Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3893935 A
Publication typeGrant
Publication dateJul 8, 1975
Filing dateSep 20, 1973
Priority dateMay 30, 1972
Publication numberUS 3893935 A, US 3893935A, US-A-3893935, US3893935 A, US3893935A
InventorsJadwin Thomas A, Mutz Alec N, Rubin Bruce J
Original AssigneeEastman Kodak Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Electrographic toner and developer composition
US 3893935 A
Abstract
The present invention relates to the use of certain quaternary ammonium salts as useful charge control agents for an electrostatic toner composition.
Images(8)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Jadwin et a1. July 8, 1975 [54] ELECTROGRAPHIC TONER AND 3,502,582 3/1970 Clemens et a1. 252/621 DEVELOPER COMPOSITION 3,565,654 2/1971 Story 252/62.1 3,647,696 3/1972 Olson......... 252/621 n nt rs: Thomas A. Jadwin; Alec N. Mutz; R25,l36 3/]962 Carlson 252162.]

Bruce J. Rubin, all of Rochester, NY. FOREIGN PATENTS OR APPLICATIONS 73 Assigneez Eastman Kodak Company 1,117,224 6/1968 United Kingdom 252/62.l Rochester N Y 1,174,573 12/1969 United Kingdom 252/621 1,169,703 11/1969 United Kingdom 252/621 [22] Filed: Sept. 20, 1973 1,034,849 7/1958 Germany 252/62.1

[21] Appl. No.: 399,226

Primary Examiner-Richard A. Farley Related Apphcamm Data Assistant Examin erT. M. Blum [63] Continuation-impart of Ser. No. 257,524, May 30, Attorney Agent Fi R P Hil 1972, abandoned.

[52] US. Cl 252/62. ll7/DlG. 4 57 ABSTRACT {51} Int. Cl 003g 9/00 [58] Field of Search 252/621, 117/D1G. 4 The present invention relates to the use of certain quaternary ammonium salts as useful charge control [56] References Cited agents for an electrostatic toner composition.

UNITED STATES PATENTS 18 Claims, No Drawings ELECTROGRAPHIC TONER AND DEVELOPER COMPOSITION This application is a continuation-in-part of U.S. Ser. No. 257,524 abondoned filed May 30, 1972.

This invention relates to electrography and to a particulate toner composition and a dry electrographic developer composition containing such a toner useful in the development of latent electrostatic charge images.

Electrographic imaging and developing processes, eg. electrophotographic imaging processes and techniques, have been extensively described in both the patent and other literature, for example, U.S. Pat. No. 2,221,776 issued Nov. 19, 1940; No. 2,277,013 issued Mar. 17, 1942; No. 2,297,691 issued Oct. 6, 1942; No. 2,357,809 issued Sept. 12. 1944; No. 2,551,582 issued May 8, 1951; No. 2,825,814 issued Mar. 4, 1958; No. 2,833,648 issued May 6, 1958; No. 3,220,324 issued Nov. 30, 1965; No. 3,220,831 issued Nov. 30, 1965; No. 3,220,833 issued Nov. 30, 1965; and many others. Generally these processes have in common the steps of forming a latent electrostatic charge image on an insulating electrographic element. The electrostatic latent image is then rendered visible by a development step in which the charged surface of the electrographic element is brought into contact with a suitable developer mix. Conventional dry developer mixes include toner or marking particles and may also include a carrier vehicle that can be either a magnetic material such as iron filings, powdered iron or iron oxide, or a triboelectrically chargeable, non-magnetic substance like glass beads or crystals of inorganic salts such as sodium or potassium fluoride. The toner or marking particles typically contain a resinous material suitably colored or darkened, for contrast purposes, with a colorant like dyestuffs or pigments such as carbon black.

One method for applying a suitable dry developer mix to a charged image-bearing electrographic element is by the well-known magnetic brush process. Such a process generally utilizes an apparatus of the type described, for example, in U.S. Pat. No. 3,003,462 issued Oct. 10, 1961 and customarily comprises a nonmagnetic rotatably mounted cylinder having fixed magnetic means mounted inside. The cylinder is arranged to rotate so that part of the surface is immersed in or otherwise contacted with a supply of developer mix. The granular mass comprising the developer mix is magnetically attracted to the surface of the cylinder. As the developer mix comes within the influence of the field generated by the magnetic means within the cylinder, particles thereof arrange themselves in bristle-like formations resembling a brush. The brush formations that are formed by the developer mix tend to conform to the lines of magnetic flux, standing erect in the vicinity of the poles and laying substantially flat when said mix is outside the environment of the magnetic poles. Within one revolution the continually rotating cylinder picks up developer mix from a supply source and returns part or all of this material to this supply. This mode of operation assures that fresh mix is always available to the surface of the charged electrographic element at its point of contact with the brush. In a typical rotational cycle, the roller performs the successive steps of developer mix pickup, brush formation, brush contact with the electrographic element, eg. a photoconductive element, brush collapse and finally mix release.

ln magnetic brush development, as well as in various other types of electrographic development wherein a dry triboelectric mixture of a particulate carrier vehicle and a toner powder are utilized, e.g., cascade development such as described in U.S. Pat. Nos. 2,638,416 and 2,618,552, it is advantageous to modify the surface properties of the toner powder so that a uniform, stable high net electrical charge may be imparted to the toner powder by the particulate carrier vehicle.

A variety of methods and material for modifying the surface properties of particulate toner particles have been proposed. For example, Olson, U.S. Pat. No. 3,647,696 issued Mar. 7, 1972 describes a uniform polarity resin electrostatic toner containing a monoor di-functional organic acid nigrosine salt. The nigrosine salt described in U.S. Pat. No. 3,647,696 aids in providing a relatively high uniform net electrical charge to a toner powder containing such a nigrosine salt. However, subsequent testing and development relating to the use of such organic acid nigrosine salts has shown that such materials, when incorporated in a toner composition, contribute to a decrease in the adhesion of the toner particles to a suitable paper receiving sheet. For example, it has been found that when a toner image is transferred from a charge image-bearing electrographic element to a paper receiving sheet and fixed to the receiving sheet, the image formed on the receiving sheets tends to flake off when the sheet is bent or folded.

