Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3891473 A
Publication typeGrant
Publication dateJun 24, 1975
Filing dateMay 17, 1973
Priority dateMay 17, 1973
Publication numberUS 3891473 A, US 3891473A, US-A-3891473, US3891473 A, US3891473A
InventorsLatva Henry F
Original AssigneeChrysler Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Heat treating atmospheres
US 3891473 A
Abstract
A heat treating atmosphere and method for its use wherein the atmosphere provides precise control over carbon content in metal parts, such as steel, and which is particularly applicable to powder metal sintering. The method uses a mixture of resultant constituents from dissociated ammonia and methane combusted with air to provide an atmosphere of controlled carbon potential. The ammonia is dissociated, the methane is combusted with air and the resultant constituents are mixed together prior to introduction into the heat treating furnace. The method prevents the formation of undesirable hard and brittle phases of carbides during sintering, the resulting products being free of segregated high carbon constituents, i.e., cementite, and being easier to machine, thus providing much longer cutting tool life.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 11 1 Latva 1 1 3,891,473 1 1 June 24, 1975 [73] Assignee: Chrysler Corporation, Highland Park, Mich.

221 Filed: May 17,1973

21 Appl. No.: 361,082

[75] Inventor:

[52] US. Cl. l48/l6.7; 75/224; 148/16; 148/165 [51] Int. Cl C2ld 1/74 [58] Field of Search 148/16, 16.5, 16.7. 126; 252/372, 373, 376; 48/196 R, 212; 75/224 [56] References Cited UNITED STATES PATENTS 2,299.138 10/1942 Gier 148/165 2,489,839 11/1949 Whitney l48/l6.5

Primary Examiner-C. Lovell Attorney, Agenl, or FirmTalburtt & Baldwin l 5 7 1 ABSTRACT A heat treating atmosphere and method for its use wherein the atmosphere provides precise control over carbon content in metal parts, such as steel, and which is particularly applicable to powder metal sintering. The method uses a mixture of resultant constituents from dissociated ammonia and methane combusted with air to provide an atmosphere of controlled car bon potential. The ammonia is dissociated, the methane is combusted with air and the resultant constituents are mixed together prior to introduction into the heat treating furnace. The method prevents the formation of undesirable hard and brittle phases of carbides during sintering, the resulting products being free of segregated high carbon constituents, i.e., eementite, and being easier to machine, thus providing much longer cutting tool life.

5 Claims, 1 Drawing Figure PATENTEIJJUN 24 1975 1 HEAT TREATING ATMOSPHERES BACKGROUND The prior art discloses heat treatments wherein ammonia and methane combusted with air are mixed together in a furnace to provide heat treating atmospheres. However, this differs from the subject use of dissociated ammonia because in the prior art processes the ammonia is dissociated in the furnace whereas in the subject method the ammonia must be dissociated prior to its introduction into the furnace or other heat treating environment. In the prior art, dissociation of the ammonia in the furnace provides nascent nitrogen which nitrides the workpiece undergoing treatment whereas in the subject method dissociation prior to introduction to the furnace provides molecular N which is inert and does not affect the workpiece undergoing treatment.

SUMMARY Dissociation of ammonia provides N and H The combustion of methane with air provides CO, N and H The diluting of the combusted methane products by the ammonia products makes possible the provision of a heat treating atmosphere wherein predetermined and very small amounts of C are present and therefore precise control of the carbon content of a workpiece exposed at elevated temperatures can be achieved.

It is desirable to have more precise control over the carbon content of materials such as steel, iron and the like. Generally, this can include any carbide forming composition. Precise control is obtained according to this invention by diluting a carbiding atmosphere formed from methane combusted with air and with a diluent of anhydrous ammonia which is dissociated into N; and H prior to its being mixed with the combusted or cracked methane and prior to the introduction of the blended constituents into the furnace. It is important to this invention that the ammonia be dissociated prior to its introduction into the furnace. Otherwise, when dissociation occurs in the furnace, nascent nitrogen forms and nitrides the workpiece. This is to be avoided in the subject method. The use of anhydrous ammonia as a diluent represents a practical and low cost approach.

