Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3890686 A
Publication typeGrant
Publication dateJun 24, 1975
Filing dateApr 24, 1974
Priority dateApr 25, 1973
Also published asCA1059845A1, DE2419716A1, US3996400
Publication numberUS 3890686 A, US 3890686A, US-A-3890686, US3890686 A, US3890686A
InventorsJacques-Jean Caubet
Original AssigneeStephanois Rech Mec
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Surface coating for ferrous alloy parts
US 3890686 A
Abstract
Mechanical parts of ferrous alloys are provided with a coating consisting essentially of FeSn2, FeSn, and FeSnCx, with x ranging from 0.7-1.3.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Caubet June 24, 1975 SURFACE COATING FOR FERROUS V ALLOY PARTS [56] References Cited Inventor: J q s-J Caubet, UNITED STATES PATENTS AndrezleuxBoutheon France 3,174,917 3/1965 Lesney et al 29/196.4 x 73 Assignfie; Centre stephanois de Recherches 3,481,841 12/1969 Ham et a]. 29/196.4 X Mecaniques Hydmmecanique et 3,522,154 7/1970 Swalherm 29/196.4 x Frottement, Andrezieux Boutheon (Loire), France Primary Examiner-L. Dewayne Rutledge Assistant Examiner-Arthur J. Steiner [22] Flled' 1974 Attorney, Agent, or FirmSughrue, Rothwell, Mion, [21] App]. No.2 463,923 Zinn and Macpeak [30] Foreign Application Priority Data ABSTRACT Apr. 25, 1973 France 73.15787 Mechanical arts of ferrous alloys are provided with a coating consisting essentially of FeSn FeSn, and [52] U.S. Cl 29/l96.l; 29/l96.2 FeSnC with x ranging from 0.7-1.3. [51] Int. Cl 1332b 15/18; B3213 15/20 t [58]. Field of Search 29/196.4, 196.1 3 Clams, 4 Drawmg Figures PATENTEIJJUN 24 I975 SHEET FeSn BY WEIGHT) DEPTH SUPPORTING MATERIAL "LAYER" SURFACE FIG. I

DEPTH SUPPORTING MATERIAL Fein BY WEIGHT) SURFACE "LAYER" FIG. 2

PATENTEDJUN24 ms 3 8 90,686

SHEET 2 FeS C BY WEIGHT) SURFACE l DEPTH "LAYER" SUPPORTING MATERIAL r duN LOAD A A 2&00 5- T800 60 12 0 160 TIME (a) I x035 (STRUCTURAL STEEL CONTAINING 0.35% CARBON) 2 X035 coATEo WLTH'TRE LAYER" FIG. 4

SURFACE COATING FOR FERROUS ALLOY PARTS Surface treatments are known for parts made of ferrous alloys, in order to increase the resistance of said parts to seizing and surface wearing. Other treatments are known, which improve the resistance of such parts to corrosion. But if, in addition, the variations in the total resistance of said parts to fatigue and to brittleness, or the variations in the adsorption of the oil film on the surface of the parts, as a result of any such known treatment, are taken into consideration, one finds that at the present time there exists no treatment enabling at least five out of the six above-mentioned mechanical characteristics to be improved, the sixth one, at the worst, remaining unchanged.

The object of the present invention is to reconcile the various requirements. It relates to mechanical parts made of ferrous alloys which are treated in a manner such that, according to the invention, said parts are coated with a novel layer, having surprising properties, and called hereinafter the layer". A part coated with the layer increases substantially five of its mechanical characteristics mentioned hereinabove, that is, its resistance to seizing, to wear, to corrosion, and to shocks, as well as its ability to adsorb the oil film highly, while its sixth characteristic, that is, its overall resistance to fatigue, is not altered.

BRIEF DESCRIPTION OF THE DRAWINGS 1.3). If the whole layer is analyzed, the proportion of each of said three phases should necessarily be ineluded within the following ranges:

FeSn from 5 to percent by volume FeSn from 60 to 90 percent by volume FeSnC, from O to 10 percent by volume.