Other materials which have been employed as modifying agents for dry toner compositions include various long-chain anionic or cationic materials such as various surfactants. Typical of these surfactant materials are the long chain quaternary ammonium surfactants. The use of such materials is described for example in British Pat. No. 1,174,573 published Dec. 17, 1969, at page 2, column 2 through page 3. In addition, Jacknow et al., U.S. Pat. No. 3,577,345 issued May 4, 1971, describes a solid metal salt of a fatty acid admixed with one of various other described solid additives as a useful modifying combination for a dry toner composition.

Other patents which describe various components for use in liquid developers include Beyer, U.S. Pat. No. 3,417,019 issued Dec. 17, 1968, which describes, in part, the use of various metal soaps, for example cobalt naphthenate, for use as a charge control agent in a liquid developer toner composition.

In accordance with the present invention, it has been discovered that certain quaternary ammonium salts incorporated in a dry, particulate toner composition comprising a resin and, if desired, a suitable colorant such as a pigment or dye, provide an effective charge control agent for the toner composition. Typical of the quaternary ammonium salts useful in the present invention are materials having the following formula:

wherein R, R'*', R and R which may be the same or different represent an aliphatic hydrocarbon group having seven or less, preferably 3 to about 7, carbon atoms, including straight-chain and branched-chain aliphatic hydrocarbon groups, and X represents an anionic function.

The quaternary ammonium salt charge control agents, when incorporated in the toner materials of the present invention, have been found surprisingly effective in providing a particulate toner composition which exhibits a relatively high, uniform and stable net toner charge when admixed with a suitable particulate carrier vehicle and which also exhibits a minimal amount of deleterious toner throwofi. The charge control agent used in the present invention has been found substantially more effective than the somewhat related longchain quaternary ammonium surfactant materials which previously have been incorporated in toner compositions. More specifically, the quaternary ammonium salts of the present invention have been found to exhibit a substantially higher net toner charge and a substantially lower toner throw-off than long-chain quaternary ammonium salt surfactants (or wetting agents as they are sometimes called). (See Example 1 set forth hereinafter.) in addition, the quaternary ammonium charge control agents used in the present invention have been found to have no deleterious effect on the adhesion properties of the resultant toner composition containing these charge control agents to conventional paper receiving sheets.

A further indicia of the uniqueness of the toner compositions of the present invention is the fact that these compositions containing quaternary ammonium salts exhibit substantially better charge control properties than toner compositions containing other types of onium salts, e.g., sulfonium, phosphonium, pyridinium, or quinolinium salts. (see Example l set forth hereinafter.)

Moreover, it has been found that particulate resinous toner particles containing an effective amount of the above-described quaternary ammonium charge control agents generally result in good to excellent electrographic developed images exhibiting increased and uniform density with little or no background scumming.

The resins useful in the practice of the present invention can be used alone or in combination and include those resins conventionally employed in electrostatic toners. Useful resins generally have a glass transition temperature within the range of from 60 to 120C. Preferably, toner particles prepared from these resinous materials have relatively high caking temperature, for example, higher than about 55C., so that the toner powders may be stored for relatively long periods of time at fairly high temperatures without having individual particles agglomerate and clump together. The melting point of useful resins preferably is within the range of from about 65C. to about 200C. so that the toner particles can readily be fused to conventional paper receiving sheet to form a permanent image. Especially preferred resins are those having a melting point within the range of from about 65C to about 120C. Of course, where other types of receiving elements are used, for example, metal plates such as certain printing plates, resins having a melting point and glass transition temperature higher than the values specified above may be used.

As used herein the terms melting point" refers to the melting point of a resin as measured by Fisher Johns apparatus, Fisher Scientific Catalog No. 12-144. Glass transition temperature (Tg) as used herein refers to the temperature at which a polymeric material changes from a glassy polymer to a rubbery polymer. This temperature (Tg) can be measured by differential thermal analysis as disclosed in Techniques and Methods ofPolymer Evaluation, Vol. l, Marcel Dekker, Inc., NY. 1966.

Among the various resins which may be employed in the toner particles of the present invention are polystyrene containing resins, polycarbonates, rosin modified maleic alkyd resins, polyamides, phenol-formaldehyde resins and various derivatives thereof, polyester condensates, modified alkyd resins and the like, aromatic resins containing alternating methylene and aromatic units such as described in Merrill et al., US. Ser. No. 168,389, now Pat. No. 3,809,554 filed Aug. 2, 1971, and the like.

Typical useful toner resins include certain polycarbonates such as those described in U.S. Pat. No. 3,694,359 issued Sept. 26, 1972, and which includes polycarbonate materials containing an alkylidene diarylene moiety in a recurring unit and having from 1 to about 10 carbon atoms in the alkyl moiety. Other useful resins having the above-described physical properties include polymeric esters of acrylic and methacrylic acid such as poly(alkylacrylate) including poly(alkylmethacrylate) wherein the alkyl moiety can contain from 1 to about 10 carbon atoms. Additionally, other polyesters having the aforementioned physical properties are also useful. Among such other useful polyesters are copolyesters prepared from terephthalic acid including substituted terephthalic acid, a bis(hydroxyalkoxy) phenylalkane having from 1 to 4 carbon atoms in the alkoxy radical and from 1 to 10 carbon atoms in the alkane moiety and including such halogen substituted alkanes, and an alkylene glycol having from 1 to 4 carbon atoms in the alkylene moiety.

