Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3893843 A
Publication typeGrant
Publication dateJul 8, 1975
Filing dateOct 20, 1972
Priority dateJun 24, 1970
Publication numberUS 3893843 A, US 3893843A, US-A-3893843, US3893843 A, US3893843A
InventorsFry Jack E, Gerard Joseph C, Hickman Chester C, Hummel John E
Original AssigneeArbrook Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for washing and disinfecting hollow, flexible articles
US 3893843 A
Abstract
A method for decontaminating flexible articles having openings extending therethrough, such as tubing, includes the steps of rotating the articles within a common washing and disinfectant tub through washing, rinsing, disinfecting, and re-rinsing cycles. During the disinfecting cycle, the articles are immersed and agitated to insure complete wetting of the internal and external surfaces of the articles with the disinfectant.
Images(15)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1 1 Fry et al. July 8, 1975 METHOD FOR WASHING AND [56] References Cited DISINFECTING HOLLOW, FLEXIBLE UNITED STATES PATENTS ARTICLES 1,755,539 4/1930 Gerosa 154/157 x 75 In e to ck E. F u m h C 2,124,052 7/l938 Clough.... 134/25 A l l v n r fi z 3,558,628 gflggl 5min 154/95 ,56l,63l l egri t l34/95 X t bmh 2574.098 11/1951 Fraraccio 134/157 x 3 2,592,884 4/1952 Fox al.... 21/107 Assigncez Arbrook Inc Arlington Tex 3,5 HamlkOn X [22] Filed: Primary Examiner-S. Leon Bashore 2 App]. 299 52 Assistant Examiner-Richard V. Fisher Related US. Application D8! 57 ABSTRACT [62] fl Ser. No. 49,407. June 24. 197 PM A method for decontaminating flexible articles having openings extending therethrough, such as tubing, ineludes the steps of rotating the articles within a com- [52] m' g j SL mon washing and disinfectant tub through washing, 5] l. l Cl Bo8b.9/ g 1/00 rinsing, disinfecting, and re-rinsing cycles. During the 'Li R 6 23 25 A disinfecting cycle the articles are immersed and agil34/26, 29, 32, 33, 95, [55,157,166 R, 170; 2l/58. 86, 87, 99, i0?

tated to insure complete wetting of the internal and external surfaces of the articles with the disinfectant.

2 Claims, 34'Drawlng Figures PATENTEDJUL a ma 43,893,643

SHEET 7 PATENTEUJUL 8 ms 153893843 SHEET 10 TELEJ. 25/6 METHOD FOR WASHING AND DISINFECTING HOLLOW. FLEXIBLE ARTICLES This is adivision of application Ser. No. 49.407. filed June 24. i970 now US. Pat. No. 3.732.791.

The present invention relates to the decontamination or the washing and disinfecting of contaminated equipment. and more particularly to the decontamination of generally hollow equipment which may be in the form of tubing, bags. or the like. especially when the equipment is formed of rubber. plastic. metal or some other substantially moisture impermeable material such as is used primarily in hospitals and medical offices for anesthesia. inhalation therapy. etc.

Equipment ofthis type is subject to direct contamination through contact with each patient and often contains deposits of blood. mucous.vomit. etc. Thus. when this contamination is evident. it has been the custom to attempt to wash by hand the large variety of plain and corrugated tubing. airways. breathing bags. mouth pieces and other hollow articles which are used. Unfortunately. however. these visible deposits are only one type of contamination and merely serve to point to the real problem which is the infection of this equipment with bacteria. bacilli, viruses. spore formers and other pathogenic microorganisms harbored by different patients. Furthermore. a particular item of equipment may appear quite clean. even directly after washing and actually be highly infected with pathogens. It seems clear. therefore that there is a great need for hospital apparatus which will fully decontaminate, or both wash and disinfect this type of equipment.

One of the problems in providing this type of apparatus. however. is that most of the hospital anesthesia and inhalation therapy items to be disinfected. for example. are made. at least in part. of flexiblqheat-sensitive materials such as natural or synthetic rubber. plastic. or

the like. Thus. they cannot be sterilized or effectively disinfected in the normal heat sterilizing equipment available at hospitals. assuming this type of equipment could be adapted for this purpose. Although gas sterilization could be used to disinfect once the articles are clean. suitable apparatus for both washing and gas sterilizing this type of hollow tubing and other equipment has not been developed.

