Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3891121 A
Publication typeGrant
Publication dateJun 24, 1975
Filing dateAug 4, 1972
Priority dateAug 4, 1972
Also published asCA974292A, CA974292A1, DE2338102A1, DE2338102B2, DE2338102C3
Publication numberUS 3891121 A, US 3891121A, US-A-3891121, US3891121 A, US3891121A
InventorsStoneburner Leonard G
Original AssigneeMead Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of operating a drop generator that includes the step of pre-pressurizing the liquid manifold
US 3891121 A
Abstract
Method of operating a drop generator while avoiding spattering during start up and termination of operations. The method includes pressurizing the drop generator manifold with air or other gas and with a flushing liquid formulated to leave substantially no residue upon evaporation, before pumping coating material to the manifold. In stopping the drop generator the flow of coating material to the manifold is replaced with a flow of flushing liquid and the flow of flushing liquid is then terminated and, simultaneously, an evacuation line leading to a low pressure source is opened.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Stoneburner June 24, 1975 METHOD OF OPERATING A DROP GENERATOR THAT INCLUDES THE STEP 0F PRE-PRESSURIZING THE LIQUID MANIFOLD [75] Inventor: Leonard G. Stoneburner,

Chillicothe, Ohio [73] Assignee: The Mead Corporation, Dayton,

' Ohio [22] Filed: Aug. 4, 1972 [21] Appl. No.: 277,998

[52] US. Cl. 222/1; 222/420; 346/75 [51] Int. Cl. B87b 7/00 [58] Field of Search 222/420, 394, 108, 318,

[56] References Cited UNITED STATES PATENTS 2,650,003 8/1953 Coleman 141/119 X 3,560,641 2/1971 Taylor 3,727,804 4/1973 Smith. 222/334 X 3,764,041 10/1973 Noll 222/148 OTHER PUBLlCATlONS IBM Technical Disclosure Bulletin Vol. 8, No. 1, June, 1965.

Primary Examiner-Evon C. Blunk Assistant Examiner-James M Slattery Attorney, Agent, or Firm-Biebel, French & Bugg [5 7] ABSTRACT Method of operating a drop generator while avoiding spattering during start up and termination of operations. The method includes pressurizing the drop generator manifold with air or other gas and with a flushing liquid formulated to leave substantially no residue upon evaporation, before pumping coating material to the manifold. In stopping the drop generator the flow of coating material to the manifold is replaced with a flow of flushing liquid and the flow of flushing liquid is then terminated and, simultaneously, an evacuation line leading to a low pressure source is opened.

10 Claims, 4 Drawing Figures 1 METHOD OF OPERATING A DROP GENERATOR THAT INCLUDES THE STEP OF PRE-PRESSURIZING THE LIQUIDMANIFOLD BACKGROUND OF THE INVENTION U.S. Pat. Nos. 3,560,641, 3,586,907 and 3,661,304 are directed to noncontacting coating systems wherein a liquid coating material, such as ink, is pumped under pressure to a manifold communicating with a series of small diameter orifices. As the coating material is ejected through the orifices under pressure, it forms fine filaments of coating material which break down into series of discrete drops. At the point where the drops break from the filaments they pass through charging rings which, depending upon the pattern of coating material desired on a receiving member conveyed beneath the drop generator, either charge or do not charge each individual drop of coating material.

An electrostatic deflecting field is set up downstream of the charge rings and all drops which receive a charge while passing through the charge rings are deflected from their trajectory by the deflecting field. A catcher is also associated with the system to catch those drops which it is desired to prevent from reaching the receiving member. In this way it will be seen, a patterned coating, such as printing, is applied to the receiving member.

Inthe operation of a drop generator of this type, it will be apparent that it takes some discrete pressure, hereinafter termed the operating pressure, to produce a filament of sufficient velocity to overcome forces, such as surface tension forces, tending to retard flow of the coating material through the orifices.

If the flow of coating material to the drop generator is commenced by merely opening a supply line to the manifold, it will be apparent that the pressure build up in the drop generator from zero to the operating pressure will occur over some finite time period.