Other useful resins are various styrene-containing resins. Such polymers typically comprise a polymerized blend of from about 40 to about percent by weight of styrene, from about 0 to about 45 percent by weight of a lower alkyl acrylate or methacrylate having from 1 to about 4 carbon atoms in the alkyl moiety such as methyl, ethyl, isopropyl, butyl, etc. and from about 5 to about 50 percent by weight of another vinyl monomer other than styrene, for example, a higher alkyl acrylate or methacrylate having from about 6 to 20 or more carbon atoms in the alkyl group. A typical styrenecontaining resin prepared from a copolymerized blend as described hereinabove are copolymers prepared from a monomeric blend of 40 to 60 percent by weight styrene or styrene homolog, from about 20 to about 50 percent by weight of a lower alkyl acrylate or methacrylate and from about 5 to about 30 percent by weight of a higher alkyl acrylate or methacrylate such as ethylhexyl acrylate. A variety of other useful styrene containing toner materials are disclosed in the following US. Pats. No.: 2,917,460 issued Dec. 15, 1959; Re. No. 25,136 issued Mar. 13, 1962; No. 2,788,288 issued Apr. 9, 1957; No. 2,638,416 issued Apr. 12, 1953; No. 2,618,552 issued Nov. 18, 1952 and No. 2,659,670 issued Nov. 17, 1953.

The toner particles of the present invention can be prepared by various methods. One convenient technique for preparing these toners is spray-drying. Spraydrying involves dissolving the polymer and adding the toner colorant and charge control agent to a volatile organic solvent such as dichloromethane. This solution is then sprayed through an atomizing nozzle using a substantially nonreactive gas such as nitrogen as the atomizing agent. During atomization, the volatile solvent evaporates from the airborne droplets, producing toner particles of the uniformly dyed or pigmented resin, The ultimate particle size is determined by varying the size of the atomizing nozzle and the pressure of the gaseous atomizing agent. Particles of a diameter between about 0.1 micron and about 100 microns may be used, although in general present day office copy devices typically employ particles between about I0 and 30 microns. However, larger particles or smaller particles can be used where desired for particular methods of development or particular development conditions. For example, in powder cloud development such as described in US. Pat. No. 2,691,345 issued Oct. l2, 1954, extremely small toner particles are used.

Another convenient method for preparing the toner composition of the present invention is melt-blending. This technique involves melting a powdered form of polymer or resin and mixing it with suitable colorants, such as dyes or pigments, and the charge control agent. The resin can readily be melted on heated compounding rolls which are also useful to stir or otherwise blend the resin and addenda so as to promote the complete intermixing of these various ingredients. After thorough blending, the mixture is cooled and solidified. The resultant solid mass is then broken into small particles and finely ground to form a free-flowing powder of toner particles. These particles typically have an average particle size or average diameter within the range of from about 0.1 to about I00 microns.

As described hereinabove the quaternary ammonium charge control agents of the invention are added to the resinous toner composition in an amount effective to improve the charge properties of the toner composition. The addition of a charge control agent improves the charge uniformity of a particular toner composition, i.e. acts to provide a toner composition in which all or substantially all of the individual discrete toner particles exhibit a triboelectric charge of the same sign (negative or positive) with respect to a given carrier vehicle. increases the net electrical charge exhibited by a specified quantity of toner particles relative to a given carrier vehicle, and reduces the amount of toner throw-off of a given toner composition. As used herein, the phrases net electrical charge exhibited by a toner powder" or net toner charge" are equivalent and are defined as the total electrical charge exhibited by a specified amount of a particular toner when admixed with a specified amount of a particular carrier vehicle. Although the phenomenon by which such an electrical charge is imparted is not fully understood, it is believed due in large to the triboelectric effect caused by the physical admixture of toner and carrier. As used herein, the term toner throw-off is defined as the amount of toner powder thrown out of a developer mix as it is mechanically agitated, e.g., in a development apparatus. Aside from the extraneous contamination problems inherent with airborne toner dust in the development apparatus, toner throw-off also leads to imaging problems such as unwanted background and scumming of the electrographic image-bearing element.

Generally. it has been found desirable to add from about 0.] to about 6 parts and preferably 0.3 to about 3.0 parts by weight of the aforementioned quaternary ammonium salts per l00 parts by weight of a resinous binder to obtain the improved toner composition of the present invention. Although larger and smaller amounts of a charge control agent may be added, it has been found that if amounts much lower than those specified above are utilized, the charge control agent tends to exhibit little or substantially no improvement in the properties of the toner composition. As amounts more than about 6 parts of charge control agent per lOO parts of resinous binder are added, it has been found that the net toner charge exhibited by the resultant toner composition tends to be reduced. Of course, it must be recognized that the optimum amount of charge control agent to be added will depend, in part, on the particular quaternary ammonium charge control agents selected and the particular resinous binder to which it is added. However, the amounts specified hereinabove are typical of the useful range of charge control agent utilized in conventional dry toner materials.

As indicated, the quaternary ammonium charge control agents contemplated for use according to the present invention have the fonnula:

wherein R, R R and R which may be the same or different represent an aliphatic hydrocarbon group having one to seven carbon atoms and X is an anionic function. R, R R and R may be a straight chain or branched chain aliphatic hydrocarbon groups including ally] and alkyl moieties, e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, isopropyl, etc. Especially good results have been obtained wherein R, R R and R are each an alkyl moiety having 3-7 carbon atoms and wherein each of R, R R and R represents an identical alkyl moiety. As can be observed from the above list, a variety of hydrocarbon substituents may be utilized in the quaternary ammonium salt charge control agents of the present invention. In addition, a variety of conventional anionic moieties may be utilized such as the following: halides such as chloride, bromide, iodide, phosphates; acetates; nitrates; benzoates; methyl sulfate, perchlorate, tetrafluoroborate, benzenesulfonate, and the like. Especially useful anionic moieties are the halides. Typical of the quaternary salts useful in the invention are the following: Tetrapentylammonium chloride Tetraheptylammonium chloride Tetrapentylammonium hexafluorophosphate Tetraethylammonium benzoate Tetraethylammonium acetate tetrahydrate Tetrapentylammonium bromide Tetrabutylammonium iodide Tetrabutylammonium nitrate Triethylmethylammonium iodide A variety of colorant materials selected from dyestuffs or pigments may be employed in the toner materials of the present invention. Such materials serve to color the toner and/or render it more visible. Of course, suitable toner materials having the appropriate charging characteristics can be prepared without the use of a colorant material where it is desired to have a developed image of low optical opacity. In those instances where it is desired to utilize a colorant, the colorants used, can, in principle, be selected from virtually any of the compounds mentioned in the Colour Index Volumes l and 2, Second Edition.

