usually adjusted as described above to insure complete reaction of the oxidant with a small amount of excess reductant of the order of 5 to percent of the total quantity of reductant. However in some cases an excess of oxidant may be used, as pointed out above.

The preferred compositions also include a catalyst to accelerate the reaction and hence to accelerate the rise in temperature of the composition, although in some cases it is possible to achieve the same result by employing an excess of reductant. While a variety of catalysts which accelerate such oxidation-reduction reactions are well known and may be used, best results are achieved with such water soluble tungstates or molybdates as alkali metal (including ammonium) tungstates or molybdates, e.g., sodium tungstate, potassium tungstate, sodium molybdate, ammonium molybdate, etc.,

I which not only accelerate the reaction, but also cause it to follow a different course than that followed in the absence of catalyst, at least in the case when thiourea is the reductant, so that there are not produced the objectionable end products which are formed in the absence of catalyst when thiourea is used.

The amount of catalyst required varies with the particular catalyst employed and also with the specific oxidant and reductant present. However, in the case of the preferred tungstate catalyst, the quantity of catalyst for best results is approximately 75 X lO gram atoms of tungsten per mole of reductant, while in the case of molybdates approximately 17.5 X l0 gram atoms of molybdenum per mole of the reductant is best. As little as half as much of the catalyst may be used successfully. Excess catalyst may be used though the additional quantity has very little effect. Inasmuch as the catalyst promotes decomposition of the oxidant, it should be kept separated therefrom until immediately before mixing of the two parts of the composition. Therefore, the catalyst is preferably included in that part of the composition containing the reducing agent.

The pH of the composition may be in the range of from 5 to 10. For optimum results the pH should be in the range of from 7.5 to 8. In order to maintain the composition within the desired pH range, it may be necessary to include a buffer in the composition.

While a wide variety of alkaline agents or buffers may be used to control pl-I, such as sodium, potassium or ammonium hydroxide or sodium, potassium, calcium or ammonium carbonate or bicarbonate, best results and minimum irritation of the skin are obtained by using a lower polyalkanolamine such as diethanolamine, di-isopropanolamine, triethanolamine, or triisopropanolamine. It has been found permissible to have an excess of one of the preferred polyalkanolamine materials present over and above the minimum required to maintain the desired pH, the excess preferably amounting to up to five per cent by weight of the total aqueous composition.

In addition to the ingredients noted above and the composition impregnated into the towel, other ingredients normally used in the manufacture of wet disposable towels such as astringents, humectants, perfumes and the like may be present in the composition.

As noted above, prior to use, the reducing agent and the oxidizing agent are kept isolated from each other. This is accomplished by use of any of the especially designed pouches for the disposable towel illustrated in the drawings though the drawings should not be considered limiting of the various embodiments possible. With reference to FIG. 1 of the drawings, there is shown a folded paper towel 10 impregnated with a solution of a suitable reducing agent and contained in a waterproof and airtight pouch 11. A pod 12 contains an aqueous solution'of a suitable oxidant along with stabilizers for said oxidant. When ready for use, a thread 13 is pulled to rupture pod 12 resulting in release of the oxidant and the admixture of the same with the reducing agent impregnated in the towel 10. An exothermic reaction is initiated which will raise the temperature of the towel about 25F. above ambient. After a few seconds, preferably about 10 seconds, the pouch can be ripped open and the towel used.

In FIG. 2 of the drawings, there is represented a variation of the pouch disclosed in FIG. 1. In this embodi ment, foil pouch 20 lined with polyethylene is divided into 2 sections 21 and 22 by divider 23. Section 21 contains a folded paper towel, a towel of a non-woven fabric or a cloth towel 24 impregnated with a solution of a suitable reducing agent along with perfumes, humectants, stabilizers and other materials as desired. Towel 25 in compartment 22 is impregnated with a suitable oxidant and stabilizer. The edges 26 and 27 of towel 24 and 25 are so arranged that when pouch 20 is torn such as at location 28, the two towels can be pulled from the pouch together to provide intimate contact with each other and initiate the evolution of heat in accordance with the invention.