One attempt at solving this problem is disclosed in British Pat. No. l,l68.035. wherein apparatus is suggested specifically for washing and decontaminating the hollow tubing. breathing bags. etc. forming part of typical hospital anesthesia equipment. This device forces pressurized hot water through the various hollow articles and mentions that the articles finally are disinfected by raising the temperature of the water to l90F.. which. it is said. is sufficient to kill bacteria without injuring. the rubber or rubber-like material from which the articles are formed. While there may be some articles which are not adversely affected by a temperature of l90F.. there are many others such as the plastic tubing used in inhalation therapy which definitely would soften at these temperatures. The tubing to be washed must be individually positioned over spaced pipes through which the hot water is projected into the tubing. Then. for those items which do not fit on the piping provided. hot water is sprayed around the interior of the unit by an impeller such as used in a modern dishwasher. There is no mention in this patent of how the decontaminated articles are freed of water and dried or the special problems presented in emptying the'different types of tubing used in anesthesia.

We have invented a single decontaminating unit which automatically washes and disinfects hollow articles of the type described using a cold liquid disinfectant. First. the articles are washed free of solid contaminants, such as dried blood and mucous. and rinsed. then they are disinfected by immersing them in a chemical disinfecting solution without the application of heat. Following the disinfecting step. the decontaminated items are thoroughly rinsed of the disinfecting liquid and then emptied of the rinsing liquid automatically. again without the need to use heat.

Our decontaminating unit comprises a working tub adapted to hold supplies of washing liquid and liquid disinfectant. respectively. in successive washing and disinfecting steps in the decontaminating cycle for a given set of articles. and a storage tankwhich holds the disinfectant supply during the washing step. The disinfectant preferably is transferred back and forth between the tank and the tub by a disinfectant piping system which is adapted to be completely sealed off from the tub when not in use for this purpose and includes its own pump.

Our apparatus preferably uses a chemical disinfecting solution which has a relatively long effective life so that a given supply of disinfectant will remain effective for quite some time and during many contaminating cycles in the apparatus of this invention. For instance. a practical use or life cycle for a given supply of a preferred type of sterilizing solution based upon activated glutaraldehyde is l4 days. as compared with a single decontaminating cycle lasting about minutes. Preferably. both the individual decontaminating cycle and the disinfectant use cycle are automatically timed. the latter by use cycle timing means which renders the apparatus inoperative at the end ofa given cycle time following the introduction of a first supply of disinfectant in said apparatus. Then the apparatus includes means for activating the timing means to again render the apparatus operative after the first supply is removed and a new supply of disinfectant is introduced therein. Provision is made for completion of any decontaminating or disinfecting cycle which happens to be in progress at the end of the use cycle time so that the apparatus does not become inoperative until the decontaminating cycle has ended.

When a chemical disinfecting liquid having a relatively long normal effective life (such as 14 or more days) is intended to be used over and over again in successive decontaminating cycles. it is highly important to avoid or minimize dilution or contamination of the disinfectant in each of these cycles since any appreciable dilution or contamination will be cumulative and render the disinfectant ineffective long before the end of its normal effective life. it therefore is important that the tub and the hollow articles to be decontaminated be completely emptied of any washing or rinsing liquid prior to placing the disinfectant in the tub and that the disinfectant be effectively removed from each of the articles and from the tub at the end of the disinfecting cycle. all as described hereinafter. Similarly. it is important that the disinfectant supply be sealed off from the water or other liquid going through the unit during the washing and rinsing cycles and that no washing, rinsing or disinfecting liquid be trapped in the common parts of the system. The method and apparatus of this invendrivably mounted from a drive shaft entering the working tub, the tub is filled with a washing fluid such as water and detergent, and then the shaft is rotated back and forth by oscillating means first in one directionand then in the other to reciprocate the articles through the washing liquid so that the liquid and the articles are agitated with respect to one another by centrifugal and centripetal forces of the liquid against the articles. When the washing step is completed, the tub is emptied and the drive shaft is spun relatively rapidly in one direction to remove residual washing liquid substantially completely from the hollow articles by centrifugal force. it is an important feature of this embodiment of our invention that the hollow tubing or other articles are so positioned in the retaining means that the washing liquid is forced into the articles during the abovedesciibed oscillation or agitation to scrub the articles by centrifugal and centripetal action and yet is removed therefrom by centrifugal force when the shaft is spun. This occurs when the axes of the end portions of the hollow articles extend in a generally trailing spiral configuration or radially outwardly and obliquely away from the radii of the drive shaft in an angular direction opposite to the direction in which the shaft is spun.