Included among the vast number of useful colorants would be such materials as Hansa Yellow G (CI. 1 1680), Nigrosine Spirit soluble (CI. 50415) Chromogen Black ETOO (CI. 45170), Solvent Black 3 (CI. 26150), Fuchsine N (Cl. 42510), C]. Basic Blue 9 (CI. 52015), etc. Carbon black also provides a useful colorant. The amount of colorant added may vary over a wide range, for example, from about 1 to about 20 percent of the weight of the thermoplastic resin. Particularly good results are obtained when the amount is from about 2 to about 10 percent. In certain instances, it may be desirable to omit the colorant, in which case the lower limit of concentration would be zero.

The toners of this invention can be mixed with a carrier vehicle to form developing compositions. The carrier vehicles which can be used with the present toners to form new developer compositions can be selected from a variety of materials. Suitable carrier vehicles useful in the invention include various nonmagnetic particles such as glass beads, crystals of inorganic salts such as sodium or potassium chloride, hard resin particles, metal particles, etc. In addition, magnetic carrier particles can be used in accordance with the invention. In fact, the toner compositions of the present invention are especially suited for use with magnetic carrier particles as the problem of toner throw-off is especially bothersome in magnetic brush development processes. Suitable magnetic carrier particles are particles of ferromagnetic materials such as iron, cobalt, nickel, and alloys and mixtures thereof. Other useful magnetic carriers are ferromagnetic particles overcoated with a thin layer of various film-forming resins, for example, the alkali-soluble carboxylated polymers described in Miller, U.S. Pat. No. 3,547,822 issued Dec. 15, 1970; Miller, U.S. Pat. No. 3,632,512 issued Jan. 4, 1972; Me- Cabe, U.S. Ser. No. 236,765, now Pat. No. 3,795,617 filed Mar. 21, 1972, entitled Electrographic Carrier Vehicle and Developer Composition Case B"; Kasper et al., U.S. Ser. No. 236,584, now abandoned, filed Mar. 21, 1972, entitled Electrographic Carrier Vehicle and Developer Composition Case C"; and Kasper U.S. Ser. No. 236,614, now U.S. Pat. No. 3,795,618 filed Mar. 2|, 1972, entitled, Electrographic Carrier Vehicle and Developer Composition Case D". Other useful resin coated magnetic carrier particles include carrier particles coated with various fluorocarbons suchas polytetrafluoroethylene, polyvinylidene fluoride, and mixtures thereof including copolymers of vinylidene fluoride and tetrafluoroethylene.

A typical developer composition containing the above-described toner and a carrier vehicle generally comprises from about 1 to about 10 percent by weight of particulate toner particles and from about 90 to about 99 percent by weight carrier particles. Typically, the carrier particles are larger than the toner particles. Conventional carrier particles have a particle size on the order of from about 30 to about I200 microns, preferably 60-300 microns.

The toner and developer compositions of this invention can be used in a variety of ways to develop electrostatic charge patterns or latent images. Such developable charge patterns can be prepared by a number of means and be carried for example, on a light sensitive photoconductive element or a non-light sensitive dielectric-surfaced element such as a receiver sheet. One suitable development technique involves cascading the developer composition across the electrostatic charge pattern; while another technique involves applying toner particles from a magnetic brush. This latter technique involves the use of a magnetically attractable carrier vehicle in forming the developer composition. After imagewise deposition of the toner particles, the image can be fixed by heating the toner to cause it to fuse to the substrate carrying the toner. If desired, the unfused image can be transferred to another support such as a blank sheet of copy paper and then fused to form a permanent image.

The following examples are included for a further understanding of the invention.

EXAMPLE 1 A poly(4,4'-isopropylidene diphenyl-alt-ethylene carbonate) resin as described in Ser. No. 34,557 filed May 4, 1970 is melted on a rubber compounding mill at a temperature of between l25-l50C. Cabot Corporation Sterling FT Carbon Black is added to yield 5.7 parts of carbon black per parts of polymer. This carbon black-polycarbonate composition is then used as a control toner. A variety of different materials are then added to individual samples of the control toner as described below and then the net toner charge and toner throw-off are measured for each of the sample toner compositions to test the charge control capabilities of the various materials added to the toner.

Each toner sample is prepared by blending all ingredients together on the rubber compounding mill for approximately 20 minutes. Each melt is then cooled to room temperature and ground in a laboratory disk grinder to pass through a 20 mesh screen. Final grinding to a particle size less than 30 microns is accomplished in a fluid energy mill. The net toner charge is measured by mixing 6 percent of the toner with an insulating polymer-coated particulate carrier comprising an oxidized sponge iron core coated with a terpolymer of acrylonitrile-vinylidene chloride-acrylic acid as de scribed in McCabe, U.S. Ser. No. 236,765, now U.S. Pat. No. 3,795,617 filed Mar. 21, 1972, Case B. The mixing is accomplished by placing the carrier and toner in a small paper cup which is then rolled on a roll mill for 15 minutes. The net toner charge is measured using a Faraday Cage in the following manner: a weighed portion of each of the developers is placed in an iron tube that is covered at one end with a 200 mesh screen that retains all carrier particles within the tube. The iron tube is connected in series with a capacitor to ground. An air stream is then directed through the tube, blowing toner particles off the carrier, through the 200 mesh screen at the exit end. The potential resulting on the capacitor is measured by an electrometer. The potential obtained is converted to electrical charge in microcoulombs and this figure is divided by the weight in grams of the toner that is removed from the tube, providing the net toner charge in microcoulombs per gram.

In addition to net toner charge, a test is devised to measure the toner throw-off exhibited by each of the sample toners when admixed with a particulate carrier vehicle as follows: A fixed quantity of a well-mixed developer (i.e. mixture of toner and carrier particles) is measured and placed in an open cup positioned in a de- 3,893,935 9 10 vice oscillating laterally througha0.75 inch distance at tion is collected on filter paper via a vacuum and 6 cycles per second for a fixed period of time. The weighed. The amounts so weighed are reported in toner throw-off of the developer mix due to the oscilla- Table 1 below in milligrams.