During this period, when the pressure acting on the coating material has not yet reached operating pressure, a free jet will not be produced, but instead, a pendulous mass of coating material willcollect at each orifice which weeps liquid coating material therefrom. As the pressure acting on the coating material increases a jet will eventually be produced inside the mass of liquid and finally break from the mass in an uncontrolled manner, only stabilizing after the excess liquid at the orifice has been drawn away by entrainment in the jet.

Obviously this will result, not only in a more lengthy start up procedure, but also in spattering of the coating and the collection of coating material on the components of the generator. Since the coating material is electrically conductive this can result in shorting of the various electrical components, such as the charge rings and deflecting field electrodes. Additionally, the evaporation of the coating material will leave a residue on the components of the drop generator which will eventually affect its operation.

It will also be apparent that if drop generation is terminated by merely terminating the supply of coating material, the pressure in the manifold will decrease over a finite time period, again causing masses of coating material to collect at the orifice.

SUMMARY or THE INVENTION In method and apparatus in accordance with the present invention the coating material does not contact the filament forming orifices until the pressure necessary to form a free filament of coating material has been reached in the manifold. This is accomplished by first pressurizing the manifold with a gas, such as air, to a pressure at least equal to or preferably substantially above the operating pressurerequired for production of a free standing filament of coating material.

Thereafter, the coating material is pumped to the manifold at or above operating pressure and, since the manifold has already been pressurized before introducing the coating material, the coating material arrives at each of the orifices at or above operating pressure and immediately forms a free standing filament issuing from the orifice and forming a series of discrete drops.

By this method the collection of pendulous masses of coating material at the orifice and the contamination of the generator components is substantially avoided.

There may, however, be a fine spray associated with the transition from gas to liquid coating material at eachof the orifices as the coating is ejected therefrom. If this momentary spray or misting is found objectionable, it may also be substantially eliminated by interposing an additional step before the pumping of the coating material to the manifold.

Thus, a flushing liquid characterized by a substantial absence of residue upon evaporation, may be pumped to the manifold before the coating material is pumped thereto. Thus, if any misting or spraying occurs during the transition from gas to liquid at the orifices the liquid will quickly evaporate, with negligible residue resulting. After free standing filaments of flushing liquid are established at each of the orifices the supply of flushing liquid to the manifold is terminated and simultaneously replaced with a flow of coating material at or above operating pressure. Also, at this point any gas which remains entrained in the manifold may be bled therefrom.

In terminating operation of the'drop generator the supply of coating material is terminated and simultaneously replaced with a supply of the flushing liquid. Thereafter, the supply of flushing liquid is terminated and simultaneously a line is opened from the manifold to a waste sump operating at a pressure substantially below atmospheric. This sudden reduction of pressure in the manifold is sufficient to terminate the jets of flushing liquid without producing masses of liquid at the orifices or the formation of erratic drops.

Air may conveniently be used as the pressurizing gas and the flushing liquid may be any liquid which evaporates without appreciable deposit of residue. In this regard, a mixture of approximately 50 percent distilled, deionized water and 50 percent denatured alcohol appears satisfactory.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a somewhat schematic showing of a drop generator in accordance with the present invention;

FIG. 2 is a cross sectional view taken on line 2-2 of FIG. 1;

FIG. 3 is an enlarged cross sectional view showing the formation of coating material accumulations that result when pressure is allowed to build up gradually at the orifices; and 7 FIG. 4 is an enlarged cross sectional view similar to FIG. 3 but showing the formation of filaments and drops of coating material in accordance with the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS As seen in FIGS. 1 and 2 of the drawings, a drop generator in accordance with the present invention may include manifold 12 having a chamber 14 formed therein. Mounted beneath the manifold 12 is an orifice plate 16, a spacer plate 18, a charge ring plate 20, a pair of deflecting'electrodes 22 attached to the charge ring plate, as at 23, and a catcher 24 spaced from the electrodes by mounting means 26.

Coating material supplied to the chamber 14 will be ejected through the orifices 28 to, form fine filaments which break up into discrete dropsof coating material. Itis desirable that if a charge is to be applied to a particular drop it is applied at approximately the point at which the drops'break from the filaments. Thus, the spacer plate l8, having a series of openings 30 formed therethrough, spaces the charge ring plate at the proper distance from the orifice plate 16 such that the charge rings 32 charge each of the drops of coating material just as they break fromtheir respective filaments of coating material.