Following removal of the washing liquid, the articles are thoroughly rinsed in a rinsing step which normally includes immersion in the rinsing fluid and agitation therein as described above in connection with the washing step. As in the washing step, the articles are spun after the rinsing fluid has been removed from the tank. to remove residual liquid substantially completely from the articles. Single or multiple rinsing steps may be used to minimize contamination of the disinfectant with the washing liquid. When the articles are sufficiently rinsed, the disinfectant supply is transferred from the storage tank to the tub so that the articles are completely immersed in the disinfectant liquid. Then the articles are agitated in the disinfectant with an action as described hereinbefore for a given period of time, say about ID to l5 minutes, to free any entrapped air and assure that the liquid disinfectant thoroughly wets all internal and external surfaces. At the end ofthe disinfecting step, the disinfectant supply is transferred back to thestorage tank with residual disinfecting liquid being removed from the articles by spinning as described hereinbefore in connection with the washing and rinsing steps. Then, the articles are thoroughly rinsed to remove any residual traces of the disinfectant and finally spun dry by the same centrifugal technique described hcreinbefore.

According to the preferred embodiment of this invention, the working tub drains into a diverter valve which connects the tub either to a drainage system or to the disinfectant piping system. The drainage system includes a drainage pump which removes washing and rinsing liquids from the tub when the diverter valve connects the tub to the drainage system, and the disinfectant system includes a reversible disinfectant pump which transfers the disinfectant from the tankto the tub when the diverter valve connects the tub to the disinfectant system and then returns the disinfectant to the tank at the endof the disinfectant step as described above. Preferably, also, the disinfectant pump will not run unless it is immersed in the disinfectant liquid and the operation of thepump is controlled for this purpose by a pair of fluid level responsive switches, one between the tank and the pump and the other between the diverter valve and the pump. The diverter valve positively seals off the drainage system when the tub is connected to the disinfectant system to prevent any possible loss of disinfectant and positively seals off the disinfectant system to prevent contamination of the disinfectant when the tub is connected to the drainage system. it also is important that the diverter valve is designed so that it drains free and does not trap liquid and thereby contaminate or dilute the disinfectant due to passage of the several liquids through the same valve.

in a preferred embodiment of our invention, the use cycle timing means for the disinfectant supply is rendered operative following the end of a given use cycle only when the new supply of liquid introduced reaches a predetermined amount or liquid level in the apparatus.

Preferably, also the apparatus includes means for resetting the use cycle timing means at this point so that it is ready to again time another decontaminating or disinfecting use cycle. This resetting means may be a reset timer operating in a timing circuit with the use cycle timer which may, in turn, comprise a period timer and a stepping timer with the stepping timer counting the periods covered by the period timer. In this way, accurate control of the various cycles may be maintained over a relatively long period of time such as the 14 days corresponding to the normal use cycle of a preferred type of disinfectant liquid.

in order to insure that the disinfectant use cycle is properly timed and also that the disinfectant is not wasted, safety means is provided for preventing removal of the current disinfectant supply from the apparatus prior to the end of its use cycle or at least a given time increment prior thereto. it is also desirable to provide emergency pump out or emptying means to remove the dislnfectant from the unit at any time. However, the emergency means should not be too readily activatable and preferably should in some way initiate resetting of the timing means so that the timing means is again ready to operate after the old disinfectant has been replaced with a new supply.

