US3891784A - Method of preparing oxidation resistant brazed joints - Google Patents

Method of preparing oxidation resistant brazed joints Download PDF

Info

Publication number
US3891784A
US3891784A US411965A US41196573A US3891784A US 3891784 A US3891784 A US 3891784A US 411965 A US411965 A US 411965A US 41196573 A US41196573 A US 41196573A US 3891784 A US3891784 A US 3891784A
Authority
US
United States
Prior art keywords
copper
aluminum
slurry
core
joints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US411965A
Inventor
Gordon E Allardyce
Roy Amedee
Claude Belleau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ICM A DE GENERAL PARTNERSHIP
Original Assignee
Chrysler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chrysler Corp filed Critical Chrysler Corp
Priority to US411965A priority Critical patent/US3891784A/en
Application granted granted Critical
Publication of US3891784A publication Critical patent/US3891784A/en
Assigned to FIDELITY UNION TRUST COMPANY, TRUSTEE reassignment FIDELITY UNION TRUST COMPANY, TRUSTEE MORTGAGE (SEE DOCUMENT FOR DETAILS). Assignors: CHRYSLER CORPORATION
Assigned to CHRYSLER CORPORATION reassignment CHRYSLER CORPORATION ASSIGNORS HEREBY REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID INVENTIONS AND RELEASE THEIR SECURITY INTEREST. (SEE DOCUMENT FOR DETAILS). Assignors: ARNEBECK, WILLIAM, INDIVIDUAL TRUSTEE, FIDELITY UNION BANK
Assigned to CHRYSLER CORPORATION reassignment CHRYSLER CORPORATION PARTES REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID PATENTS ALSO RELEASE THEIR SECURITY INTEREST. (SEE RECORD FOR DETAIL) Assignors: MANUFACTURERS NATIONAL BANK OF DETROIL (CORPORATE TRUSTEE) AND BLACK DONALD E., (INDIVIDUAL TRUSTEE)
Assigned to ICM, A DE GENERAL PARTNERSHIP reassignment ICM, A DE GENERAL PARTNERSHIP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AMPLEX VAN WERT CORPORATION, A CORP OF DE
Assigned to AMPLEX VAN WERT CORPORATION, A CORP. OF DE. reassignment AMPLEX VAN WERT CORPORATION, A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CHRYSLER CORPORATION
Assigned to HELLER FINANCIAL, INC., A DE CORP. AS AGENT reassignment HELLER FINANCIAL, INC., A DE CORP. AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ICM/KREBSOGE, A DE GENERAL PARTNERSHIP
Assigned to HELLER FINANCIAL, INC. reassignment HELLER FINANCIAL, INC. AMENDMENT TO RESTATE THE ORIGINAL SECURITY AGREEMENT DATED SEPTEMBER 15, 1989. SEE DOCUMENT FOR DETAILS Assignors: ICM/ KREBSOGE A GENERAL PARTNERSHIP OF DELAWARE
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/18Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions
    • C23C10/20Solid state diffusion of only metal elements or silicon into metallic material surfaces using liquids, e.g. salt baths, liquid suspensions only one element being diffused
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate

Definitions

  • the invention relates generally to brazing, to oxidation resistant structures, to copper-brazed structures which are rendered oxidation resistant and to a method of diffusion alloying copper brazed joints and fillets, hereinafter referred to simply as joints, and structures with aluminum. It is specifically concerned with providing oxidation resistant brazed joints in regenerator cores for turbine engines, although it is applicable to copper joints in similar matrix structures and to brazed copper joints generally.
  • Copper-brazed joints and fillets and related structures are alloyed according to the invention with aluminum for achieving oxidation resistance.
  • a more direct method of copper-brazing with oxidation resistant copper-aluminum alloys, wherein the structure to be brazed is coated with a slurry of copper-aluminum, has proven to be undesirable because of poor wetting." That is, the aluminum in the copper-aluminum alloy oxidizes and is not readily reduced by hydrogen. Consequently, the molten copper-aluminum alloy does not flow adequately to form suitable joints at the joint locations of the structure to be brazed.
  • this invention starts with a copper joint, or structure, coats it with aluminum and diffusion alloys the aluminum into and with the copper, and with the structure itself in some instances, to provide an oxidation resistant copper-aluminum brazed joint or structure. Oxidation resistance is improved not only at low temperatures but at elevated temperatures as well.
  • the invention uses an aluminum slurry for coating metal parts, assemblies and joints thereof with aluminum.
  • the slurry consists of aluminum flake or powder suspended in a suitable vehicle.
  • the slurried surface is heated in a suitable atmosphere, such as hydrogen, until the aluminum melts and diffuses into the surface.
  • regenerator matrix passages in such a way as to provide a graded aluminum-copper alloy across the matrix and to promote uniform oxidation resistance of the copper and steel regenerator assembly throughout the temperature gradient encountered during operation in a turbine engine.
  • Regenerator cores are usually made of ferritic stainless steel, such as 430 stainless, although other types of steel may be used.
  • FIG. 1 is a plan view showing the matrix structures of a regenerator core for a turbine engine schematically in part.
  • FIG. 2 is an end view of FIG. 1.
  • FIG. 3 is a fragmentary enlarged plan view of a portion of the matrix illustrated in FIG. 1 showing the brazed joints.
  • FIG. 4 is a schematic showing of a fixture useful in applying slurry to a core.
  • FIG. 5 is a graph illustrating diffusion depth of aluminum into copper, low carbon steel, and stainless steel at various temperatures over a period of k hour.
  • FIG. 6 illustrates the steps in the slurrying of copperbrazed regenerator cores into an aluminum slurry.
  • FIG. 7 is a graph showing the relationship between percent aluminum distribution across the thickness of a core and the average overall percent of slurry weight gain (SWG) resulting from dipping a core into an aluminum slurry.
  • SWG slurry weight gain
  • FIG. 8 is a graph showing the relationship between the percent aluminum diffused into the copper joints and the percent of slurry weight gain (SWG); and also the upper limit of the percent aluminum in the alloy and the upper limits of diffusion temperature.
  • FIG. 9 is a graph illustrating the relationship between the oxidation resistance of treated regenerator core samples in terms of percent of fillets oxidized and the average percent of slurry weight gain.
  • FIG. 10 is a graph showing the relationship between the oxidation resistance of treated regenerator core samples in terms of oxidation weight gain and the average percent of slurry weight gain.
  • regenerator cores typically consist of a rim 10, a hub 12 and a matrix portion generally indicated by 14, which is best shown in detail in FIG. 3.
  • the regenerator is a relatively flat, round structure with a plurality of passageways extending axially through the matrix for the flow of gases therethrough.
  • passageways in the particular design shown are formed by alternately positioned corrugated layers 16 of stainless steel stock and flat layers 18 of stainless steel stock about 3% inches wide and 0.002 inch thick.
  • Other variations and designs of matrix type regenerator cores are known and this invention is applicable to them as well as to matrix structures in general.
  • the matrix parts of a regenerator are assembled together and the rim and hub are attached.
  • such an assembly is coated with a slurry of copper oxide and then heated in a reducing atmosphere, hydrogen being preferred, to reduce the copper oxide, forming molten copper which flows into all the various junctions between the parts, thus forming a brazed structure which is bonded with copper joints, after cool-down to room temperature.
  • a slurry of copper flake may be used in place of the oxide in which case the hydrogen environment is not necessary.
  • the joints are able to withstand operation at temperatures up to at least about 1,400F.
  • the regenerator cores described herein which are about 15 /2 inches in diameter, 3 /2 inches thick, about 1000 grams of copper has been found to be adequate for brazing the cores without undue plugging.
  • the application of the copper oxide slurry is not particularly critical insofar as its distribution over the assembly is concerned because of the tendency of molten copper to readily flow and wet the assembly when at brazing temperatures of about 1,980F. to 2,050F. Consequently, copper oxide slurries with a water vehicle may be used. The assembly is simply dipped and rinsed if excess slurry appears to be present. Hydrogen heating of a copper slurried assembly produces an assembly having copper brazed joints. Other means of providing copper joints, such as using slurries containing copper flake or powder or others may be used with this invention. The particular technique of placing the copper to form the joint, whether by slurry or any other technique, is not important to this invention.
  • the copper brazed assembly is subjected to a slurrying step wherein the assembly is coated with an aluminum slurry following which it is heated to diffuse the aluminum into the copper joints thereby forming oxidation resistant copper-aluminum alloy at the joints.
  • diffusion of the aluminum into the steel parts of the core will also occur simultaneously if the slurry has been applied to it. In most cases this is beneficial.
  • the curve of FIG. illustrates the depth to which the diffusion of aluminum depending on temperature occurs into materials of the type described herein. A detailed procedure is described below for the preparation of regenerator cores of the type and size described above.
  • Core Preparation 1 Degrease the core either by pouring cold degreasing fluid, such as trichloroethylene through the matrix or preferably by the use of a vapor degreaser using trichloroethylene vapors.
  • cold degreasing fluid such as trichloroethylene