I Thereafter, the electrodes 22 deflect all charged drops toward the blade 34 of the .catcher 24 while uncharged drops are allowed to impinge on a receiving member 36 conveyed in any convenient manner past the drop generator, as indicated by the arrow in FIG. 2 of the drawings. The above description is merely for purposes of background and'for a more detailed description reference may be had to the two above noted U.S. Pat. Nos. 3,560,641 and 3,586,907.

With regard to the present invention, it will be seen the coating material will tend to form pendulous masses, as indicated at 38 in FIG. 3 of the drawings,

which weep coating material downwardly, contaminating other components of the generator, such as the charge rings 32. To avoid this, chamber 14 is prepressurized with the system shown somewhat schematically in FIG. 1 of the drawings.

Thus, a gas port 40 is provided leadingto one end of the chamber 14 while a liquid port 52 communicates with the opposite end of the chamber. A gas, such as air, is pumped through line 44 and valve 46 by means indicated at 4 8. A second line 50 also communicates with the gas port 40 and is provided with a valve 52 and a source of negative pressure as indicated at 54. A bleed line 55 also branches from port 40, controlled by valve 56.

Liquid port 42 may be fed by line 57, which includes a'valve 58 and is connected with means, as indicated at 60, for pumping a flushing liquid through the line 57. Also connected to port 42 isa line 62, controlled by valve 64, and through which coating material may be.

pumped by pump 66.

With the above system the sequence of operation is as follows. Alllines leading to the chamber 14 are closed. Next, valve 46 is opened, allowing air or other pressurizing gas to be pumped through line 44 by means of pump 48 at a pressure in excess of operating pressure. The pressure and flow rate of, gas issuch that the pressure in the chamber 14 quickly rises to a pressure above normal operating pressure, despite the escape of gas through the orifices 28.

Coating material may then be introduced into the system by opening valve 64 and pumping. the coating at or above operating pressure through liquid port 42. The coating material will advance through the chamber 14 in a coherent wave, from right to left as seen in FIG. 1 of the drawings. Since it is at or above operating pressure as it reaches each of the orifices, free standing jets are formed, as seen at 70 in FIG. 4 of the drawings,

which break down into series of discrete drops 72. Preferably, valve 46 is closed about 0.3 opening of valve 64. 1

As the flow at each of the orifices transfer'sfrom gas to liquid, a slight misting may be'experienced'. If this is found to be objectionable, a'flushing liqu'id may be introduced into the manifold before the introduction of coating material. Thus, the above procedure may be modified as follows. i i 7 With all valves initially closed, valves4'6 and 58 are opened, allowing gas to be pumped from source 48 and a flushing liquid to be pumped from source 60, both the gas and flushing liquid being at 'a pressure in excess of operating pressure. Again, the liquid entering the chamber 14 will advance as a coherent wave, replacing the gas flow at each of the orifices 28 with a liquid flow at or above operating pressure.

While the transfer from gas to flushing liquid may also result in a fine mist or spray at each of the orifices 28, this will not affect or contaminate the components seconds after the j of the generator since the flushing liquid is formulated such that it leaves virtually no residue upon evapora-v tion.

After the free standing jets of flushing liquid are formed at each of the orifices 28 and the valve 46 has been closed, valve 64 is opened and simultaneously valve 58 is closed. This allows coating material at or above operating pressure. to flow through line 62 and liquid port 42 into the chamber l4, displacing any .flushing liquid therein with coating ,material. Thereafter, any air or other gas which may remain in the system may be bledout through line and valve 56.

When it is desired to terminate operation of the drop generator, valve 64 is ,closed and valve 58 opened, causing the flow of coating material to be replaced by a flow of flushing liquid. Thereafter, valve. 58 is closed and valve 52 is simultaneously opened, causing both the flow of flushing liquid to terminate and the evacuation of the system to a waste sump operating at a pressure substantially below. atmospheric pressure. This sudden reduction in pressure in the system is sufficient to terminate the jets without producing erratic drops below the orifices or allowing coating material to collect in pendulous masses about the orifices.