FIG. 3 is a third alternative wherein there is provided pouch 30 containing a folded towel 31 impregnated with a solution of a reducing agent and any other desired additive. A pod 32 contains an oxidizing agent in a gel form. When the pouch is torn at location 33, the towel 31 is passed through the oxidizing gel to initiate the exothermic reaction or, alternatively, the pod is ruptured and the oxidizing gel squeezed onto the towel as described with reference to a dispenser pack shown in FIG. 4 below.

In FIG. 4 of the drawing, there is represented a dis penser pack for both storing pouches containing the paper towel and for removing the pouches when desired to use the same. The dispenser pack comprises a rectangular box 40 having stored therein pouches 41 stacked one upon the other. The dispenser pack is provided with a slot 42 near the bottom thereof which slot is sized to accommodate the removal of the pouch 41. The slot 42 has projections 43 extending downward and into the slot such that it constricts the opening. In this way, as the pouch 41 is removed from slot 42, the projections 43 make indentations on the pouch which will act to rupture a pod (such as the pod of FIG. 3) containing an oxidizing gel and spread the same over the towel so that the two components mix together initiating the exothermic reaction. These projections 43 can be provided by putting a metal strip across the top of the slit, metal being used because of its strength. A serrated edge (not shown) or any other means to rupture the pod within the pouch can be substituted for projections 43.

The following specific examples are intended to illustrate more fully the invention, but are not intended to limit its scope.

EXAMPLE 1 A first solution of reducing agent is prepared having the following composition in parts by weight:

Ingredients Parts Thiourea l .52 Sodium tungstatc dihydrate 0.52 Triethanolamine 1.00 Perfume 0.39 Water 96.57

The second part consists of an aqueous solution containing 8.2 percent hydrogen peroxide by weight together with the usual amounts of sodium stannate and EXAMPLE 2 A reducing agent composition was prepared having ingredients as follows:

Ingredients Parts 1-phenyl-5-ethyl-2-thiobarbituric acid 5.00 Ammonium molybdate tetrahydrate 0.06 Triethanolamine 1.00 Perfume 0.39 Distilled Water 93.55

The oxidizing solution was the same as in Example I. The procedure of Example 1 was repeated and the rise in temperature of the towel was to about F.

Similar results are obtained using as the reducing agent a molar equivalent amount of 1-methyl-2- thiobarbituric acid in place of l-phenyl-S-ethyl-Z- thiobarbituric acid.

EXAMPLE 3 A reducing composition is made having the following formulation:

Ingredients Parts Triethanolamine l.0 l-phenyl-2thiobarbituric acid 4.8 Sodium tungstate dihydrate 0.5 Water 93.7

The second part consisted of an aqueous solution containing 7.9 percent hydrogen peroxide by weight together with the usual amount of sodium stannate and phenacetin.

Following the procedure of Example 1, upon mixing of the two parts in proportion of 3 parts by weight of the reducing solution to 1 part by weight of the oxidizing solution at room temperature, the towel underwent a temperature rise of about F.

I claim:

1. An article comprising an airtight pouch where said pouch is divided into two chambers, each containing a towel, the towel in one of said chambers being impregnated with a solution of oxidizing agent and the towel in the other of said chambers being impregnated with a solution of reducing agent, whereupon with rupture of said chambers, the two towels are brought together causing mixing of said oxidizing agent and reducing agent to cause an exothermic reaction and a temperature rise in said towels above ambient temperature.

2. The article of claim 1 where said towel is of paper.

3. The article of claim 1 where the concentration of said oxidizing agent and reducing agent in solution is sufficient to provide a temperature rise in said towels of at least 25F.

4. The article of claim 1 where said solution of oxidizing agent contains a stabilizer.

3,889,804 7 8 5. The article of claim 4 where said oxidizing agent selected from the group of thiourea and a thiobarbituis selected from the group of hydrogen peroxide and ric acid urea hydrogen peroxide.