  • the slurry can be stored indefinitely in glass, rubber, plastic or stainless steel containers. (Ordinary steel containers corrode rapidly and contaminate the slurry.)
  • the core is preferably placed in a slurry fixture of the type shown in FIG. 4 designed to: 1. provide a reservoir for several gallons of slurry,
  • a blower to the fixture.
  • Attach depth indicator on rim of core This may be a piece of tape or simply a scratch mark to indicate the depth to which the core is to be dipped. (Oxidation resistant joints may only be required through part of the thickness of a core matrix depending on the temperature at which the hot face will operate and the core thickness.)
  • Handles may be attached on opposite points of core rim to facilitate handling.
  • the recommended and preferred weight gain is about 1.5% i 0.4% of initial weight.
  • the core is outside of the limits, it may be washed out with acetone to remove all slurry, and then reslurried.
  • the slurrying technique used will determine both the total amount of aluminum picked up by the core and its distribution within the individual matrix passages as shown in FIGS. 7 and 8 (SWG meaning slurry weight gain).
  • SWG slurry weight gain
  • the most desirable distribution of aluminum varies from zero aluminum in an area at the cold face, to high aluminum at the hot face in an axial gradient through the core which corresponds to the operating temperature gradient through it, which in turn, dictates the requirement for the oxidation resistance.
  • Aluminum within each passage of the core is distributed primarily at the copper joints and fillets because of surface tension forces which operate on the aluminum slurry.
  • the stainless steel matrix benefits from some aluminum diffusion. In case of 430 stainless steel which contains 16-18% chrome, the oxidation resistance of the stock is improved with the diffusion of aluminum into it.
  • Heating of the slurried core at a temperature of about 1,800F. i about 50F. for a time sufficient to allow the aluminum to diffuse throughout the fillets and joints is ordinarily satisfactory. In this particular case, about 2 hours is adequate. Diffusion in a reducing atmosphere, such as hydrogen, is preferred but vacuum or inert atmosphere is acceptable.
  • FIG. 5 illustrates in general that diffusion into various materials may be controlled by adjusting temperature. Time is another diffusion variable.
  • FIG. 9 illustrates that 1,800F. is the optimum temperature for diffusion of a minimum of 1.0% SWG of aluminum. Additional amounts of aluminum do not appreciably add to the oxidation resistance of the coper-aluminum alloy at 1,400F.
  • FIG. 10 illustrates that oxidation resistance increases with increasing amounts of aluminum.
  • FIG. 8 illustrates that, if the diffusion temperature is too high, melting of the copper aluminum alloy during its formation occurs, causing loss of the fillets since the molten copper-aluminum does not wet appreciably.
  • the processing temperature must be about l,800F. i about 50F.
  • FIG. 8 also illustrates the relation between the percent slurry at any point in the core and the corresponding percent aluminum in copper at that point, both before and after diffusion.
  • Approximately percent of Di ed wt. (cleaned) Initial wt. 100 SWG (assume matrix Cu 11,700 g on 3% inch core 15% in diameter) (10 g slurry wt. gain is about 0.085% SWG) (l centipoise difference is about g SWG difference).
  • Non-uniform depth of dipping Non-uniform level of slurry in passages due to core defects or variations in time of immersion or variations in slurry.
  • Oxidation resistance at about 1,400F. has been the principal quality criterion of work pieces treated by the method of this invention because that is currently regarded as the most likely maximum operating temperature in turbine engines, the preferred usage of this invention. However, this invention provides materials which are believed to exhibit improved oxidation resistance at even higher temperatures. Oxidation resistance is a corollary of the gain in weight due to oxide formation under oxidizing conditions, such as exposure to circulating room air. The weight change at I,400F. in milligrams per square centimeter, was measured and recorded periodically for samples which were exposed to such oxidizing conditions. The samples were also examined under a low power microscope to determine the mode of failure. All samples were periodically cycled from I,400F.
  • oxidation resistance of the copper joints is proportional to the aluminum content thereof, a sufficient quantity of aluminum slurry should be deposited at each joint to produce on oxidation resistant alloy, i.e., up to a maximum of about l0-I5 percent aluminum, balance copper, as indicated in FIG. 8 for regenerator cores, depending on the elevated temperature to be sustained.
  • the diffusion time and temperature should be sufficient to produce uniformly alloyed joints.
  • Excessive aluminum, that is greater than about 15 percent in the joints of a regenerator core is detrimental because high-aluminum-copper alloys tend to be brittle at room temperature.
  • Aluminum also lowers the melting point of copper and decreases its wettability, causing loss of the fillets during diffusion.
  • balance copper is a composition most desirable for structures exposed to temperatures on the order of l,400F. operating temperatures, such as regenerator cores. Lower temperatures may utilize lower amounts of aluminum for oxidation resistance. Higher temperatures require higher amounts of aluminum. However, high aluminum content can provide brittle alloys and, although oxidation resistant, composition must be selected in the context of the intended use.
  • This specification describes a grade of cuprous oxide brazing compound suitable for joining steel parts when used in conjunction with a reducing atmosphere brazing furnace. Brazing compound is applied to the joint area of the parts being joined. The cuprous oxide is reduced to metallic copper by the reaction of the reducing atmosphere at elevated temperatures. The metallic copper melts and forms the brazed joint between the parts being processed.
  • a method of preparing oxidation resistant brazed joints comprising the steps of:
  • Cuprous Oxide Particle Size The effective particle size and particle size distribution of the cuprous oxide effects the brazing compound viscosity characteristics, settling rate during storage, and fluidity of the applied brazing compound.
  • the desired particle size range varies 1 from about 1-30 microns in diameter with most of the particles being in the 4-20 micron range.
  • Pluronics L-64 (Wyandotte Chemical Company) 3.75 to 4.0 lbs.
  • Carbowax 6000 (Carbide and Carbon Chemical Co.) 14.5 to 15.0 lbs.
  • Glycol (Ethylene or Mixed Ethylene and Propylene) 11.0 to 11.5 lbs.
  • Viscosity and density should be measured at 78 i 1F. approximately one hour after mixing. The viscosity should be measured with a Brookfield viscosimeter using a No. 6 spindle running at 20 rpm. a. Viscosity atmospheres.