In practice, the subject method as applied to a powder metal workpiece (workpieces other than sintered parts are also amenable to this treatment) is as follows: A typical ferrous metal powder contains extremely low amounts of carbon. In certain cases it is desired to produce steel parts having precise amounts of carbon such as in the case of gears which must have a sufficient amount of carbon to be wear resistant but not so much carbon that brittle phases are formed in the core metal during heat treatment. This requires precise control of carbon content. A low carbon powder metal is mixed with graphite to provide about the carbon content desired. This mixture is pressed into a green compact which is subsequently sintered. Sintering is carried out in an atmosphere consisting of a certain or predetermined ratio of the products of cracked methane and dissociated ammonia. Knowing the amount of carbon contained in the green compact and knowing the amount desired ultimately, the proper diluted atmosphere can be selected to provide, during normal sintering times and temperatures, an equilibrium condition which provides and/or maintains a desired final amount of carbon in the workpiece. Since the cracked methane is diluted with the nitrogen and hydrogen resulting from the dissociated ammonia, low amounts of carbon, or in other words a low carbon potential, is provided in the atmosphere so that precise amounts of carbon can be obtained by this method. This low carbon potential atmosphere is lower than has been possible heretofore. Further, it prevents oxidation because each separately generated gas is dry and of low dew point.

BRIEF DESCRIPTION OF THE DRAWING The FIGURE shows a schematic combination endothermic gas generator and ammonia dissociator.

DESCRIPTION OF THE PREFERRED EMBODIMENT In general this invention provides Sintering and/or heat treating atmospheres for carbon level control and oxidation prevention. The invention makes use of blended, low dew point atmospheres during the heating, sintering, cooling and/or subsequent heat treat ment of powder metal compacts or parts of ferrousbase or non-ferrous base compositions, which are carbide formers, so that the various levels of carbon are controlled, and at the same time the formation of metal oxides of active elemental constituents is prevented. Equipment is also described which simultaneously produces and controls the atmosphere in balance with the various levels of carbon desired in the resulting sintered or heat treated workpieces to provide definite ranges of composition.

Typical compositions are listed in Table I as obtained from the various volume blends of dissociated ammonia (25% nitrogen and hydrogen) and endothermic cracked methane gas at 2.5 to one air/gas ratio (20% carbon monoxide, 38% hydrogen and 42% nitrogen).

Table I is derived for a furnace requirement of 2,000 cubic feet per hour of gas atmosphere. It shows the flow scope readings for dissociated ammonia and for endothermic gas at the various percentages of each. It also shows the number of cubic feet of each constituent flowing into the furnace at the corresponding ratios of each type of gas.

It can be determined experimentally and by calculation what ratio of dissociated ammonia to endothermic gas will produce the level of carbon monoxide and hydrogen that is in equilibrium with the chemistry of the desired product as indicated in Table II. Table II shows the resultant analysis of the atmosphere in a furnace for the various volume percentages of dissociated ammonia gas and endothermically cracked methane gas.

TABLE I FLOW SCOPE READINGS Vol 2000 C.F.H.

CH, NH; Endo CO H N,

2000 X '71 NH 1800 200 40 I426 534 2000 X 80 Z NH, I600 400 80 I352 568 2000 X 70 "/1 NH, I400 600 I272 602 2000 X 60 7: NH, I200 800 I60 1 I96 636 2000 X 50 7% NH I000 I000 200 l I30 670 2000 X 40 '7? NH 800 I200 240 I056 704 2000 X 30 it NH 600 I400 280 982 733 2000 X 20 NH 400 I600 320 908 772 2000 X I0 I NH 200 I800 360 834 806 2000 X 0 7: NH:, 0 2000 400 760 840 TABLE I1 CONSTITU ENT ANALYSIS As a guide for some of the more typical alloys (percentages are by weight), it has been found that for alloys of0.20 to 0.25% carbon and 0.70 to 0.90% manga nese. about a 60/40 (by volume) ratio of dissociated ammonia to endothermic gas, which produces HN atmosphere of 8% CO, 59.8% H and 31.8% N gives a final part or workpiece composition of 0.22% carbon and 0.70%/0.90% manganese. For a desired 0.18% to 0.24% carbon and 1.10% to 1.40% manganese composition, this same gas ratio also provides carbon and manganese content within the above range with a final analysis of 0.21% carbon and 1.25% manganese. For a 0.35% typical carbon and for both manganese contents of 0.70% to 0.90% and 1.10% to 1.40% respectively, it was found that about 50% of each of dissociated ammonia and endothermic gas at low dew point produced 0.35% carbon and also kept the manganese from oxidizing. For higher carbon contents of 0.60% and 0.85% carbon a ratio of about 40/60 and 20/80 of dissociated ammonia to endothermic gas in each case is preferred.