Another advantage of the apparatus of this invention is that the retainers or baskets for holding the articles to be washed may be specifically designed to hold a particular type of equipment such as the-various tubings, airways and bags used in anesthesia or the elongated tubing, bottles and the like used in inhalation therapy under ordinary hospital procedures. in fact, the baskets may be designed to mount and hold the various articles so that each article is disposed in such a way that when it is agitated in the tub, the particular washing, rinsing or disinfecting liquid will be forced in and out of the hollows of the article to displace any air pockets and assure that all internal and external surfaces of the article are thoroughly wetted therewith as described hereinbefore. and yet assure that the articles and particularly the end portions thereof are arranged in the properconfiguration with respect to the drive shaft so that residual fluid will be removed from the article by centrifugal force when the shaft is spun in one direction at relatively high speed.

Other and further advantages of this invention will] appear to one skilled in the art from the following description and claims taken together with the drawings wherein:

FIG. I is a view in perspective of a decontaminating unit according to a preferred embodiment of this invention.

FIG. 2 is an enlarged front view. partly in section and partly in elevation. taken along the line2-2 of FIG. 1.

showing the interior of the unit and most of its important working parts. including the retaining basket for holding the articles to be decontaminated in the working tub.

FIG. 3 is a more greatly enlarged top plan view. taken along the line 3-3 of FIG. 2. through the opening in the gear box of the driving mechanism of this unit.

FIG. 4 is a front view. partly in section and partly in elevation, taken along the line 4-4 of FIG. 3, and showing the drive pulley in its lowermost position in which it oscillates the drive shaft supporting the retaining basket for the articles to be decontaminated.

FIG. 5 is a similar view. partly in section and partly in elevation. showing only the lowermost part of the apparatus with the drive pulley in its uppermost position in which it spins the drive shaft and the basket counterclockwise.

FIG. 6 is a schematic piping diagram of the liquid transfer system of the embodiment of the foregoing figures.

FIG. 7 is more greatly enlarged top view. partly in section and partly in plan. taken along the line 7-7 of FIG. 2 and showing the interior of the diverter valve for controlling the flow of liquid from the working tub.

FIG. 8 is a similar view. partly in section and partly in elevation. taken along the line 8-8 of FIG. 7.

FIG. 9 is an exploded view of a preferred form of retaining basket for decontaminating anesthesia equipment in accordance with this invention.

FIG. I is an enlarged top plan view of the basket of FIG. 9 withthecover removed.

FIG. II is a view partly in section and partly in elevation taken along the line 11-11 of FIG. I0.

FIG. I2 is a somewhat reduced top plan view of the basket of FIG. I0 showing one set of anesthesia equipment arranged therein in the positions for which the basket is designed.

FIG. 13 is a top plan view of the basket of FIG. I2 with its three cover segments in position thereon but without showing the equipment it contains.

FIG. I4 is a somewhat enlarged view partly in section and partly in elevation taken along the line I4-I4 of FIG. I2.

FIG. I is a greatly enlarged view partly in section and partly in elevation taken along the line 15-15 of FIG. 10.

FIG. I6 is a similar view partly in section and partly in elevation taken along the line I6-I6 of FIG. I0 and showing a portion of the basket structure.

FIG. I7 is a similar view. partly in section and partly in elevation. taken along the line 17-17 of FIG. I3.

FIG. I8 is a view. partly in section and partly in elevation, taken along line l8-l8 through the cover in FIG. 13.

FIG. I9 is a view. partly in section and partly in elevation. taken along the line I9-l9 of FIG. I9.

FIG. 20 is a top plan view of a retaining basket for holding inhalation therapy equipment according to an- 6 other preferred embodiment of this invention, with its cover off.

FIG. 21 is a view. partly in section and partly in elevation, taken along the line 21-21 of FIG. 20.

FIG. 22 isan exploded view of the main parts of the retaining basket of FIG. 20.

FIG. 23 is a somewhat reduced top plan view of the basket of FIGS. 20-22 with its cover removed and with one complete set of inhalation therapy equipment held in position therein.

FIG. 24 is a top plan view of the basket of FIG. 23 with its cover on but without showing the equipment it contains.