TABLE 1 Concentration (pans/100 Charge Throw-01f Charge Agent (outside invention] parts polycarbonate) (pcoul/g] (mg) Control (no charge agent) 0.4 350.7

671 cobalt naphthenate solution 0.5 7.0 73.7 6% cobalt naphthenate solution 1.0 5.6 92.8 6% cobalt naphthenate solution 3.0 6.0 101.5 6% cobalt naphthenate solution 6.0 5.5 169.6

Heptyldimethylsulfonium bromide (HDSB) 1.0 4.8 110.4 HDSB 3.0 3.5 91.5

Tetruhutylphosphonium bromide (TBPBJ 1.0 9.0 39.3 TBPB 3.0 11.2 30.0

Ethylpyridinium chloride (EPC) 1.0 10.3 12.9 EPC 3.0 8.3 22.9

Butylpyridinium chloride (BPC) 1.0 12.6 13.0 BPC 3.0 10.7

Methylquinolinium chloride (MQC) 1.0 10.1 18.6 MQC 3.0 9.0 24.0 MQC 4.5 6.4 32.0

Acetoquatcetyl lrimethyl ammonium bromide (CTAB) 0.5 8.6 9.7 Acetoquat*CTAB 1.0 9.0 7.9 Acetoq uatCl'AB 3.0 8.9 9.0

Acetoquatcetyl trimelhyl ammonium chloride (CTAC) 0.5 8.4 16.4 AcetoquatCTAC 1.0 10.2 17.8

Dimethylphenylbenzylammonium chloride (DPBAC) 0.5 2 7 391.8 DPBAC 1.0 3 1 248.8 DPBAC 3.0 6 6 44. 1

Triethylhenzylammonium chloride (TBAC) 0.5 2 3 294.9 TBAC 1.0 1 1 448.5 TBAC 3.0 O 9 159 5 Trimethylphenylammonium chloride (TPAC) 0.5 1.2 21.6 TPAC 1.0 0.3 7.2 TPAC 3.0 O.9 3.3 Tetraphenylammonium chloride (TPACL) 0.1 10.6 18.3 TPACL 0.3 12.4 14.4 TPACL 0.5 14.3 3.6 TPACL 1.0 13.0 4.2 TPACL 1.5 13.3 1.6 TPACL 3.0 12.5 5.2 TPACL 6.0 7.6 46.4 (Avg) Tetraheptylammonium chloride (THACL) 0.3 10.1 Not available (N.A.) THACL 0.5 14.6 N.A. THACI. 1.0 11.6 NA.

Tetrapentylummonium hcxafluorophosphate (TPAFP) 0.5 8.9 NA. TPAFP 1.0 9.8 NA. TPAFP 2.0 7.9 NA.

Tetraethylammonium benzoute (TEAB) 1.0 11.4 4.0 TEAB 3.0 5.0 45.3

Tctruethylummonium acetate tetrahydrute (TEAAT) 0.5 7.7 2.6 TEAAT 1.0 1 1.4 3.4

Tetrapentylummonium bromide (TPAB) 0.25 12.2 N.A. TPAB 0.5 15.7 NA. TPAB 1.0 12.3 3.7 TPAB 3.0 10.1 NA.

Telrahutylummonium iodide (THAI) 0.5 13.5 8.6 TBAI 1.0 10.8 4.1 TBA] 1.5 1 1.5 4.9 TBAI 3.0 9.9 1 1.2

Tetrahulylammonium nitrate [TBAN] 1.0 1 1.7 4.9 TBAN 3.0 10.2 6.3

"lrudumark of Auto Chemical Co. Inc

1 1 l 2 EXAMPLE 2 netic brush exhibits low toner throwoff. The images that are formed are sharp, of high density, and advanta- Toners are prepared and tested according to Examgeously exhibit very low background coloration. The pie 1, except that a polystyrene resin (Piccolastic images, after fusing, exhibit good adhesion to paper.

D125) is substituted for the polycarbonate and 6.0 5 The invention has been described in detail with parparts of the carbon black are used per 100 parts of ticular reference to preferred embodiments thereof,

polymer. The results obtained are given in Table II. but, it will be understood that variations and modifica- TABLE II Concentration (parts/lOO Char e Tl'lf0WOff Charge Agent parts Piccolastic Dl) (pcOuF/g) (mg) Control [no charge agent) 2.6 l88.5 Tetrapentylammonium chloride (TPAC) 0.1 6.6 20.7 TPAC 0.5 8.0 16.5

These results indicate that the significant effect on tions can be effected within the spirit and scope of the charge obtained with the charge control agents of our invention. invention is applicable to a variety of polymeric binders W l i and is not restricted to the use of polycarbonate bind- 2O 1, A d ti l t l ot o i toner composition I for use in developing electrostatic charge patterns com- Electl'ophotographlc electrostatls Charge Patterns prising finely-divided particles comprising a resin hav- Obtained in the Conventional manner and processed ing incorporated therein a quaternary ammonium with developer composmcns Containmg the charge charge control agent having the following formula:

control agents of our invention provide images that are 25 dense and sharp with little or no coloration, i.e. deposition of toner particles, in non-image background areas, R toner throw-off or dusting in magnetic brush processes R3 is minimal and the prints containing the transferred images can be handled repeatedly, bent, folded and the like without causing undue flake-off of the image e fl- Example wherein R, R R and R represent an aliphatic hydro EXAMPLE 3 carbon group having one to seven carbon atoms and X represents an anionic function.

2. A dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles having a particle size of from about 0.l micron to about 100 microns, said particles comprising a resin having a melting point within the range of from about 65 to about 200C. and having incorporated in said resin a quaternary ammonium charge control agent having the following formula:

A toner with one part tetrabutylammonium nitrate and 5.7 parts Sterling FT carbon black per 100 parts resin is prepared according to Example I. The toner is mixed with a magnetic carrier as described in Example I at 6% concentration. This resultant developer is placed in a magnetic brush of the general type described in U.S. Pat. No. 3,003,462. An organic photoconductor-containing element bearing a latent electrostatic charge image is passed over the magnetic brush. The toned image thus formed on the photoconductor-containing element is subsequently 2 transferred to paper. The toned image is fused to paper with an infrared lamp. Using the above-described developer, the magnetic brush exhibits low toner throwxoff. The images that are formed are sharp, of high density, and advantageously exhibit very low background wherein R, R, R and R represent an aliphatic hydrocoloration. The images, after fusing, exhibit good adhecarbon group having one to seven carbon atoms and X- sion to paper. represents an anionic function, said particles compris- EXAMPLE 4 mg about 0.] to about 6 parts by weight charge control agent per 100 parts by weight of said resin.