Under normal operating conditions, providing pressurizing gas at approximately l8 psi, flushing liquid at approximately 20 psi and coating'at approximately 1 1 psi has been found satisfactory for the usual range of viscosities found in coating materials such as ink and with an orifice plate having 60!) orifices of 1.5 mil diameter. Additionally, evacuating the drop generator upon termination of operations to a waste sump' at approximately inches of mercury below atmospheric pressure has been found satisfactory.

From the above it will be apparent that the present invention provides method and apparatus for operating a drop generator without the problems normally associated with start up and shut down procedures.

While the methods and forms of apparatus herein described constitute preferred embodiments of the invention, it is to be understood that the invention is not limited to these precise methods and forms of apparatus, and that changes may be made therein without departing from the scope of the invention.

What is claimed is:

l. A method of commencing operation of a drop generator which includes orifice defining means and a manifold communicating with said orifice defining means for providing a supply of liquid coating material thereto comprising:

a. pressurizing said manifold with a gas to a pressure above the coating pressure necessary to cause said coating material to be ejected from said orifice defining means as a free standing filament which forms a series of discrete drops, and

b. thereafter introducing said coating material into said manifold at a pressure no less than said coating pressure.

2. The method of claim 1 wherein said step of pressurizing said manifold with gas comprises:

a. pressurizing said manifold with gas at approximately 18 psi.

3. The method of claim 1 wherein said step of introducing coating material into said manifold comprises:

a. introducing said coating material into said manifold at approximately 11 psi.

4. The method of claim 1 further comprising:

a. adding a flushing liquid to said manifold after said step of pressurizing said manifold with gas and before introducing said coating material into said manifold.

5. The method of claim 4 wherein said step of adding flushing liquid comprises:

a. adding said flushing liquid at approximately 20 psi.

6. The method of claim 4 further comprising:

a. discontinuing said adding of said flushing liquid to said manifold while continuing said step of introducing said coating material into said manifold,

b. discontinuing introducing said coating material into said manifold and commencing adding flushing liquid to said manifold, and

c. evacuating said manifold.

7. The method of claim 6 wherein said step of evacuating said manifold comprises:

a. evacuating said manifold at a negative pressure of approximately 15 inches of mercury below atmospheric pressure.

8. The method of claim 1 wherein said step of pressurizing said manifold with a gas comprises:

a. pumping gas under pressure into said manifold.

9. The method of claim 8 further comprising:

a. discontinuing said pumping of said gas into said manifold after said coating material is introduced into said manifold at said coating pressure.

10. A method of operating a drop generator which includes an orifice plate having means defining a plurality of small diameter orifices therethrough, a manifold communicating with said orifices for providing a supply of coating material thereto, and a gas port and a liquid port communicating with said manifold comprising:

a. pumping air into said manifold through said gas port at approximately 18 psi,

b. pumping a mixture of distilled, deionized water and denatured alcohol through said liquid port and into said manifold at approximately 20 psi,

c. discontinuing said pumping of air into said manifold,

d. discontinuing said pumping of said mixture after said manifold is full of said mixture and commencing pumping of coating material through said liquid port into said manifold at approximately 11 psi,

e. bleeding any remaining air in said manifold out through said gas port,

f; continuing pumping of said coating material into said manifold to cause fine filaments of said coatin g material to be ejected through said orifices and form a series of discrete drops,

g. discontinuing pumping of said coating material and commencing pumping of said mixture through said liquid port into said manifold, and