6. The article of claim 4 where said oxidizing agent The article of manufacture of (Flam 7 where Sald is a peroxide.

i I 5 reducing agent is thiourea. 7. The article of claim 6 where the reducing agent is

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2779465 *Apr 13, 1954Jan 29, 1957Anderson Orval WilliamComposite disposable pad
US3038473 *Apr 6, 1959Jun 12, 1962Ladd John MPackage for disposable paper tissues
US3343664 *May 31, 1966Sep 26, 1967Poitras Edward JCompartmented package
US3414927 *Oct 10, 1966Dec 10, 1968Gurdon S. WorcesterComposite web for treating human tissue
US3638786 *Nov 12, 1969Feb 1, 1972Du PontPackage for preparation and dispensing of heated foam
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4258863 *Jan 8, 1979Mar 31, 1981Ness Richard AFlexible dispensing container having internal container wall rupturing means
US4332319 *Jun 25, 1980Jun 1, 1982Hurwood David LHygienic comfort product
US4749080 *Oct 16, 1987Jun 7, 1988Toohey Richard DPackaged reusable moist cloth and method
US4844251 *Aug 7, 1987Jul 4, 1989L'orealContainer means for separately storing at least two products to be brought into contact at the time of use
US4848572 *Jun 4, 1987Jul 18, 1989Herrera Patricio BFeminine hygiene device
US4881278 *Jan 11, 1988Nov 21, 1989Farah Khaled SCombination package for disinfecting and covering toilet seat
US4926784 *Jun 5, 1989May 22, 1990Brightful Deborah SPet deodorizer device
US4931052 *Jun 16, 1989Jun 5, 1990Feldman Ruth LDiaper with integral wiping cloth and disposal container
US4998671 *Oct 20, 1989Mar 12, 1991The Drackett CompanyMultiple compartment flexible package
US5058738 *Jan 30, 1990Oct 22, 1991Aktiebolaget ElectroluxPackage for a cleaning article such as a mop
US5242433 *Dec 7, 1992Sep 7, 1993Creative Products Resource Associates, Ltd.Packaging system with in-tandem applicator pads for topical drug delivery
US5254109 *Dec 7, 1992Oct 19, 1993Creative Products Resource Associates, Ltd.Separately packaged applicator pads for topical delivery of incompatable drugs
US5316400 *Dec 19, 1991May 31, 1994Creative Products Resource, Inc.Package systsem for flowable or solid substances
US5350067 *Dec 29, 1992Sep 27, 1994Beltran Patricio HPackaging system
US5368581 *Dec 7, 1992Nov 29, 1994Creative Products Resource Associates, Ltd.Method of using a packaging system with folded applicator pads for topical drug delivery
US5417674 *Aug 11, 1993May 23, 1995Creative Products Resource Associates, Ltd.Separately packaged applicator pads for topical delivery of incompatible drugs
US5460620 *Sep 7, 1993Oct 24, 1995Creative Products Resource, Inc.Method of applying in-tandem applicator pads for transdermal delivery of a therapeutic agent
US5562642 *May 4, 1995Oct 8, 1996Creative Products Resource, Inc.Separately packaged applicator pads for topical delivery of incompatible drugs
US5755330 *Mar 31, 1997May 26, 1998Block Drug Company, Inc.Multiple compacted solids and packages thereof
US5814159 *Feb 24, 1997Sep 29, 1998The Texwipe Company LlcCleaning method
US5988371 *Mar 2, 1998Nov 23, 1999The Texwipe Company LlcCleaning device and method
US6001187 *Feb 24, 1997Dec 14, 1999The Texwipe Company LlcCleaning method
US6062381 *Mar 2, 1998May 16, 2000The Texwipe Company LlcCleaning device and method
US6068820 *Jul 21, 1995May 30, 2000Micronova Manufacturing, Inc.Fluid/solution wiping system