A toner with 0.5 parts tetrapentylamm n m ChlO- 3. The invention as described in claim 2 wherein said ride and 5.7 parts Sterling FT Carbo b fi P 100 toner composition comprises a pigment or a dyestuff in Parts resin P P (folding P Ex'flmple The an amount effective to color said toner composition. toner a mixed \fvllh a (farmer descl'lbed Example 1 4. A dry particulate electroscopic toner composition f 6% concslftl'anon This resultant developer is Placed for use in developing electrostatic charge patterns coma magnetic brush of the general yp described in prising finely-divided particles having a particle size of Us 3,003,462- An organic photoconductoffrom about 1.0 to about 30 microns, said particles comcontaining element bearing a latent electrostatic i i a styrene-containing resin having a melting Charge image is Passed Over the magnetic brush- The point within the range of from about C. to about toned image thus form d on the PhOIOCOHdUCIOT- 65 C. and having incorporated in said resin (at) a pigcontaining element is subsequently transferred to pam or d t ff i an amount ff ti t color aid per. The toned image is fused to paper with an infrared resin and (b) a quaternary ammonium charge control lamp. Using the above-described developer, the magagent having the following formula;

wherein R, R R and R represent an aliphatic hydrocarbon group having one to seven carbon atoms and where X is an anionic function, said particles comprising about 0.3 to about 3.0 parts by weight charge control agent per 100 parts by weight of said resin.

5. The invention as described in claim 4 wherein R, R R and R represent an alkyl group having from I to about 7 carbon atoms and wherein X" is an anionic function selected from the group consisting of halides, phosphates, acetates and nitrates.

6. The invention as described in claim 4 wherein R, R R and R are straight-chain alkyl groups having from about 3 to about 7 carbon atoms and wherein X- is a halide.

7. The invention as described in claim 4 wherein R, R R, and R are straight-chain alkyl groups having from about 3 to about 7 carbon atoms and wherein X- is a chloride.

8. A dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles of from about 0.1 mi cron to about 100 microns, said particles comprising a polycarbonate-containing resin having a glass transition temperature within the range of from about 60C. to about 120C. and having incorporated in said resin (a) a dyestuff or pigment in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:

wherein R, R, R and R represent an aliphatic hydrocarbon group having one to seven carbon atoms and wherein X" is an anionic function.

9. The invention as described in claim 8 wherein R, R R and R represent an aliphatic group having from l to about 7 carbon atoms and wherein X is an anionic function selected from the group consisting of halides, phosphates. acetates and nitrates.

10. The invention as described in claim 8 wherein R, R, R and R represent an alkyl group having from about 3 to about 7 carbon atoms and wherein X is a halide.

11. A dry particulate electroscopic toner composition for use in developing electrostatic charge patterns comprising finely-divided particles of from about 1.0 to about 30 microns, said particles comprising a styrenecontaining resin having a melting point within the range of from about 65C. to about 120C., said resin containing from about 40 to about 100 percent by weight of styrene units, from to about 45 percent by weight of alkyl acrylate or alkyl methacrylate units having from I to about 3 carbon atoms in the alkyl moiety, and from about to about 50 percent by weight of alkyl acrylate or alkyl methacrylate units having from about 6 to about carbon atoms in the alkyl moiety, said resin having incorporated therein (a) a pigment or dyestuff in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:

wherein R, R R and R represent an aliphatic hydrocarbon group having one to seven carbon atoms and wherein X" is an anionic function, said particles comprising about 0.1 to about 6 parts by weight charge control agent per parts by weight of said resin.

12. The invention as described in claim 11 wherein R, R, R and R" represent an aliphatic group having from 1 to about 7 carbon atoms and wherein X is an anionic function selected from the group consisting of halides, acetates, phosphates, and nitrates.

13. The invention as described in claim 11 wherein said particles contain carbon black as a pigment.

14. The invention as described in claim 11 wherein R, R R and R represent an alkyl group having from about 3 to about 7 carbon atoms and wherein X is a halide.

15. An electrographic developing composition comprising particulate magnetic carrier particles having electrostatically attractable thereto a toner composition as described in claim 1.

16. An electrographic developer composition comprising ferromagnetic carrier particles having a particle size within the range of from about 30 to about 1200 microns and having electrostatically attractable thereto dry, finely-divided toner particles having a particle size within the range of about L0 to about 30 microns, said toner particles comprising a resin having a melting point within the range of from about 65 to about 200C. and having incorporated in said resin (a) a dyestuff or pigment in an amount effective to color said resin and (b) a quaternary ammonium charge control agent having the following formula:

wherein R, R, R and R represent an aromatic or an aliphatic hydrocarbon group having one to seven carbon atoms and wherein X" is an anionic function, said toner particles comprising about 0.3 to about 3.0 parts by weight of charge control agent per l00 parts by weight of said resin.

17. The invention as described in claim 16 wherein said resin is a styrene-containing resin having a melting point within the range of about 65 to about [20C. and wherein said toner particles comprise carbon black as a pigment.