Abstract

Diffusion-alloying of aluminum into copper brazed joints and structures, particularly for turbine engine regenerator cores.

Description

United States Patent Allardyce et al.
METHOD OF PREPARING OXIDATION RESISTANT BRAZED JOINTS Inventors: Gordon E. Allardyce, Dearborn Heights; Roy Amedee; Claude Belleau, both of Troy, all of Mich.
Chrysler Corporation, Highland Park, Mich.
Filed: Nov. 1, 1973 Appl. No.: 411,965
Related US. Application Data Division of Ser. No. 316,145, Dec. 18, 1972, Pat. No. 3,797,087.
US. Cl. 427/295; 427/383; 427/377; 148/13.2; 148/127; 29/487 Int. Cl. C23c 9/00 Field of Search... 29/157.3 R, 487, 498, 4711, 29/487, 498, 199; 21/25 R; 148/6.14, 6.27, 13.2,127, 6; 117/131, 119
Assignee:
References Cited UNITED STATES PATENTS 3/1914 Gilson 148/6 OTHER PUBLICATIONS Brazing Manual, prepared by AWS Committee on Brazing and Soldering, copyright 1963, page 43.
Primary ExaminerRonald .1. Shore Attorney, Agent, or Firm-Talburtt & Baldwin [57] ABSTRACT Diffusion-alloying of aluminum into copper brazed joints and structures, particularly for turbine engine regenerator cores.
5 Claims, 10 Drawing Figures PATENTED JUN 2 4 I975 PATENTEDJUN 24 ms SHEET METHOD OF PREPARING OXIDATION RESISTANT BRAZED JOINTS This is a division of application Ser. No. 316,145 filed Dec. 18, 1972, now. U.S. Pat. No. 3,797,087.
BACKGROUND The invention relates generally to brazing, to oxidation resistant structures, to copper-brazed structures which are rendered oxidation resistant and to a method of diffusion alloying copper brazed joints and fillets, hereinafter referred to simply as joints, and structures with aluminum. It is specifically concerned with providing oxidation resistant brazed joints in regenerator cores for turbine engines, although it is applicable to copper joints in similar matrix structures and to brazed copper joints generally.
Copper-brazed joints and fillets and related structures are alloyed according to the invention with aluminum for achieving oxidation resistance. A more direct method of copper-brazing with oxidation resistant copper-aluminum alloys, wherein the structure to be brazed is coated with a slurry of copper-aluminum, has proven to be undesirable because of poor wetting." That is, the aluminum in the copper-aluminum alloy oxidizes and is not readily reduced by hydrogen. Consequently, the molten copper-aluminum alloy does not flow adequately to form suitable joints at the joint locations of the structure to be brazed.
SUMMARY OF THE INVENTION In a sense, this invention starts with a copper joint, or structure, coats it with aluminum and diffusion alloys the aluminum into and with the copper, and with the structure itself in some instances, to provide an oxidation resistant copper-aluminum brazed joint or structure. Oxidation resistance is improved not only at low temperatures but at elevated temperatures as well. In its preferred form, the invention uses an aluminum slurry for coating metal parts, assemblies and joints thereof with aluminum. The slurry consists of aluminum flake or powder suspended in a suitable vehicle. The slurried surface is heated in a suitable atmosphere, such as hydrogen, until the aluminum melts and diffuses into the surface.
A slurry technique is disclosed herein for coating regenerator matrix passages in such a way as to provide a graded aluminum-copper alloy across the matrix and to promote uniform oxidation resistance of the copper and steel regenerator assembly throughout the temperature gradient encountered during operation in a turbine engine. Regenerator cores are usually made of ferritic stainless steel, such as 430 stainless, although other types of steel may be used.
It is an object of this invention to diffuse aluminum into copper for oxidation resistance.
It is an object of this invention to diffuse aluminum into the structure carrying the copper joint as well, particularly when the structure is steel, to improve the oxidation resistance of the structure as well.
It is another object of this invention to diffuse aluminum into copper joints forming an oxidation resistant copper-aluminum alloy joint in situ.
It is another general object of this invention to diffuse aluminum into the copper joints and steel of a copper brazed steel matrix structure.
It is an object to provide oxidation resistant matrix structures using relatively low cost materials and procedures.
It is an object to provide oxidation resistant joints and structures.
It is a specific object to provide oxidation resistant regenerator cores for turbine engines.
It is an object to provide a method wherein processing techniques of reasonable cost may be used for making copperbrazed stainless steel matrix structures oxidation resistant.
These and other objects of the invention will become apparent from the following description.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing the matrix structures of a regenerator core for a turbine engine schematically in part.
FIG. 2 is an end view of FIG. 1.
FIG. 3 is a fragmentary enlarged plan view of a portion of the matrix illustrated in FIG. 1 showing the brazed joints.
FIG. 4 is a schematic showing of a fixture useful in applying slurry to a core.
FIG. 5 is a graph illustrating diffusion depth of aluminum into copper, low carbon steel, and stainless steel at various temperatures over a period of k hour.
FIG. 6 illustrates the steps in the slurrying of copperbrazed regenerator cores into an aluminum slurry.
FIG. 7 is a graph showing the relationship between percent aluminum distribution across the thickness of a core and the average overall percent of slurry weight gain (SWG) resulting from dipping a core into an aluminum slurry.
FIG. 8 is a graph showing the relationship between the percent aluminum diffused into the copper joints and the percent of slurry weight gain (SWG); and also the upper limit of the percent aluminum in the alloy and the upper limits of diffusion temperature.
FIG. 9 is a graph illustrating the relationship between the oxidation resistance of treated regenerator core samples in terms of percent of fillets oxidized and the average percent of slurry weight gain.
FIG. 10 is a graph showing the relationship between the oxidation resistance of treated regenerator core samples in terms of oxidation weight gain and the average percent of slurry weight gain.
DESCRIPTION OF THE PREFERRED EMBODIMENT While the invention is applicable, among other things, to copper-aluminum oxidation resistant joints generally and to matrix structures in general, it is described herein in connection with one type of such structure to which it is particularly applicable; that is, turbine engine regenerator cores of the type shown in FIGS. 1, 2 and 3. Such cores typically consist of a rim 10, a hub 12 and a matrix portion generally indicated by 14, which is best shown in detail in FIG. 3. As can be seen from FIGS. 1 and 2, the regenerator is a relatively flat, round structure with a plurality of passageways extending axially through the matrix for the flow of gases therethrough. The passageways in the particular design shown are formed by alternately positioned corrugated layers 16 of stainless steel stock and flat layers 18 of stainless steel stock about 3% inches wide and 0.002 inch thick. Other variations and designs of matrix type regenerator cores are known and this invention is applicable to them as well as to matrix structures in general.
When installed in an engine, hot gases enter one side of the regenerator matrix (the hot face) and leave at the opposite side (the cold face) as the regenerator rotates between a set of seals. Such systems, are described in US. Pat. Nos. 3,142,894; 3,157,226; 3,190,350; 3,190,351; 3,192,998; 3,202,207; 3,234,999 and 3,273,904.
To form an integral core structure the matrix parts of a regenerator are assembled together and the rim and hub are attached. According to this invention, in its preferred form, such an assembly is coated with a slurry of copper oxide and then heated in a reducing atmosphere, hydrogen being preferred, to reduce the copper oxide, forming molten copper which flows into all the various junctions between the parts, thus forming a brazed structure which is bonded with copper joints, after cool-down to room temperature. A slurry of copper flake may be used in place of the oxide in which case the hydrogen environment is not necessary. The joints are able to withstand operation at temperatures up to at least about 1,400F. In matrix structures, care should be taken to avoid plugging of the passageways by excessive amounts of copper. In the case of the regenerator cores described herein, which are about 15 /2 inches in diameter, 3 /2 inches thick, about 1000 grams of copper has been found to be adequate for brazing the cores without undue plugging.