3. In addition to those proportions resulting from an analysis throughout the thickness of the layer, the latter, when coating mechanical parts made of ferrous alloys in accordance with the invention should show concentration gradients of each of said three phases, which gradients should comply, from the outside to the inside, with the accurate rules graphically shown in the FIGS. 1-3 of the drawings. In other words:

the FeSn content should be within the hatched area of FIG. 1;

the FeSn content should be within the hatched area of FIG. 2;

the FeSnC content should be within the hatched area of FIG. 3.

4. The layer follows also, from the outside towards the inside, very accurate hardness laws, which make it conformable with the so-called three layer scientific rule which governs the design of surfaces having a good resistance to seizing and deformation. One may consult thereabout the work entitled Surface treatments against wear: description and industrial applications" by Centre Stephanois de Recherches Mecaniques HYDRONECANIQUE ET FROTTEMENT (Editor: Dunod, Paris, 1968).

The thickness of the layer will be indicated hereinafter by e, e being a value pre-selected as a function of the parameters of the problem of mechanics set.

Said hardness laws are as follows: according to the Vickers standard and under a load of 15 g, the hardness at a depth e/5 from the outside to the inside should range from 500 to 650 Vickers; then, it increases and goes through a maximum which lies at a depth ranging from e/S to e, said maximum having to range from 600 to 900 Vickers.

Performances obtained with parts having ferrous alloy surfaces, and coated with the layer according to the invention, are given hereinafter.

Resistance to seizing The test for resistance to seizing was carried out on a HEF type Tribometre apparatus. This is a friction simulator which allows, with a ring and a small plate, to represent a cylindrical sliding contact over a plane. While the ring is rotating, the parallele-pipedal plate describes a reciprocating translation motion, which allows keeping a constant generatrix contact for any length of time. Such a test, when carried out in water on a plate of structural steel containing 0.35 percent carbon, with a ring of hardened cement steel, results in immediate seizing. On the contrary, under the same conditions, with a plate of the same material coated with the layer according to the invention, the test was voluntarily stopped after fifteen hours without any sign of seizing appearing.

Adsorption of the oil film The test for adsorption of the oil film was carried out on a Faville Levally apparatus. In such a kind of test, the test tube, which has a diameter of 6 mm and a height of 40 mm, is rotatively driven between two jaws cut in V-shape with angles of The jaws and test tube assembly are immersed in oil. A load which increases linearly as a function of the time is applied on the jaws. FIG. 4 illustrates the influence of the layer on the adsorption of an oil film. It shows that the reference tube, made of structural steel containing 0.35 percent carbon, breaks its oil film at a load near to 600 daN, and seizes then immediately, while the test tube coated with the layer according to the invention may reach 2,500 daN without the coefficient of friction exceeding a value of 0.05 at the end of the test, which proves that the oil film is sufficient for ensuring the friction under hydrodynamic conditions.

A micrographic examination of the tube shows that the supporting material has creeped and has been deeply cold-hammered, while the micro-layer has been compacted.

Resistance to wear The tests for resistance to wear were carried out by means of the conventional so-called pin on ring" device. The ring is given a rotary motion with a speed of r.p.m., that is, a sliding speed of 0.3 m/s; The load applied on the pin is 10 N.

Under such conditions, with a pin made of steel containing 1% carbon and 1.5 percent chromium, the wearing speed of a reference disk made of structural steel containing 0.35 percent carbon is 8 mg/hour, while the wearing speed of a disk made of the same Resistance to fatigue The results of tests made with rotative deflection indicate that a part having a surface of ferrous alloy coated with the layer according to the invention has a total resistance to fatigue which varies by about 1 percent: the limit of fatigue of a reference tube made of structural steel containing 0.48 percent carbon is 40.2 kg/mm while that ofa tube made of the same material and coated with the layer according to the invention is 40.6 kg/mm Such a variation is lower than the accuracy of the measurement, and shows therefore that the layer according to the invention has no adverse influence on the resistance of the treated parts to fatigue.