18. The invention as described in claim 16 wherein said resin is a poly(carbonate)-containing resin having a glass transition temperature within the range of from about 60 to about C. and wherein said toner particles comprise carbon black as a pigment.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3320169 *Aug 3, 1964May 16, 1967Addressograph MultigraphDeveloper mixes
US3502582 *Jun 19, 1967Mar 24, 1970Xerox CorpImaging systems
US3565654 *Aug 29, 1966Feb 23, 1971Owens Illinois IncProcess for treating polyamide-based resin particles for use in electro-photography
US3647696 *Oct 23, 1968Mar 7, 1972Eastman Kodak CoUniform polarity resin electrostatic toners
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3977983 *May 8, 1975Aug 31, 1976Canon Kabushiki KaishaLiquid developer for use in development of an electrostatic latent image comprising a copolymer containing an amino group converted into a quaternary ammonium salt or hydroxide
US4079014 *Jul 21, 1976Mar 14, 1978Eastman Kodak CompanyElectrographic toner and developer composition containing a 4-aza-1-azoniabicyclo(2.2.2) octane salt as a charge control agent
US4206088 *Feb 7, 1978Jun 3, 1980Mita Industrial Company LimitedAcid /addition salt of organonitrogen base abosrbed on solid inorganic acid
US4254205 *Apr 14, 1980Mar 3, 1981Xerox CorporationDry developers
US4256824 *Oct 1, 1979Mar 17, 1981Xerox CorporationMethod using positively charged electrophotographic toner containing amido dialkyl hydroxy ammonium compound
US4263389 *Jul 16, 1979Apr 21, 1981Xerox CorporationElectrographic latent imaging, development
US4264697 *Jul 2, 1979Apr 28, 1981Xerox CorporationImaging system
US4264702 *Mar 12, 1979Apr 28, 1981Xerox CorporationPositive toners containing alkyl morpholinium compounds as charge control agents
US4269922 *Mar 12, 1979May 26, 1981Xerox CorporationCharge inducing; xerography; reverse
US4286037 *Sep 5, 1978Aug 25, 1981Oce-Van Der Grinten N.V.Electrostatic image one-component electrically conductive thermoplastic resin containing powdered developer prepared by coagulation in emulsion
US4286038 *Mar 12, 1979Aug 25, 1981Xerox CorporationPositive toners containing alkyl picolinium compounds
US4287284 *Apr 14, 1980Sep 1, 1981Xerox CorporationAnd a developer of butyl methacrylate-styrene resin or butadiene-styrene resin with carbon black, and a carrier of polyvinylidene fluoride coated steel
US4291111 *Feb 9, 1979Sep 22, 1981Xerox CorporationNitrogen-containing additives for magnetic toners having hydrophobic and hydrophilic moiety
US4291112 *Sep 11, 1978Sep 22, 1981Xerox CorporationModification of pigment charge characteristics
US4304830 *Jan 14, 1980Dec 8, 1981Xerox CorporationToner additives
US4310611 *Jun 29, 1979Jan 12, 1982Eastman Kodak CompanyProtective layer of chromium
US4312933 *Mar 30, 1981Jan 26, 1982Xerox CorporationMethod of imaging using nitrogen-containing additives for magnetic toners
US4324851 *Dec 20, 1979Apr 13, 1982Xerox CorporationPositive color toners
US4338390 *Dec 4, 1980Jul 6, 1982Xerox CorporationQuarternary ammonium sulfate or sulfonate charge control agents for electrophotographic developers compatible with viton fuser
US4341854 *Sep 22, 1980Jul 27, 1982Eastman Kodak CompanyAdhes&on of -es&n pa-t&cles on a -eflective receivor by low-angle -ad&at&on; elect-ostat&cs; elect-og-aphy
US4355167 *May 1, 1981Oct 19, 1982Xerox CorporationTelomeric quaternary salt compositions
US4371601 *May 1, 1981Feb 1, 1983Xerox CorporationPositively charged developer compositions containing telomeric amines
US4373131 *Mar 4, 1982Feb 8, 1983Eastman Kodak CompanyApparatus for flash fusing tuner images
US4378419 *May 1, 1981Mar 29, 1983Xerox CorporationDeveloper compositions containing telomeric quaternary salts
US4391890 *Dec 3, 1981Jul 5, 1983Xerox CorporationDeveloper compositions containing alkyl pyridinium toluene sulfonates
US4394430 *Apr 14, 1981Jul 19, 1983Eastman Kodak CompanyElectrophotographic dry toner and developer compositions
US4396697 *Dec 3, 1981Aug 2, 1983Xerox Corporation1-alkyl pyridium 4-alkyl benzene sulfonates; xerography
US4397934 *Dec 31, 1981Aug 9, 1983Xerox CorporationDeveloper compositions containing quaternized vinylpyridine polymers, and copolymers
US4397935 *Jan 18, 1982Aug 9, 1983Xerox CorporationPositively charged developer compositions containing quaternized vinyl pyridine polymers
US4404270 *May 21, 1981Sep 13, 1983Hitachi Chemical Company, Ltd.Positively chargeable powdered electrophotographic toner containing dialkyl tin oxide charge control agent
US4410617 *Apr 12, 1982Oct 18, 1983Xerox CorporationMonoazo pigment
US4411974 *Apr 12, 1982Oct 25, 1983Xerox CorporationOrtho-halo phenyl carboxylic acid charge enhancing additives
US4411975 *Apr 12, 1982Oct 25, 1983Xerox CorporationPara-halo phenyl carboxylic acid charge enhancing additives
US4415646 *Mar 3, 1982Nov 15, 1983Xerox CorporationNitrogen containing polymers as charge enhancing additive for electrophotographic toner
US4442790 *Sep 29, 1982Apr 17, 1984Eastman Kodak CompanyMagnetic brush development apparatus
US4454214 *Dec 3, 1982Jun 12, 1984Xerox CorporationToner compositions containing pyridinium tetrafluoroborates
US4464452 *May 2, 1983Aug 7, 1984Xerox CorporationDeveloper compositions containing diaryl sulfonimides
US4480003 *Sep 20, 1982Oct 30, 1984Minnesota Mining And Manufacturing CompanyConstruction for transparency film for plain paper copiers