The application of the copper oxide slurry is not particularly critical insofar as its distribution over the assembly is concerned because of the tendency of molten copper to readily flow and wet the assembly when at brazing temperatures of about 1,980F. to 2,050F. Consequently, copper oxide slurries with a water vehicle may be used. The assembly is simply dipped and rinsed if excess slurry appears to be present. Hydrogen heating of a copper slurried assembly produces an assembly having copper brazed joints. Other means of providing copper joints, such as using slurries containing copper flake or powder or others may be used with this invention. The particular technique of placing the copper to form the joint, whether by slurry or any other technique, is not important to this invention.
According to the preferred form of this invention the copper brazed assembly is subjected to a slurrying step wherein the assembly is coated with an aluminum slurry following which it is heated to diffuse the aluminum into the copper joints thereby forming oxidation resistant copper-aluminum alloy at the joints. Incidentally, diffusion of the aluminum into the steel parts of the core will also occur simultaneously if the slurry has been applied to it. In most cases this is beneficial. The curve of FIG. illustrates the depth to which the diffusion of aluminum depending on temperature occurs into materials of the type described herein. A detailed procedure is described below for the preparation of regenerator cores of the type and size described above.
I. PREFERRED METHOD FOR COPPER BRAZING REGENERATOR CORES A. Core Preparation 1. Degrease the core either by pouring cold degreasing fluid, such as trichloroethylene through the matrix or preferably by the use of a vapor degreaser using trichloroethylene vapors.
lo tory quantity of cuprous oxide in a regenerator core of the type and size described herein. Adjustments for other types of matrixstructures may be readily made by those of ordinary skill in this art. 4. The slurry can be stored indefinitely in glass, rubber, plastic or stainless steel containers. (Ordinary steel containers corrode rapidly and contaminate the slurry.) c. Application of the Cuprous Oxide Slurry 1. The core is preferably placed in a slurry fixture of the type shown in FIG. 4 designed to: 1. provide a reservoir for several gallons of slurry,
2. provide a closed chamber over the core that can be pressurized, and 3. support the core.
2. Connect a blower to the fixture. A blower similar to a Spencer Turbo-compressor rated at 270 cfm at 24 oz. pressure is suitable.
3. Pour approximately 5 gallons of prepared slurry through cover opening on slurry fixture onto the upper surface of the core.
4. Turn on the blower and adjust the back-pressure to maintain about 6 in. of water. Various pressures may be used so long as the slurry is forced through the matrix structure of the core. The volume of air may be increased when slurry has been forced I through core, but it is preferred that about 6 in. of back-pressure not be exceeded in order to prevent disturbance of the coated surface.
5. Continue to blow air until the bottom of the core appears dry. Spray water on the bottom of the core or immerse the bottom of the core in water to unplug matrix and remove any drip edge.
6. Wipe off the bottom with a clean wet sponge and blow until dry.
7. Brush off any loose slurry flakes and weigh the core. If the weight of the cuprous oxide retained in the matrix is less than about 8 percent of the matrix weight (excluding the weight of the hub), add additional slurry uniformly to the top of the core. If the weight of cuprous oxide retained in the matrix is more than 10 percent of the matrix weight (excluding the weight of the hub), wash out the bottom of the core with water by spraying or dipping. These amounts may vary with other types of matrix structures.
D. Copper Brazing of the Core 1. Place the core in a heating chamber, supported so it will not sag and heat in a H atmosphere to about 2,050F. for about A hour. Cool. The lower limit of brazing temperature is determined by the melting point of copper. The upper limit is determined by the grain boundry attack of the stock by the molten copper.
II. PREFERRED METHOD FOR ALUMINUM SLURRY PROCESSING OF COPPER BRAZED REGENERATOR CORES A. Preparation of the core.
1. Remove excess copper from the rim and hub sur* faces of the core. Cores having an abnormally high number of passages plugged with copper are unacceptable for slurrying because passages may become plugged with aluminum from the opposite face.
2. Weigh the core to nearest grams.
3. Mask portions of core not to be aluminum coated such as the rib and hub surfaces.
4. Attach depth indicator on rim of core. This may be a piece of tape or simply a scratch mark to indicate the depth to which the core is to be dipped. (Oxidation resistant joints may only be required through part of the thickness of a core matrix depending on the temperature at which the hot face will operate and the core thickness.)
5. Handles may be attached on opposite points of core rim to facilitate handling.
B. Slurry Preparation (This is applicable to the specific cores described herein; variations may be made for other structures as required.)
1. Mix about 10 gallons of slurry from aluminum paste with a metallic binder. The preferred binder is Pierce & Stevens metallic binder 8-9658, available from Pierce & Stevens Chemical Co., 710 Ohio Street, Buffalo, N.Y. diluted with hexane: 3:1 hexane: P. & S. binder.) The preferred aluminum paste is Al flake and /:a mineral spirits. Federal specifications TTP-32OA, Type II, Class B. The preferred slurry uses 6 gallons hexane; 2 gallons P. & S. 25,560 g. Al paste.
a. Adjust viscosity to about 250 centipoise by adding hexane. A Brookfield Synchro-Lectric Viscometer Model RVF-lOO was used for viscosity measurements.
b. Mixing is best done in an air driven, closed Binks mixer or equivalent to avoid evaporation and risk of fire.
2. Transfer the slurry to a tank for dipping, stir frequently.
a. Maintain temperature substantially constant at about R. T. (72F) b. Add hexane as needed to maintain viscosity.
c. Add additional slurry as needed to maintain an adequate clipping depth.
c. Dipping Procedure:
1. Lower the core into the slurry as shown in FIG. 6a, hot face down, to desired depth such as 7% thickness T.), /2 T., etc., the thickness and depths being selected depending on the extent of the core in an axial direction to be rendered oxidation resistant.
2. Allow the slurry to rise in passages to level of indicator, i.e., the desired depth and thickness.
3. Lift the core from the slurry and shake out any excess as shown in FIG. 6b).
4. Knock out excess slurry by banging the core on the board frame as shown in FIG. 6c).
5. Blot the core on an absorbent material, such as open cell polyurethane foam (twice) while blowing air through the core, through the top of a suitable 6 hood, as shown in FIG. 6a) for example. A k hp ducted fan has been found to be adequate.
6. Turn the core over and continue blowing until dry as shown in FIG. 62).
7. Remove any protective masking from the core and brush any excess aluminum from the matrix passage openings.
8. Weigh the core and calculate the percent slurry weight gain. The recommended and preferred weight gain is about 1.5% i 0.4% of initial weight.
9. If the core is outside of the limits, it may be washed out with acetone to remove all slurry, and then reslurried.
10. Adjust viscosity of slurry accordingly for the next core to be dipped.
11. The slurrying technique used will determine both the total amount of aluminum picked up by the core and its distribution within the individual matrix passages as shown in FIGS. 7 and 8 (SWG meaning slurry weight gain). In the case of regenerator cores, the most desirable distribution of aluminum varies from zero aluminum in an area at the cold face, to high aluminum at the hot face in an axial gradient through the core which corresponds to the operating temperature gradient through it, which in turn, dictates the requirement for the oxidation resistance. Aluminum within each passage of the core is distributed primarily at the copper joints and fillets because of surface tension forces which operate on the aluminum slurry. The stainless steel matrix benefits from some aluminum diffusion. In case of 430 stainless steel which contains 16-18% chrome, the oxidation resistance of the stock is improved with the diffusion of aluminum into it.