h. substantially simultaneously discontinuing pumping of said mixture and evacuating said manifold through said gas port at a negative pressure of approximately 15 inches of mercury below atmospheric pressure.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2650003 *Mar 8, 1948Aug 25, 1953Buyer Coleman ClarenceDrip arresting apparatus
US3560641 *Oct 18, 1968Feb 2, 1971Mead CorpImage construction system using multiple arrays of drop generators
US3727804 *Nov 30, 1970Apr 17, 1973Gen Motors CorpViscous fluid dispenser with valved chamber receiving circulating viscous fluid
US3764041 *Oct 26, 1970Oct 9, 1973Searle & CoMicrodispensing process and apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4031561 *May 3, 1976Jun 21, 1977The Mead CorporationStartup apparatus and method for jet drop recording with relatively movable charge plate and orifice plate
US4042937 *Jun 1, 1976Aug 16, 1977International Business Machines CorporationInk supply for pressurized ink jet
US4080608 *Jul 12, 1976Mar 21, 1978The Mead CorporationFluidics system for a jet drop printer
US4207578 *Jan 8, 1979Jun 10, 1980The Mead CorporationCatch trough for a jet drop recorder
US4234885 *Sep 10, 1979Nov 18, 1980A. B. Dick CompanyRemote ink valve
US4240082 *Feb 28, 1979Dec 16, 1980The Mead CorporationMomentumless shutdown of a jet drop recorder
US4256610 *May 25, 1979Mar 17, 1981The Mead CorporationCleaning composition for use in an ink jet recorder
US4286272 *Aug 13, 1979Aug 25, 1981The Mead CorporationInk jet printer and start up method therefor
US4314264 *Aug 15, 1980Feb 2, 1982The Mead CorporationInk supply system for an ink jet printer
US4318114 *Sep 15, 1980Mar 2, 1982The Mead CorporationInk jet printer having continuous recirculation during shut down
US4329696 *Jul 23, 1980May 11, 1982The Mead CorporationInk jet fluid system
US4390883 *Sep 8, 1981Jun 28, 1983The Mead CorporationFluid jet print head and method of terminating operation thereof
US4399446 *Jan 18, 1982Aug 16, 1983The Mead CorporationInk supply system for an ink jet printer
US4404566 *Mar 8, 1982Sep 13, 1983The Mead CorporationFluid system for fluid jet printing device
US4422080 *Dec 17, 1981Dec 20, 1983International Business MachinesInk jet printing method and apparatus
US4523202 *Feb 3, 1982Jun 11, 1985Burlington Industries, Inc.Random droplet liquid jet apparatus and process
US4644369 *May 9, 1985Feb 17, 1987Burlington Industries, Inc.Random artificially perturbed liquid jet applicator apparatus and method
US4698642 *Jun 10, 1985Oct 6, 1987Burlington Industries, Inc.Non-artifically perturbed (NAP) liquid jet printing
US4831385 *Oct 14, 1987May 16, 1989Burlington Industries, Inc.Vacuum tray fluid-jet start-up system
US5195654 *May 17, 1991Mar 23, 1993Neste OyMethod for feeding a mud-like catalyst into a polymerization reactor
US5532720 *Sep 15, 1993Jul 2, 1996Quad/Tech, Inc.Solvent recovery system for ink jet printer
US5691753 *Feb 12, 1996Nov 25, 1997Xerox CorporationValving connector and ink handling system for thermal ink-jet printbar
US7021731 *Jul 15, 2003Apr 4, 2006Canon Kabushiki KaishaInk-jet printing apparatus and recovery treatment method thereof
US7055931Dec 7, 2004Jun 6, 2006Eastman Kodak CompanyAutomatic startup for a solvent ink printing system
US7141104May 10, 2004Nov 28, 2006Agfa-GevaertUV-absorbing ink composition for ink-jet printing
US7213902 *May 5, 2004May 8, 2007Eastman Kodak CompanyMethod of shutting down a continuous ink jet printer for maintaining positive pressure at the printhead
US7278728Jan 24, 2005Oct 9, 2007Agfa Graphics NvInk-jet printing system
US7918530Feb 2, 2007Apr 5, 2011Rr DonnelleyApparatus and method for cleaning an inkjet printhead
US8870341 *Oct 22, 2012Oct 28, 2014Fujifilm CorporationNozzle plate maintenance for fluid ejection devices