FIG. 25 is a view, partly in section and partly in elevation. taken along the line 22-22 of FIG. 24.

FIG. 26 is a more greatly enlarged view. partly in section and partly in elevation. taken along the line 26-26 of a portion of the inhalation therapy basket of this invention showing inhalation therapy equipment in position therein.

FIG. 27 is a similarly enlarged view. partly in section and partly in elevation. taken along the line 27-27 of FIG. 26 and showing one means for retaining the inhalation therapy bottles in their proper positions.

FIG. 28 is a similar view. partly in section and partly in elevation. taken along the line 28-28 and showing another means for holding the inhalation therapy bottles in position.

FIG. 29A shows the cam diagram for the main control timer for the decontamination unit of the foregoing figures along with the portions of the wiring diagram connected to the cams involved.

FIG. 29B is another portion of the wiring diagram associated with the main control timer which fits to the right of FIG. 29A as illustrated by the arrows in both of these figures.

FIG. 29C is the wiring diagram for the disinfectant use cycle timing system which also is associated with the main control timer and fits to the right of FIG. 298 as indicated by the arrows in both of these figures.

FIG. 30 shows the cam diagram for the reset (5 minute) timer for the disinfectant use cycle timing system.

FIG. 31 shows the cam diagram for the period (12 hour) timer for the disinfectant use cycle timing system.

FIG. 32 shows the cam diagram for the stepping l4 day) timer of the disinfectant use cycle timing system.

INTRODUCTION Referring to the drawings. and FIG. 2. in particular there is shown a preferred decontaminating unit of this invention which comprises a working tub 41 in which the articles to be decontaminated are first washed and then disinfected by immersion in a liquid chemical disinfectant. a retaining basket 42 in which the articles are mounted and held during washing and disinfection. a drive shaft 43 on which the basket is mounted for oscillation and for spinning. and a storage tank 44 for holding the liquid disinfectant when it is not needed in the tub 4i.

The working tub 4i and the disinfectant tank-44 each are disposed inside a cabinet 45 having a front wall 46. a back wall not shown and opposed side walls 47. A pair of hinged covers. i.e.. a tub cover 48 and a tank cover 49, are provided to enclose the unit while at the same time offering easy access to the tub 4i and the tank 44. respectively. A control console SI for operatthey join a foundation ring 55 which, in turn, issecured t to a horizontal foundation plate 56 whichti'si elevated somewhat above the bottom edges of the'pcabinet. The

foundation plate56 is supported by six'legs57, oneat each of its corners, each of which in turn is secured to an angle bar 58 extending inwardly from one of the side walls of the cabinet. The disinfectant tank 44 is mounted ona pair of horizontal angle irons 59, only one of which is shown in FIG. 2, and each angle iron is supported at each of its ends by a vertical leg 61. The resulting four vertical legs 61 extend downwardly to the horizontal foundation plate 56 and are secured thereto.

The apparatus of this embodiment is adapted to operate automatically, as will be explained more fully hereinafter in conjunction with the diagrams of FIGS. 29A, 29B, 29C, 30, 31 and 32, to successfully wash, rinse, disinfect. rinse again and then empty (of liquid) a set of initially contaminated equipment placed therein for treatment during an automatically timed decontamination cycle.

During the decontamination cycle, the drive shaft 43 and the basket 42 containing the equipment are rotatively oscillated in the tub 41 during washing, deep rinsing and disinfecting, and are spun relatively rapidly in one direction at several points during the cycle to empty the equipment of liquid. As will be explained more fully hereinafter in conjunction with the description of FIGS. 9-28, the retaining basket 42 is especially designed to receive particular types or sets of hollow articles ofequipment, such as anesthesia and inhalation therapy equipment, and hold them in specific positions which will cause the liquid to circulate through them during the aforesaid agitation and to empty from them when the basket is spun.