D. Diffusion Alloying:
Heating of the slurried core at a temperature of about 1,800F. i about 50F. for a time sufficient to allow the aluminum to diffuse throughout the fillets and joints is ordinarily satisfactory. In this particular case, about 2 hours is adequate. Diffusion in a reducing atmosphere, such as hydrogen, is preferred but vacuum or inert atmosphere is acceptable.
FIG. 5 illustrates in general that diffusion into various materials may be controlled by adjusting temperature. Time is another diffusion variable. FIG. 9 illustrates that 1,800F. is the optimum temperature for diffusion of a minimum of 1.0% SWG of aluminum. Additional amounts of aluminum do not appreciably add to the oxidation resistance of the coper-aluminum alloy at 1,400F. FIG. 10 illustrates that oxidation resistance increases with increasing amounts of aluminum.
If the diffusion temperature is too low, the aluminum does not diffuse into the copper fillets and joints to any appreciable depth, thus not forming substantial amounts of oxidation-resistant copper-aluminum alloy. FIG. 8 illustrates that, if the diffusion temperature is too high, melting of the copper aluminum alloy during its formation occurs, causing loss of the fillets since the molten copper-aluminum does not wet appreciably. Thus, the processing temperature must be about l,800F. i about 50F.
FIG. 8 also illustrates the relation between the percent slurry at any point in the core and the corresponding percent aluminum in copper at that point, both before and after diffusion. Approximately percent of Di ed wt. (cleaned) Initial wt. 100 SWG (assume matrix Cu 11,700 g on 3% inch core 15% in diameter) (10 g slurry wt. gain is about 0.085% SWG) (l centipoise difference is about g SWG difference). IV. POSSIBLE REASONS FOR VARIATION IN PER- CENT SWG Evaporation of solvent.
Settling of Al flake if not stirred. Temperature variations.
Change in ratio of Al: spirits: P & S: hexane, due to dripping, evaporation, and hexane additions.
Non-uniform passages.
Blocked passages (Cu and or distortions).
Split and other defects.
Temperature variations.
Non-uniform depth of dipping. Non-uniform level of slurry in passages due to core defects or variations in time of immersion or variations in slurry.
Unintentional coating on surfaces other than those in the passages.
4. Variations in shaking, banging or blotting.
A. Slurry:
B. Core C. Procedure D. Other Variables:
With reference to FIGS. 5, 6, 7, 8, 9 and 10, it can be seen that the variables of (I) slurry composition, (2) slurrying technique, (3) time, and (4) temperature are all interrelated and should be considered insofar as optimizing the subject invention for any particular use is concerned.
EVALUATION OF SAMPLES Oxidation resistance at about 1,400F. has been the principal quality criterion of work pieces treated by the method of this invention because that is currently regarded as the most likely maximum operating temperature in turbine engines, the preferred usage of this invention. However, this invention provides materials which are believed to exhibit improved oxidation resistance at even higher temperatures. Oxidation resistance is a corollary of the gain in weight due to oxide formation under oxidizing conditions, such as exposure to circulating room air. The weight change at I,400F. in milligrams per square centimeter, was measured and recorded periodically for samples which were exposed to such oxidizing conditions. The samples were also examined under a low power microscope to determine the mode of failure. All samples were periodically cycled from I,400F. to room temperature by withdrawing them from the oxidation testing furnace when some of them were to be weighed. The basic examination consisted of an evaluation of the copper brazed fillets and joints after hours of testing. If less than 10 percent of the copper fillets and joints had oxidized the treatment was considered to be good. Samples with no oxidized joints were designated very good.
Since the oxidation resistance of the copper joints is proportional to the aluminum content thereof, a sufficient quantity of aluminum slurry should be deposited at each joint to produce on oxidation resistant alloy, i.e., up to a maximum of about l0-I5 percent aluminum, balance copper, as indicated in FIG. 8 for regenerator cores, depending on the elevated temperature to be sustained.
The diffusion time and temperature should be sufficient to produce uniformly alloyed joints. Excessive aluminum, that is greater than about 15 percent in the joints of a regenerator core is detrimental because high-aluminum-copper alloys tend to be brittle at room temperature. Aluminum also lowers the melting point of copper and decreases its wettability, causing loss of the fillets during diffusion.
About 10-15 percent aluminum by weight, balance copper is a composition most desirable for structures exposed to temperatures on the order of l,400F. operating temperatures, such as regenerator cores. Lower temperatures may utilize lower amounts of aluminum for oxidation resistance. Higher temperatures require higher amounts of aluminum. However, high aluminum content can provide brittle alloys and, although oxidation resistant, composition must be selected in the context of the intended use.
* COPPER BRAZING PASTE Typical Specification A General I. This specification describes a grade of cuprous oxide brazing compound suitable for joining steel parts when used in conjunction with a reducing atmosphere brazing furnace. Brazing compound is applied to the joint area of the parts being joined. The cuprous oxide is reduced to metallic copper by the reaction of the reducing atmosphere at elevated temperatures. The metallic copper melts and forms the brazed joint between the parts being processed.
2. Suitable precautions must be taken in the prepara-' I. Cuprous Oxide Specification Cuprous Oxide (Cu O) Min. 95.0% Cuprous Oxide plus Metallic Copper Min. 97.0% Total Copper Min. 86.0% Metals other than Copper Max. 2% Sulfates Max. 05%
Continued Using 400 cps Methocel 3000 to 7000 centi- C hlorides Max. .027! P0186 MM 08% Using 4000 cps Methocel 8000 to 12,000
centipoise b. Density Min. 20.0 lbs/gal.
Having thus described the invention, the exclusive rights and privileges claimed therein are defined as follows:
l. A method of preparing oxidation resistant brazed joints comprising the steps of:
providing a structure having a copper brazed joint;
coating the copper joint with aluminum and heating 2. Cuprous Oxide Particle Size The effective particle size and particle size distribution of the cuprous oxide effects the brazing compound viscosity characteristics, settling rate during storage, and fluidity of the applied brazing compound. The desired particle size range varies 1 from about 1-30 microns in diameter with most of the particles being in the 4-20 micron range.
3. Chemical Composition Brazing Paste Formulation of a typical batch.
Cuprous Oxide (95% Grade) 1475.0 to 1500.0
lbs.
Methocel (Dow Chemical Company) (65 11.0. 400
or 4000 cps Grade) 7.0 to 9.0 lbs.
Note: Use 400 cps grade Methocel with Pfizer cuthe structure at an elevated temperature for a time sufficient to cause diffusion of aluminum substantially throughout the copper joint and the alloying of the aluminum therewith; the heating step being accomplished with an atmosphere selected from the group consisting of inert, reducing and vacuum prous oxide. Use 4000 cps grade Methocel with Greenback or Glidden cuprous oxide.
Pluronics L-64 (Wyandotte Chemical Company) 3.75 to 4.0 lbs.
Carbowax 6000 (Carbide and Carbon Chemical Co.) 14.5 to 15.0 lbs.
Glycol (Ethylene or Mixed Ethylene and Propylene) 11.0 to 11.5 lbs.
Water to make 100 gallons 4. Physical Properties Viscosity and density should be measured at 78 i 1F. approximately one hour after mixing. The viscosity should be measured with a Brookfield viscosimeter using a No. 6 spindle running at 20 rpm. a. Viscosity atmospheres.
2. The method according to claim 1 wherein the heating step is carried in a hydrogen atmosphere.
3. The method according to claim 1 wherein the aluminum is applied to the copper joint in a form of a slurry.
4. The method according to claim 3 wherein the structure is dipped into the aluminum slurry to coat the copper joint and the structure.
5. The method according to claim 4 wherein the amount of slurry applied to the structure in terms of slurry weight gain (SWG) is between about 1 percent and 2 percent whereby the resultant copper-aluminum alloy is substantially oxidation resistant.
l= l l 1 =1