US6112898 *Dec 19, 1997Sep 5, 2000Hpd Laboratories, Inc.Multiple compacted solids and packages therefor
US6863203Feb 19, 2002Mar 8, 2005Val-A Chicago IncorporatedEpoxy putty stick holder
US6945402 *May 4, 2000Sep 20, 2005L'oreal S.A.Sachet and absorbent item in a flexible-walled container
US7442439Dec 28, 2005Oct 28, 2008Kimberly-Clark Worldwide, Inc.Microencapsulated heat delivery vehicles
US7497351 *May 30, 2006Mar 3, 2009Kimberly-Clark Worldwide, Inc.Wet wipe dispensing system
US7513363 *May 2, 2005Apr 7, 2009Sherwood Services AgMedical implement distribution and collection system
US7517582 *May 10, 2007Apr 14, 2009Kimberly-Clark Worldwide, Inc.Supersaturated solutions using crystallization enthalpy to impart temperature change to wet wipes
US7571812 *Feb 23, 2007Aug 11, 2009Ilon S. FrancisFreshen up travel pack
US7597954 *Dec 14, 2006Oct 6, 2009Kimberly-Clark Worldwide, Inc.Supersaturated solutions using crystallization enthalpy to impact temperature change to wet wipes
US7648046May 30, 2006Jan 19, 2010Kimberly-Clark Worldwide, Inc.Dispensing system for dispensing warm wet wipes
US7654412May 30, 2006Feb 2, 2010Kimberly-Clark Worldwide, Inc.Wet wipe dispensing system for dispensing warm wet wipes
US7694811May 2, 2005Apr 13, 2010Covidien AgMedical implement distribution and collection system
US7694822May 2, 2005Apr 13, 2010Covidien AgMedical implement disposal and collection device
US7815046Nov 1, 2007Oct 19, 2010Tyco Healthcare Group LpSharps dispensing and disposal system
US7850041Nov 7, 2008Dec 14, 2010John David AmundsonWet wipes dispensing system
US7914891Dec 28, 2005Mar 29, 2011Kimberly-Clark Worldwide, Inc.Wipes including microencapsulated delivery vehicles and phase change materials
US8038000 *Aug 16, 2007Oct 18, 2011Illinois Tool Works Inc.Hydrogen peroxide point-of-use wipers
US8096414Nov 1, 2007Jan 17, 2012Tyco Healthcare Group LpMedical implement dispensing and disposal system
US8113349Sep 24, 2010Feb 14, 2012Tyco Healthcare Group LpSharps dispensing and disposal system
US8192841Dec 14, 2006Jun 5, 2012Kimberly-Clark Worldwide, Inc.Microencapsulated delivery vehicle having an aqueous core
US8232237 *Sep 13, 2004Jul 31, 2012Reckitt Benckiser (Uk) LimitedArticle and method
US20110297577 *Feb 11, 2011Dec 8, 2011Rosenblatt Jerry HMineral salt personal care wet-wipe towelette
US20120066850 *Aug 18, 2011Mar 22, 2012Ferdinand Frederick PisacaneCleanroom cleaning apparatus
EP1421872A2 *Sep 29, 2003May 26, 2004JOHNSON & JOHNSON CONSUMER COMPANIES, INC.Exothermic composition and the use thereof
WO1994013353A1 *Dec 6, 1993Jun 23, 1994Creative Prod Res AssSeparately packaged pads for topical drug delivery
WO1994013354A1 *Dec 7, 1993Jun 23, 1994Creative Prod Resource IncIn-tandem applicator pads for therapeutic agents
WO1996028262A1 *Mar 8, 1996Sep 19, 1996Texwipe Company LlcCleaning device and method
WO2000066455A1 *May 4, 2000Nov 9, 2000Gueret Jean Louis HAssembly for spontaneously contacting at least two elements and use thereof
WO2007127168A2 *Apr 24, 2007Nov 8, 2007Francis IlonFreshen up travel pack
WO2007138498A2 *May 3, 2007Dec 6, 2007Kimberly Clark CoWet wipe dispensing system
Classifications
U.S. Classification206/221, 206/581, 401/132, 206/524.4, 206/568, 206/222, 206/812
International ClassificationA47K10/32, F24J1/00, B65D81/32
Cooperative ClassificationB65D81/3261, F24J1/00, A47K2010/3293, Y10S206/812
European ClassificationB65D81/32H, F24J1/00