Basket Drive The retaining basket 42 is drivably mounted for rotation with and on the drive shaft 43 by a keyway 62 which rotatably connects the shaft with the spindle 63 of the basket and rests on a horizontal annular ring 64 welded to the drive shaft. The drive shaft 43, in turn, is mounted for rotation in a vertical stuffing box bearing 65 at the bottom ofthe tub. The bearing 65 includes a single ball bearing race 66 and a packing gland 67 for assuring that no leaks occur where the shaft 43 passes through the tab 41. The lower end of the drive shaft 43 extends into a gear boxy 68 welded to, and therefore adapted to rotate with, a vertical outer shaft 69 which extends downwardly from the bottom of the gear box and thence through a hole 71 in the foundation plate 56. The lower end of the outer shaft 69 is rotatably mounted in a cylindrical brake 72 which is fixed tothe underside ofthe foundation plate 56. The upper end of the outer shaft 69 is rotatably mounted from the drive shaft 43 through the gear box 68 which has a bolted cover plate 73 rotatably mounted on the lower end of the drive shaft through another ball bearing race 74 fitted between the drive shaft 43 and the cover plate 73. Rotation of the gear box 68 is counterbalanced by a counterweight 75 bolted to a horizontalextension 76 of the gear box cover plate/The drive shaft 43 is positioned vertically by a pair of spaced thrust rings 77 fixed to the drive shaft under each of the bearing races.

The cylindrical brake 72 operates in a conventional manner to normallybrake or prevent the outer shaft 69,.and therefore the gear box 68, from rotating, as shown in FIG. '4. The brake is adapted to be released to allow the outer shaft 69 to rotate when a brake release cylinder .78 at the bottom of the brake is thrust upwardly as shown in FIG. 5.

-' An inner'intermediate shaft 79 extends upwardly through the brake 72 and the outer shaft 69 into the gear box 68 and is mounted for rotation therein. A drive pulley 81 is mounted at the lower end of the intermediate shaft through mating square helical male threads 82 on the intermediate shaft and female threads in the drive pulley. Thus, when the pulley 81 is rotated it will tend to move helically along the threads and if it is restrained from moving axially it will rotate the intermediate shaft 79.

Referring to FIG. 2, it will be seen that a drive motor 83 mounted on the foundation plate 56 drives a power pulley 84 mounted at the end of a short power shaft 85 extending from the drive motor through the foundation plate, and that the power pulley 84 turns the drive pulley 81 through a transfer belt 86 and a drive belt 87 and a pair of transfer pulleys 88 and 89 mounted on an intermediate stub shaft 91 extending downwardly from the foundation plate 56. The purpose of the transfer belts and pulleys is to obtain the desired speed ratio between the drive motor 83 and the drive pulley 81. The drive motor has two speeds, i.e., one relatively low speed in the clockwise direction and a second relatively high speed in a counterclockwise direction (both viewed from the top). When the motor rotates at its relatively low speed in the clockwise direction it also turns the drive pulley 81 at its lowest speed in a clockwise direction, as illustrated in'FlG. 4. As shown in this figure, when the drive pulley 81 is turned by the drive belt 87, in a clockwise direction it tends to move downwardly on the helical threads 82 until it reaches the detent plate 92 secured to the bottom of the intermediate shaft 79. This plate presents a detent 93 which contacts a corresponding axial shoulder 94 depending from the drive pulley, when the drive pulley is in its lowermost position shown in FIG. 4. in this position, the drive pul ley 81 is mechanically engaged with the intermediate shaft 79through the detent 93, as well as through the helical gear teeth 82 and therefore drives the intermediate shaft clockwise. As indicated hereinbefore, in this position of the drive pulley 81 the cylindrical brake 72 prevents the outer shaft 69 and the gear box 68 attached thereto from rotating. However, the intermediate shaft 79 rotates freely inside the outer shaft so that an intermediate pinion 95, fixed to the upper end of the intermediate shaft 79, rotates therewith inside the gear box 68. This pinion 95 is in direct engagement with a first transfer gear 96 which, in turn, is mounted on and turns a stub shaft 97 rotatably mounted in the gear case. Rotation of the stub shaft 97 also turns a transfer pinion 98 keyed thereon, and the transfer pinion 98 drives an oscillating gear shaft 99 through a somewhat larger oscillating gear 101 fixed thereto. The oscillating gear shaft 99 also is mounted for rotation in the gear case and is connected to one end of an oscillating link 102 through a pin 103 mounted eccentrically on the oscillating gear 101. The other end of the link 102 is connected to the pivoted arm 104 of an arcuate oscillating