Claims (5)

1. A METHOD OF PREPARING OXIDATION RESISTANT BRAZED JOINTS COMPRISING THE STEPS OF: PROVIDING A STRUCTURE HAVING A COPPER BRAZED JOINT, COATING THE COPPER JOINT WITH ALUMINUM AND HEATING THE STRUCTURE AT AN ELEVATED TEMPERATURE FOR A TIME SUFFICIENT TO CAUSE DIFFUSION OF ALUMINUM SUBSTANTIALLY THROUGHOUT
2. The method according to claim 1 wherein the heating step is carried in a hydrogen atmosphere.
3. The method according to claim 1 wherein the aluminum is applied to the copper joint in a form of a slurry.
4. The method according to claim 3 wherein the structure is dipped into the aluminum slurry to coat the copper joint and the structure.
5. The method according to claim 4 wherein the amount of slurry applied to the structure in terms of slurry weight gain (SWG) is between about 1 percent and 2 percent whereby the resultant copper-aluminum alloy is substantially oxidation resistant.
US411965A 1972-12-18 1973-11-01 Method of preparing oxidation resistant brazed joints Expired - Lifetime US3891784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US411965A US3891784A (en) 1972-12-18 1973-11-01 Method of preparing oxidation resistant brazed joints

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31614572A 1972-12-18 1972-12-18
US411965A US3891784A (en) 1972-12-18 1973-11-01 Method of preparing oxidation resistant brazed joints

Publications (1)

Publication Number Publication Date
US3891784A true US3891784A (en) 1975-06-24

Family

ID=26980267

Family Applications (1)

Application Number Title Priority Date Filing Date
US411965A Expired - Lifetime US3891784A (en) 1972-12-18 1973-11-01 Method of preparing oxidation resistant brazed joints

Country Status (1)

Country Link
US (1) US3891784A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4139673A (en) * 1977-02-22 1979-02-13 Nihon Karoraizu Kogyo Kabushiki Kaisha Surface-coated blast furnace tuyere made of copper or copper alloy and method of surface-coating the same
US4141760A (en) * 1972-11-06 1979-02-27 Alloy Surfaces Company, Inc. Stainless steel coated with aluminum
DE3340987A1 (en) * 1982-11-11 1984-12-20 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Process for producing scale-resistant soldered chromium-steel components and component produced by the process
DE3241706C1 (en) * 1982-11-11 1985-01-10 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Method of producing scale-resistant soldered chromium-steel components and use of the method for producing a burner
DE3726073C1 (en) * 1987-08-06 1988-07-14 Thyssen Edelstahlwerke Ag Process for the production of thin-walled semi-finished products and their uses
DE3726072A1 (en) * 1987-08-06 1989-02-16 Thyssen Edelstahlwerke Ag Soldering method
DE3726075C1 (en) * 1987-08-06 1989-03-02 Thyssen Edelstahlwerke Ag Method of soldering steel parts and of producing catalyst supports, heat exchangers and soot filters
US5050790A (en) * 1987-12-28 1991-09-24 Usui Kokusai Sangyo Kabushiki Kaisha Process for the fabrication of metal-made carrier body for exhaust gas cleaning catalyst
DE4222026C1 (en) * 1992-07-04 1993-04-15 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De Semi-finished prod. mfr. used as catalyst supports - by coating starting material, e.g. ferritic stainless steel, with at least one chromium@ layer and diffusion heat treating
US5648176A (en) * 1994-02-08 1997-07-15 Nippon Steel Corporation Metallic honeycomb body for supporting catalyst for automobiles and process for producing the same
US6129262A (en) * 1997-02-24 2000-10-10 Ford Global Technologies, Inc. Fluxless brazing of unclad aluminum using selective area plating
EP1564310A1 (en) * 2004-01-15 2005-08-17 Behr GmbH & Co. KG Method and device for treating metal workpieces
US20220055158A1 (en) * 2020-08-20 2022-02-24 Toyota Motor Engineering & Manufacturing North America, Inc. Copper solder formulation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1091057A (en) * 1913-03-12 1914-03-24 Gen Electric Process of treating metals.
US2541813A (en) * 1947-11-08 1951-02-13 Gen Electric Calorizing process
US3183588A (en) * 1961-03-25 1965-05-18 Fond De Nogent Lafeuille & Cie Production of alloy-clad articles
US3235959A (en) * 1962-06-25 1966-02-22 Alloys Res & Mfg Corp Brazing aluminum based parts
US3290182A (en) * 1965-05-25 1966-12-06 Olin Mathieson Method of making aluminum bronze articles
US3395027A (en) * 1964-03-05 1968-07-30 Teleflex Inc Coating composition and method
US3505104A (en) * 1966-10-27 1970-04-07 Ampco Metal Inc Method of forming an aluminum bronze article
US3743547A (en) * 1969-10-27 1973-07-03 R Green Protection of metallic surfaces
US3807030A (en) * 1972-12-27 1974-04-30 Chrysler Corp Method of preparing oxidation resistant materials

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1091057A (en) * 1913-03-12 1914-03-24 Gen Electric Process of treating metals.
US2541813A (en) * 1947-11-08 1951-02-13 Gen Electric Calorizing process
US3183588A (en) * 1961-03-25 1965-05-18 Fond De Nogent Lafeuille & Cie Production of alloy-clad articles
US3235959A (en) * 1962-06-25 1966-02-22 Alloys Res & Mfg Corp Brazing aluminum based parts
US3395027A (en) * 1964-03-05 1968-07-30 Teleflex Inc Coating composition and method
US3290182A (en) * 1965-05-25 1966-12-06 Olin Mathieson Method of making aluminum bronze articles
US3505104A (en) * 1966-10-27 1970-04-07 Ampco Metal Inc Method of forming an aluminum bronze article
US3743547A (en) * 1969-10-27 1973-07-03 R Green Protection of metallic surfaces
US3807030A (en) * 1972-12-27 1974-04-30 Chrysler Corp Method of preparing oxidation resistant materials