The tests for resiliency (resistance to shocks) carried out with a Charpy pendulum-tap indicate a marked reduction of the brittleness of the test tubes treated: for instance, on carbon structural steel containing 0.48 percent carbon, the resiliency passes from 2.9 to 3.7 daJ/cm for tubes respectively uncoated and coated with the layer according to the invention, while on car bon structural steel containing 0.35 percent carbon the resiliency passes from 5.73 to 7.5 daJ/cm The tests for resistance to corrosion show that parts coated with the layer according to the-invention behave quite well in an atmospheric environment and in a saltcontaining environment, as compared with test tubes uncoated with the layer. For instance, after a 500 hour exposure to salt-containing fog, the characteristics of resistance to corrosion of the layer are such that the weight losses registered are substantially the same as those for a stainless steel, that is, about 0.3 mglcm It is obvious that any method allowing obtaining the layer described hereinabove makes part. of the present invention, in particular methods such as cementations in gaseous phase by the metals, or the electolytic depo sitions followed by a baking operation intended to diffuse the metal deposited in the substrate.

Non-limiting examples are given hereinafter, which describe the method for obtaining the layer according to the invention.

Example 1 The part to be treated is immersed in a cement constituted by 5 percent of tin fluoride, SnF and 95 percent of an inert substance such as magnesia; the part cement assembly is raised to a temperature of 600C. A reducing atmosphere is maintained during the whole duration of the treatment by a flushing with hydrogen. After lhour of treatment, the part is coated with a dif fusion layer 50 micron thick, which is in accordance with the layer described in the present invention.

Example 2 The part to be treated is raised to the temperature of 570C in an oven, in the presence of tin chloride vapours, SnCl such vapours being produced by heating tin chloride to the temperature of 500C in a secondary oven, and then introduced into the main oven by a stream of hydrogenated nitrogen. After l /zhour of treatment, the part is coated with a diffusion layer 50 micron thick, corresponding to the layer described in the present invention.

Example 3 An electrolytic deposit of tin, 10 micron thick, is effected on the part to be treated, which is then subjected to the following heat treatment:

from 0 to 200C within l5minutes,

from 200 to 280C within 7 hours,

from 290 to 570C within 2 hours, and then for 2 hours at 570C.

A layer 25 micron thick is thus obtained on the surface of the part, said layer being in accordance with the layer described in the present invention.

1 claim 1. A mechanical part made of ferrous alloys and coated with a surface layer, characterized in that said layer enables the part to resist wear, seizing, corrosion, and shocks at the same time, while simultaneously the ability to adsorb a film of lubricating oil increases without the resistance to fatigue being altered, said layer consisting essentially of the FeSn- FeSn, FeSnC, phases (.r ranging from 0.7 to 1.3 according to the following proportions:

FeSn ranging from 5 to 30 percent by volume FeSn ranging from 60 to 95 percent by volume FeSnC, ranging from O to 10 percent by volume, the distribution of said three phases within the layer being in accordance with the diagrams of FIGS. 1, 2 and 3, respectively.

2. A mechanical part made of ferrous alloys according to claim 1, characterized in that the Vickers hardness of the layer coating the part ranges from 5 to microns.