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1755539 *Dec 5, 1927Apr 22, 1930Gerosa Carl NCombined dish washing and drying machine
US2124052 *Jul 12, 1935Jul 19, 1938Clough John LMethod and apparatus for washing dishes
US2558628 *Mar 14, 1947Jun 26, 1951Eric RedinMilking machine rinser
US2561631 *Dec 27, 1944Jul 24, 1951Negri John AAutomatic glass washing and sterilizing machine
US2574098 *Jan 11, 1946Nov 6, 1951Pasco FraraccioCentrifugal cleaning and drying machine
US2592884 *Feb 21, 1947Apr 15, 1952Hobart Mfg CoDishwasher
US3512539 *Jul 8, 1968May 19, 1970Hamilton Arthur RWasher having reciprocating work basket
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4237912 *Nov 8, 1978Dec 9, 1980H & R IncorporatedWashing, pasteurizing and disinfecting apparatus
US4263053 *Apr 23, 1979Apr 21, 1981Mckinnon Jr Charles NDriving out manufacturing oils from dialysis cappillaries by centrifugal force
US4417926 *Oct 20, 1981Nov 29, 1983Assab Medicin AbMethod for cleaning and disinfecting used plastic Petri dishes
US4503873 *Sep 9, 1983Mar 12, 1985Assab Medicin AbApparatus for cleaning and disinfecting used plastic Petri dishes
US4763678 *Dec 30, 1986Aug 16, 1988Mayo Medical ResourcesCleaning apparatus for elongated enclosed channel devices
US4889812 *May 12, 1986Dec 26, 1989C. D. Medical, Inc.Bioreactor apparatus
US5567246 *Mar 9, 1995Oct 22, 1996Bowden Industries, Inc.Industrial parts cleaning method and system
US5871692 *Jan 14, 1997Feb 16, 1999Steris CorporationMethod and apparatus for cleaning, decontaminating, and sterilizing catheters
US6013227 *Dec 17, 1997Jan 11, 2000Johnson & Johnson Medical, Inc.Generating flow of cleaning solution through lumen to clean inner surface of lumen and generating flow of rinse solution to rinse inner surface of lumen for cleaning, chemical sterilizing or disinfecting medical devices
US6015529 *Dec 17, 1997Jan 18, 2000Johnson & Johnson Medical, Inc.Cleaning and sterilization or disinfecting medical equiptment
US6068815 *Sep 30, 1999May 30, 2000Minntech CorporationEndoscope reprocessing and sterilization system
US6187266 *Dec 17, 1997Feb 13, 2001Johnson & Johnson Medical, Inc.Cleaning, sterilizing and drying device in situ in same apparatus in operation cycle
US6203756 *Dec 17, 1997Mar 20, 2001Johnson & Johnson Medical, Inc.Integrated cleaning sterilization process
US6244278 *Apr 29, 1999Jun 12, 2001Ken MaskinfabrikDevice for cleaning transport carts
US6286527Sep 30, 1999Sep 11, 2001Minntech CorpReverse flow cleaning and sterilizing device and method
US6354312 *Dec 14, 1999Mar 12, 2002Ethicon, Inc.Connector without occlusion
US6383505Nov 9, 2000May 7, 2002Steris IncFast-acting antimicrobial lotion with enhanced efficacy
US6439246May 29, 2001Aug 27, 2002Minntech CorporationSterilization of medical equipment with lumens
US6558620Feb 7, 2000May 6, 2003Steris Inc.Liquid cleaning and sterilization method
US6582654Feb 7, 2000Jun 24, 2003Steris Inc.Automated processor (A) includes spray nozzles for sequentially spraying washing, microbial decontaminant and rinsing solutions over a lumened device (B), such as an endoscope. The fluid delivery system also includes connection
US6585934Mar 9, 2000Jul 1, 2003Minntech CorporationEndoscope reprocessing and sterilization system