The preferred equipment for this method is a combination endothermic generator and ammonia dissociator as shown in the FIGURE. The equipment includes two or more retorts l and 11 within a combustion chamber heated by burning gas or electric heating elements. One or more retorts crack an air to gas (methane) ratio of about 2.5 to l, to produce endothermic gas, and one or more retorts dissociate ammonia. By suitable meters, the input to each retort is regulated to produce desired amounts of cracked endothermic gas constituents (20% CO, 38% H and 42% N and de sired amounts of dissociated ammonia (25% H and 75% N from each of the separate retorts and 11. The required output is mixed or blended to form a desired composition which will be used in equilibrium with the chemistry of the parts or workpiece to be sintered. To accomplish this the desired atmosphere is piped, as shown, to a sintering furnace.

The control of carbon level in the sintering process or during subsequent heat treatment, annealing or hardening of ferrous powder metal compacts, has long been a difficult and almost impossible task. It has become necessary to sinter and/or heat treat porous and- /or solid compacted metal parts containing alloying elements which are prone to oxidation when heated in ordinary gaseous atmosphere. This is also true of steel parts which contain oxidation-prone elements.

Endothermic gas atmospheres are ordinarily both too high in carbon potential at low dew point and too Inn in decarburizing resistance at higher dew point to sintcr the full range of powder metal pressed parts to meet the A.I.S.I. carbon steel compositions. lt has therefore not been possible heretofore to control the carbon level of the lower range composition of carbon when high a1 loying element content of other elements prone to oxidation are included. Such principal elements may be 5 manganese and chromium and there may be others to a lesser degree.

lt has also been difficult to control the medium range carbon steel and/or alloy steel compositions, since the gas carbon potential in equilibrium with the desired medium composition ordinarily has a dew point too high to prevent oxidation of the alloying constituents.

At the high carbon level, the low dew point endothermic atmosphere is too potent in carburizing action to be in eqilibrium with 0.7%, 0.8% and 09% carbon level compositions. Often times undesirable hard constituents such as cementite inclusions were formed. This caused brittle products and made machining difficult.

A predetermined ratio of constituent gas composition, to be in equilibrium with the desired composition of the sintered compact, has been used with success in accordance with this invention. in the cases of sintering compressed briquettes, which were used as preforms for hot forming structural mechanical components. of several alloy steel compositions, the exact carbon analysis of the steel grade was successfully controlled by using the subject invention. The alloying elements of high level manganese content for each of the materials was also controlled without oxidation of the manganese. This is accomplished, in accordance with this invention, by using an atmosphere for sintering in which the carbon potential is maintained in equilibrium with the desired carbon chemistry of the steel powder compact. The dew point is controlled at a low level by controlling the air and gas ratio, as well as the cracking temperature in the endothermic gas generator. The carbon potential is further controlled by adding a dry reducing gas, which does not contain significant amounts of oxygen, carbon dioxide or water vapor, to the low dew point endothermic cracked gas. Dissociated ammonia gas cracked to low dew point is used as the diluting constituent.

By using a straight low dew point endothermic gas atmosphere to sinter an A.l.S.l, 4023 type steel composition powder metal compacts, which contain 0.20 to 0.25% carbon and 0.70 to 0.90% manganese, a higher carbon content was found to result. The manganese content was found to be at the proper level but some oxidation occurred. By sintering in straight dissociated ammonia, a loss of carbon or decarburization was found to take place in the resulting preform or compact.

For example. the method of the invention, on the other hand, produced the following results. A. ratio of 60% (by volume) of dissociated ammonia with 40% (by volume) of endothermic cracked gas at a low dew point produced an atmosphere that was in equilibrium with steel powder compacts of both A.l.S.l. 4023 and A.l.S.l. 1522, which contained 0.20 to 25% and 0.18 to 0.24% carbon, respectively. It was also found that each steel powder with 0.70 to 0.90% manganese and 1.10 to 1.40% manganese. respectively, could be sintered without oxidation in the above atmosphere at 2,050" F. The composition of the atmosphere at 60/40 ratio was (by volume) carbon monoxide, 59.8% hydrogen and 31.8% nitrogen. This blend gave consistent results as to composition on the surface and in the core of the parts over several runs. The dew point was determined to be at +20 F., which was that of the cracked endothermic gas. The carbon potential as determined by the steel strip method was 0.28% carbon.