3. A mechanical part made of ferrous alloys according to claim 1, characterized in that the Vickers hardness of the layer coating the part, as measured under a load of 15 g, conforms to the following law as a function of the thickness 6 of the layer: at a depth of e/5 from the outside towards the inside, the hardness should range from 500 to 600 Vickers; then, it increases and passes through a maximum which is found at a depth between e/5 and e, said maximum having to range from 600 to 900 Vickers.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3174917 *Jul 10, 1961Mar 23, 1965United States Steel CorpMethod of making tin plate
US3481841 *Sep 20, 1965Dec 2, 1969Inland Steel CoTin plate treating process to improve corrosion resistance
US3522154 *May 31, 1967Jul 28, 1970Du PontCodeposited iron and tin electroplate and a process and electroplating bath for its preparation
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4015950 *Aug 1, 1975Apr 5, 1977Agence Nationale De Valorisation De La Recherche (Anvar)Surface treatment process for steels and article
US5575902 *Jul 1, 1994Nov 19, 1996Chevron Chemical CompanyHydrocarbons
US5593571 *Dec 19, 1994Jan 14, 1997Chevron Chemical CompanyTreating oxidized steels in low-sulfur reforming processes
US5674376 *Jun 7, 1995Oct 7, 1997Chevron Chemical CompanyLow sufur reforming process
US5676821 *Jun 7, 1995Oct 14, 1997Chevron Chemical CompanyCatalytic reforming of hydrocarbons; protective coating on furnace
US5723707 *Dec 12, 1994Mar 3, 1998Chevron Chemical CompanyDehydrogenation processes, equipment and catalyst loads therefor
US5807842 *Jan 23, 1997Sep 15, 1998Chevron Chemical CompanyHydrocarbon processing in equipment having increased halide stree-corrosion cracking resistance
US5849969 *Jun 7, 1995Dec 15, 1998Chevron Chemical CompanyHydrodealkylation processes
US5863418 *Feb 9, 1996Jan 26, 1999Chevron Chemical CompanyLow-sulfur reforming process
US5866743 *Jan 11, 1996Feb 2, 1999Chevron Chemical CompanyHydrodealkylation processes
US5914028 *Jan 10, 1997Jun 22, 1999Chevron Chemical CompanyReforming process with catalyst pretreatment
US6139909 *Oct 31, 1996Oct 31, 2000Chevron Chemical CompanyMaintenance; reducing using mixture of hydrogen and hydrocarbons
US6258256Jan 4, 1994Jul 10, 2001Chevron Phillips Chemical Company LpCracking processes
US6274113Jul 28, 1999Aug 14, 2001Chevron Phillips Chemical Company LpOperating steam reforming in steam reforming reactor system at a first steam to carbon ratio; providing protective layer to portion of steam reforming reactor system to reduce by-products; operating steam reforming
US6419986Jan 10, 1997Jul 16, 2002Chevron Phillips Chemical Company IpSupplying getter; removal; fixing
US6548030Sep 10, 2001Apr 15, 2003Chevron Phillips Chemical Company LpProtective coating on interior surface of chemical reactor
US6602483Jun 21, 2001Aug 5, 2003Chevron Phillips Chemical Company LpIncreasing production in hydrocarbon conversion processes
US6630257Jun 9, 1999Oct 7, 2003U.S. Nanocorp.Thermal sprayed electrodes
US6689424May 27, 2000Feb 10, 2004Inframat CorporationSolid lubricant coatings produced by thermal spray methods
US6794086Feb 28, 2001Sep 21, 2004Sandia CorporationForming protective coating by spraying
US6926997Nov 2, 1999Aug 9, 2005Sandia CorporationFeedstock comprising active material, e.g. pyrite, and a barrier coating, e.g. sulfur, to protect the active material from decomposition or other undesirable transformation; thermal batteries; thin films; thickness control
US7491469Oct 12, 2004Feb 17, 2009U.S. Nanocorp, Inc.Energy storage and conversion devices using thermal sprayed electrodes
USRE38532Dec 6, 1999Jun 8, 2004Chevron Phillips Chemical Company LpHydrodealkylation processes
Classifications
U.S. Classification428/682, 428/926, 428/686
International ClassificationC23C30/00, C23C18/08, C23C10/08, C23C10/36, C25D7/00
Cooperative ClassificationC23C10/36, C23C10/08, Y10S428/926
European ClassificationC23C10/36, C23C10/08
Legal Events
DateCodeEventDescription
Mar 19, 1984ASAssignment
Owner name: AT & T TECHNOLOGIES, INC.,
Free format text: CHANGE OF NAME;ASSIGNOR:WESTERN ELECTRIC COMPANY, INCORPORATED;REEL/FRAME:004251/0868
Effective date: 19831229