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141760A (en) * 1972-11-06 1979-02-27 Alloy Surfaces Company, Inc. Stainless steel coated with aluminum
US4139673A (en) * 1977-02-22 1979-02-13 Nihon Karoraizu Kogyo Kabushiki Kaisha Surface-coated blast furnace tuyere made of copper or copper alloy and method of surface-coating the same
DE3340987A1 (en) * 1982-11-11 1984-12-20 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Process for producing scale-resistant soldered chromium-steel components and component produced by the process
DE3241706C1 (en) * 1982-11-11 1985-01-10 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Method of producing scale-resistant soldered chromium-steel components and use of the method for producing a burner
DE3726075C1 (en) * 1987-08-06 1989-03-02 Thyssen Edelstahlwerke Ag Method of soldering steel parts and of producing catalyst supports, heat exchangers and soot filters
DE3726072A1 (en) * 1987-08-06 1989-02-16 Thyssen Edelstahlwerke Ag Soldering method
DE3726073C1 (en) * 1987-08-06 1988-07-14 Thyssen Edelstahlwerke Ag Process for the production of thin-walled semi-finished products and their uses
US5050790A (en) * 1987-12-28 1991-09-24 Usui Kokusai Sangyo Kabushiki Kaisha Process for the fabrication of metal-made carrier body for exhaust gas cleaning catalyst
DE4222026C1 (en) * 1992-07-04 1993-04-15 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De Semi-finished prod. mfr. used as catalyst supports - by coating starting material, e.g. ferritic stainless steel, with at least one chromium@ layer and diffusion heat treating
US5648176A (en) * 1994-02-08 1997-07-15 Nippon Steel Corporation Metallic honeycomb body for supporting catalyst for automobiles and process for producing the same
US6129262A (en) * 1997-02-24 2000-10-10 Ford Global Technologies, Inc. Fluxless brazing of unclad aluminum using selective area plating
EP1564310A1 (en) * 2004-01-15 2005-08-17 Behr GmbH & Co. KG Method and device for treating metal workpieces
US20220055158A1 (en) * 2020-08-20 2022-02-24 Toyota Motor Engineering & Manufacturing North America, Inc. Copper solder formulation
US11794286B2 (en) * 2020-08-20 2023-10-24 Toyota Motor Engineering & Manufacturing North America, Inc. Copper solder formulation

Similar Documents

Publication Publication Date Title
US3891784A (en) Method of preparing oxidation resistant brazed joints
US6444054B1 (en) Slurry compositions for diffusion coatings
US3844027A (en) Copper brazing of matrix structures
US3797087A (en) Method of preparing oxidation-resistant brazed regenerator cores
US5735448A (en) Method of repairing surface and near surface defects in superalloy articles such as gas turbine engine components
US6060174A (en) Bond coats for turbine components and method of applying the same
US4910098A (en) High temperature metal alloy mixtures for filling holes and repairing damages in superalloy bodies
CZ64099A3 (en) Process of coating a metal surface with hard metal and paste for applying such hard metal
US5040718A (en) Method of repairing damages in superalloys
CA1202768A (en) Method for forming braze-bonded abrasive turbine blade tip
KR100694373B1 (en) Method for coating internal passageway of turbine engine component
GB2195357A (en) Turbine vane nozzle reclassification by addition of alloy
GB2052565A (en) Porous fused wear-resistant coating
EP3299114B1 (en) Braze gel, brazing process, and brazing article
US3989096A (en) Oxidation resistant brazing
CA1238825A (en) Powder metal and/or refractory coated ferrous metal
US3573963A (en) Method of coating nickel base alloys with a mixture of tungsten and aluminum powders
CN112323014A (en) Method for preparing diffusion barrier layer by aluminized silicon-preoxidation
CN110952062A (en) Low-temperature embedding aluminizing agent and powder embedding aluminizing method
US3038249A (en) Zirconium-titanium-beryllium brazing alloy
US2861327A (en) Applying protective metal coatings on molybdenum
CN113278964A (en) Surface wear-resistant layer of oilfield drill rod and preparation method thereof
JP2001518849A (en) Solder paste for the production of geometric metal structures with precise contours
US3898052A (en) Corrosion resistant coating system for ferrous metal articles having brazed joints
US3019516A (en) Method of forming a protective coating on molybdenum

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIDELITY UNION TRUST COMPANY, 765 BROAD ST., NEWAR

Free format text: MORTGAGE;ASSIGNOR:CHRYSLER CORPORATION;REEL/FRAME:003832/0358

Effective date: 19810209

Owner name: FIDELITY UNION TRUST COMPANY, TRUSTEE,NEW JERSEY

Free format text: MORTGAGE;ASSIGNOR:CHRYSLER CORPORATION;REEL/FRAME:003832/0358

Effective date: 19810209

AS Assignment

Owner name: CHRYSLER CORPORATION, HIGHLAND PARK, MI 12000 LYNN

Free format text: ASSIGNORS HEREBY REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID INVENTIONS AND RELEASE THEIR SECURITY INTEREST.;ASSIGNORS:FIDELITY UNION BANK;ARNEBECK, WILLIAM, INDIVIDUAL TRUSTEE;REEL/FRAME:004063/0604

Effective date: 19820217

AS Assignment

Owner name: CHRYSLER CORPORATION

Free format text: PARTES REASSIGN, TRANSFER AND RELINQUISH THEIR ENTIRE INTEREST UNDER SAID PATENTS ALSO RELEASE THEIR SECURITY INTEREST.;ASSIGNOR:MANUFACTURERS NATIONAL BANK OF DETROIL (CORPORATE TRUSTEE) AND BLACK DONALD E., (INDIVIDUAL TRUSTEE);REEL/FRAME:004355/0154

Effective date: 19840905

AS Assignment

Owner name: ICM, A DE GENERAL PARTNERSHIP, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AMPLEX VAN WERT CORPORATION, A CORP OF DE;REEL/FRAME:005237/0133

Effective date: 19881128

AS Assignment

Owner name: AMPLEX VAN WERT CORPORATION, A CORP. OF DE., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CHRYSLER CORPORATION;REEL/FRAME:005072/0662

Effective date: 19860528

AS Assignment

Owner name: HELLER FINANCIAL, INC., A DE CORP. AS AGENT

Free format text: SECURITY INTEREST;ASSIGNOR:ICM/KREBSOGE, A DE GENERAL PARTNERSHIP;REEL/FRAME:005249/0126

Effective date: 19890915

AS Assignment

Owner name: HELLER FINANCIAL, INC.

Free format text: AMENDMENT TO RESTATE THE ORIGINAL SECURITY AGREEMENT DATED SEPTEMBER 15, 1989.;ASSIGNOR:ICM/ KREBSOGE A GENERAL PARTNERSHIP OF DELAWARE;REEL/FRAME:005797/0303

Effective date: 19910724