US6585943Feb 7, 2000Jul 1, 2003Steris Inc.Liquid cleaning and sterilization system
US6596232Sep 29, 2000Jul 22, 2003Ethicon, Inc.Efficient vapor cleaning, sterilizing and disinfecting medical instruments
US6645430Aug 30, 2000Nov 11, 2003Ethicon, Inc.Method and apparatus for processing device with fluid submersion
US6656427Dec 22, 2000Dec 2, 2003Ethicon, Inc.Sterilization process without sterile rinse
US6685895Aug 29, 2000Feb 3, 2004Ethicon, Inc.Method and apparatus for processing device with reduced occlusion
US6797234May 29, 2001Sep 28, 2004Minntech CorporationReverse flow sterilizing method
US6807975 *Feb 15, 2002Oct 26, 2004Byron K. Muller, Jr.Urine bag cleaning machine
US6913028 *Aug 30, 2002Jul 5, 2005Ykk CorporationFlexible container for liquid transport, liquid transport method using the container, liquid transport apparatus using the container, method for washing the container, and washing equipment
US6916377 *Jul 30, 2001Jul 12, 2005Ams Research CorporationCoating solution's usable life is extended by minimizing exposure to light, air and temperature extremes; antibiotic coating solution for a medical device consisting essentially of rifampin, minocycline and a solvent
US7061597Jul 3, 2002Jun 13, 2006Minntech CorporationEndoscope reprocessing and sterilization system
US7556767 *Jul 31, 2003Jul 7, 2009Ethicon, Inc.Integrated washing and sterilization process
US7666369Sep 29, 2006Feb 23, 2010Tyco Healthcare Group LpSystem and method for recycling sterilant gas
US7910055Dec 14, 2009Mar 22, 2011Tyco Healthcare Group LpMethod for recycling sterilant gas
US8268238Aug 23, 2010Sep 18, 2012Tyco Healthcare Group LpSystem and method for recycling sterilant gas
US8539693 *Mar 28, 2011Sep 24, 2013Helen Of Troy LimitedBrake mechanism for a device for drying foods and other items
US8640643Dec 21, 2009Feb 4, 2014Ams Research CorporationMethod for controlling drug loading in a medical device
US8685336Dec 14, 2009Apr 1, 2014Covidien LpSystem and method for recycling sterilant gas
US20120246959 *Mar 28, 2011Oct 4, 2012Marco PerryBrake Mechanism for a Device for Drying Foods and Other Items
DE3143005A1 *Oct 29, 1981May 19, 1983Bht Hygiene Technik GmbhCleaning machine
WO2007042787A2Oct 10, 2006Apr 19, 2007Labcaire Systems LtdEndoscope reprocessing apparatus
Classifications
U.S. Classification134/10, 134/25.4, 422/30, 134/26, 134/33, 134/23, 422/31
International ClassificationA47L15/30, A47L15/00, A61L2/24, A61L2/00, B08B3/06, B08B3/00
Cooperative ClassificationA47L15/30, B08B3/00, B08B3/06, A61L2/24
European ClassificationB08B3/00, A47L15/30, A61L2/24, B08B3/06
Legal Events
DateCodeEventDescription
Apr 23, 1990ASAssignment
Owner name: JOHNSON & JOHNSON MEDICAL, INC., A NJ CORP., NEW J
Free format text: MERGER;ASSIGNORS:JOHNSON & JOHNSON PATIENT CARE, INC.;STERILE DESIGN, INC., (MERGED INTO);SURGIKOS,INC. (CHANGED TO);REEL/FRAME:005315/0630
Effective date: 19891204
Apr 23, 1990AS03Merger
Owner name: JOHNSON & JOHNSON MEDICAL, INC., A NJ CORP.
Effective date: 19891204
Owner name: JOHNSON & JOHNSON PATIENT CARE, INC.
Owner name: STERILE DESIGN, INC., (MERGED INTO)
Owner name: SUR
Dec 15, 1980AS03Merger
Owner name: ARBROOK, INC., A CORP. OF NJ
Owner name: SURGIKOS, A CORP. OF NJ (INTO)
Effective date: 19791220