US8888208Mar 15, 2013Nov 18, 2014R.R. Donnelley & Sons CompanySystem and method for removing air from an inkjet cartridge and an ink supply line
US20040012648 *Jul 15, 2003Jan 22, 2004Canon Kabushiki KaishaInk-jet printing apparatus and recovery treatment method thereof
US20040142123 *Jan 9, 2004Jul 22, 2004Aert Huub VanInk-jet recording material
US20040191432 *Mar 16, 2004Sep 30, 2004Johan LoccufierInk jet recording material improved for light-and gas-fastness
US20040244643 *May 10, 2004Dec 9, 2004Voeght Frank DeUV-absorbing ink composition for ink-jet printing
US20050083368 *Dec 7, 2004Apr 21, 2005West Kenneth J.Automatic startup for a solvent ink printing system
US20050190245 *Jan 24, 2005Sep 1, 2005Agfa-GevaertInk-jet printing system
US20050247235 *May 3, 2005Nov 10, 2005Agfa-Gevaert N.V.Multi-density ink-jet ink set for ink-jet printing
US20050248608 *May 5, 2004Nov 10, 2005Devivo Daniel JMethod of shutting down a continuous ink jet printer for maintaining positive pressure at the printhead
US20060170745 *Dec 13, 2005Aug 3, 2006Agfa-GevaertInk-jet ink set for producing images with large colour gamut and high stability
US20070188542 *Feb 2, 2007Aug 16, 2007Kanfoush Dan EApparatus and method for cleaning an inkjet printhead
CN103770465A *Oct 22, 2013May 7, 2014富士胶片株式会社Nozzle plate maintenance for fluid ejection devices
CN103770465B *Oct 22, 2013Aug 17, 2016富士胶片株式会社喷墨打印头及用于喷墨打印的方法
EP0044751A2 *Jul 23, 1981Jan 27, 1982The Mead CorporationAn ink jet fluid system and device, and a method of preventing fluid flow from an ink jet print head after shut-down
EP0044751A3 *Jul 23, 1981Dec 8, 1982The Mead CorporationAn ink jet fluid system and device, and a method of preventing fluid flow from an ink jet print head after shut-down
EP1013438A1 *Nov 29, 1999Jun 28, 2000SCITEX DIGITAL PRINTING, Inc.Flush system for ink change
EP1013440A2 *Nov 29, 1999Jun 28, 2000SCITEX DIGITAL PRINTING, Inc.Fluid flush system for ink jet printing system
EP1013440A3 *Nov 29, 1999Nov 15, 2000SCITEX DIGITAL PRINTING, Inc.Fluid flush system for ink jet printing system
EP1013460A3 *Nov 29, 1999Oct 25, 2000SCITEX DIGITAL PRINTING, Inc.Improved vacuum system for continuous ink jet printers
EP1364800A1May 24, 2002Nov 26, 2003Agfa-GevaertImproved recording element for ink jet printing.
EP1375173A1Jun 27, 2002Jan 2, 2004Agfa-GevaertInk jet image improved for light-fastness
EP1393922A1Aug 27, 2002Mar 3, 2004Agfa-GevaertImproved ink jet recording material
EP1398166A1Sep 4, 2003Mar 17, 2004Agfa-GevaertInk jet recording material and light-stabilising agent
EP1410921A1Sep 19, 2003Apr 21, 2004Agfa-GevaertInk jet recording material and light-stabilising compound
EP1419893A1Nov 18, 2002May 19, 2004Agfa-GevaertImproved ink jet recording material
EP1419897A1Nov 3, 2003May 19, 2004Agfa-GevaertInk jet recording material
EP1437230A1Jan 7, 2004Jul 14, 2004Agfa-GevaertInk-jet recording material
EP1586459A1Feb 20, 2004Oct 19, 2005Agfa-GevaertImproved ink-jet printing system
EP2722181A1 *Oct 22, 2013Apr 23, 2014FUJIFILM CorporationNozzle plate maintenance for fluid ejection devices
EP3124279A1Jul 28, 2015Feb 1, 2017Grandeco Wallfashion Group - BelgiumMethod to produce wallpaper with minimum side effects
WO1993017867A1 *Mar 12, 1993Sep 16, 1993Willett International LimitedMethod for flushing an ink flow system
Classifications
U.S. Classification222/1, 347/89, 347/28, 222/420
International ClassificationG06K15/10, H04N1/032, B41J2/02, B41J2/165, B41J2/015, G06K15/02, H04N1/034, H04N1/23, B41J2/175
Cooperative ClassificationB41J2/16526
European ClassificationB41J2/165C1P
Legal Events
DateCodeEventDescription
Mar 19, 1984ASAssignment
Owner name: EASTMAN KODAK COMPANY A NJ CORP.
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MEAD CORPORATION THE A CORP. OF OH;REEL/FRAME:004237/0482
Effective date: 19831206