Processing compacts of the same composition but with 0.35% carbon in the mix and at a ratio of about 50% (by volume) dissociated ammonia and 50% (by volume) endothermic gas gave resulting compositions of about 0.35% carbon after sintering at 2.050 F. for a normal time. This shows that the resulting carbon can be raised by increasing the amount of endothermic gas and reducing the amount of ammonia in the treatment atmosphere. The manganese did not pick up oxygen. Sintering and/or heat treatment without oxidation can be accomplished by regulating the ratio of low dew point endothermic gas with dissociated ammonia as a dry diluent in accordance with this invention. At the same time the carbon level can be controlled by regulating the ratio of endothermic gas to dissociated ammonia, and additionally at the same time the dew point remains low so that oxidation of any active alloying elements present does not take place.

The control of low level carbon, as in carburizing grades of carbon or alloy steel compositions, is important to maintain tough core properties of densified powder metal preforms. Here the composition of the compacted and sintered preform must be held to narrow ranges of carbon content to obtain strong and duetile core properties in case-hardened parts.

Having described the invention, an exclusive property right is claimed therein as follows:

l. A method of controlling the carbon content of a steel alloy containing about 0.18% to 0.85% by weight carbon, comprising:

providing ammonia and methane in a volume ratio ranging from about 60/40 for the lower C contents to 20/80 for the higher C contents while maintaining the ammonia and methane separate from each other,

dissociating the ammonia and combusting the methane while maintaining the separation.

mixing the constituents resulting from the dissociation and combustion of the ammonia and methane together,

introducing the mixed constituents into a heat treating environment, and

heat treating the alloy in the heat treatment environment in the presence of the mixed constituents.

2. The method of claim 1 wherein the carbon content of the alloy is about 0.18 to 0.25 by weight and the volume ratio of ammonia and methane is about 60/40.

3. The method of claim 1 wherein the carbon content is about 0.35% carbon and the volume ratio of ammonia and methane is about 50/50.

4. The method of claim 1 wherein the carbon content is about 0.60% by weight and the volume ratio of ammonia and methane is about 40/60.

5. The method of claim 1 wherein the carbon content is about 0.85% by weight and the volume ratio of ammonia and methane is about 20/80.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2299138 *Oct 4, 1941Oct 20, 1942Westinghouse Electric & Mfg CoHeat treating of steel
US2489839 *Apr 30, 1946Nov 29, 1949Isthmian Metals IncProcess for carburizing compacted iron articles
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4042385 *Nov 7, 1975Aug 16, 1977Toyo Kogyo Co., Ltd.Sintering method for making a high carbon ferrous sliding element
US4049473 *Mar 11, 1976Sep 20, 1977Airco, Inc.Methods for carburizing steel parts
US4106931 *May 18, 1977Aug 15, 1978Airco, Inc.Carbon steel
US4139375 *Feb 6, 1978Feb 13, 1979Union Carbide CorporationProcess for sintering powder metal parts
US4153485 *Aug 17, 1977May 8, 1979Kobe Steel, Ltd.Deoxidizing
US4234337 *Dec 4, 1978Nov 18, 1980Hoerbiger & Co.Method of producing sintered friction laminae
US4579713 *Apr 25, 1985Apr 1, 1986Ultra-Temp CorporationMethod for carbon control of carbide preforms
Classifications
U.S. Classification148/633, 148/225, 419/57, 148/514, 419/59
International ClassificationC21D1/76
Cooperative ClassificationC21D1/76
European ClassificationC21D1/76
Legal Events
DateCodeEventDescription
Sep 12, 1984ASAssignment
Owner name: CHRYSLER CORPORATION
Free format text: PARTES REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID PATENTS ALSO RELEASE THEIR SECURITY INTEREST.;ASSIGNOR:MANUFACTURERS NATIONAL BANK OF DETROIL (CORPORATE TRUSTEE) AND BLACK DONALD E., (INDIVIDUAL TRUSTEE);REEL/FRAME:004355/0154
Effective date: 19840905
Mar 24, 1982ASAssignment
Owner name: CHRYSLER CORPORATION, HIGHLAND PARK, MI 12000 LYNN
Free format text: ASSIGNORS HEREBY REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID INVENTIONS AND RELEASE THEIR SECURITY INTEREST.;ASSIGNORS:FIDELITY UNION BANK;ARNEBECK, WILLIAM, INDIVIDUAL TRUSTEE;REEL/FRAME:004063/0604
Effective date: 19820217
Feb 10, 1981ASAssignment
Owner name: FIDELITY UNION TRUST COMPANY, 765 BROAD ST., NEWAR
Free format text: MORTGAGE;ASSIGNOR:CHRYSLER CORPORATION;REEL/FRAME:003832/0358
Effective date: 19810209
Owner name: FIDELITY UNION TRUST COMPANY, TRUSTEE,NEW JERSEY