US4482620 *Mar 12, 1984Nov 13, 1984Xerox CorporationMethod of fusing toner compositions containing pyridinium tetrafluoroborates
US4496643 *Mar 23, 1984Jan 29, 1985Eastman Kodak CompanyPhosphonium, arsonium, or stibonium compound in binder as toner and fluorocarbon carrier coated particles
US4496644 *Feb 28, 1983Jan 29, 1985Eastman Kodak CompanyElectric field adjustment for magnetic brushes
US4557856 *Feb 15, 1979Dec 10, 1985Mita Industrial Co., Ltd.Electrically conductive composition for electro-responsive recording materials
US4560635 *Aug 30, 1984Dec 24, 1985Xerox CorporationReducing discoloration, cracking, and hardening
US4614420 *May 31, 1983Sep 30, 1986Xerox CorporationMagnetically agitated development system
US4654175 *May 12, 1982Mar 31, 1987Xerox CorporationQuaternary ammonium, charging, electrography, developers
US4672018 *Dec 16, 1985Jun 9, 1987Xerox CorporationReduced energy
US4789614 *Dec 17, 1987Dec 6, 1988Eastman Kodak CompanyToners and developers containing benzyldimethylalkylammonium charge-control agents
US4797341 *Sep 4, 1986Jan 10, 1989Ricoh Co., Ltd.Toners dispersed in dielectric aliphatic hydrocarbon or halogenated hydrocarbon
US4803017 *Dec 17, 1987Feb 7, 1989Eastman Kodak CompanyQuaternary ammonium salts
US4806283 *Dec 17, 1987Feb 21, 1989Eastman Kodak CompanyQuaternary ammonium salts
US4806284 *Dec 17, 1987Feb 21, 1989Eastman Kodak CompanyCharge transfer compounds
US4812378 *Dec 17, 1987Mar 14, 1989Eastman Kodak CompanyBenzyldimethylalkylammonium 2,4-dinitrobenzenefulfonate
US4812380 *Dec 17, 1987Mar 14, 1989Eastman Kodak CompanyBenzyldimethylalkylammonium 2-methyl-4-nitrobenzene sulfonate
US4812381 *Dec 17, 1987Mar 14, 1989Eastman Kodak CompanyBenzyldimethylalkylammonium trifluoromethanesulfonate
US4812382 *Dec 17, 1987Mar 14, 1989Eastman Kodak CompanyBenzyldimethylalkylammonium 3-nitro-4-chlorobenzenesulfonate
US4834920 *Dec 17, 1987May 30, 1989Eastman Kodak CompanyNew quaternary ammonium salts
US4834921 *Dec 17, 1987May 30, 1989Eastman Kodak CompanyQuaternary ammonium salts
US4840864 *Dec 17, 1987Jun 20, 1989Eastman Kodak CompanyQuaternary salts; benzyldimethylalkylammonium nitrobenzenesulfonates
US4851561 *Dec 17, 1987Jul 25, 1989Eastman Kodak CompanyQuaternary ammonium salts
US4904762 *Aug 21, 1989Feb 27, 1990Xerox CorporationElectrography; resin, pigment,quaternary ammonium salts; development, transfer of latent image
US4925764 *Dec 23, 1988May 15, 1990E. I. Du Pont De Nemours & Co.Positive solid block toner
US4937157 *Aug 21, 1989Jun 26, 1990Xerox CorporationToner and developer compositions with charge enhancing additives
US4990426 *Jan 11, 1990Feb 5, 1991International Business Machines CorporationDi- and tricationic negative charge control agents for electrophotographic developers
US5051330 *Dec 15, 1989Sep 24, 1991Eastman Kodak CompanyFluorinated onium salts as toner electrostatic transfer agents and charge control agents
US5061586 *Apr 5, 1990Oct 29, 1991Eastman Kodak CompanyReduced toner throw-off in electrography
US5079122 *Jul 3, 1990Jan 7, 1992Xerox CorporationToner compositions with charge enhancing additives
US5082758 *Aug 31, 1990Jan 21, 1992Xerox CorporationToner and developer compositions with charge enhancing additives
US5108859 *Apr 16, 1990Apr 28, 1992Eastman Kodak CompanyPhotoelectrographic elements and imaging method
US5114821 *Jul 2, 1990May 19, 1992Xerox CorporationToner and developer compositions with charge enhancing additives
US5147748 *Apr 12, 1990Sep 15, 1992Hoechst AktiengesellschaftUse of colorless highly fluorine-substituted phosphonium compounds as charge control agents for electrophotographic recording processes
US5190841 *Dec 19, 1991Mar 2, 1993Eastman Kodak CompanyRare earth metal, group II metal ferrites for electrostatic images or copies
US5190842 *Dec 19, 1991Mar 2, 1993Eastman Kodak CompanyTwo phase ferroelectric-ferromagnetic composite carrier
US5268249 *Oct 29, 1992Dec 7, 1993Eastman Kodak CompanyMagnetic carrier particles
US5306592 *Oct 29, 1992Apr 26, 1994Eastman Kodak CompanyReacting aqueous solution of strontium ions and barium ions with iron ions in ammonium hydroxide, separating precipitated hydroxides, mixing with binder, firing
US5308363 *Feb 18, 1992May 3, 1994Xerox CorporationReacting a quaternary ammonium alkylsulfate with sulfuric acid in a water/isopropyl alcohol solvent mixture
US5314778 *Jun 9, 1992May 24, 1994Xerox CorporationToner compositions containing complexed ionomeric materials
US5332637 *Aug 31, 1993Jul 26, 1994Eastman Kodak CompanyElectrostatographic dry toner and developer compositions with hydroxyphthalimide
US5358814 *Aug 31, 1993Oct 25, 1994Eastman Kodak CompanyToner compositions containing as a negative charge-controlling agent a mixture of ortho-benzoic sulfimide and para-anisic acid
US5358815 *Aug 31, 1993Oct 25, 1994Eastman Kodak Company6-Tert-butyl-ortho-benzoic sulfimide
US5358816 *Aug 31, 1993Oct 25, 1994Eastman Kodak CompanyZinc salt of ortho-benzoic sulfimide as negative charge-controlling additive for toner and developer compositions
US5358817 *Aug 31, 1993Oct 25, 1994Eastman Kodak CompanyToner compositions containing as a negative charge-controlling agent the calcium salt of ortho-benzoic sulfimide
US5358818 *Aug 31, 1993Oct 25, 1994Eastman Kodak CompanyDry, negatively charged toner jcompositions and developer compositions
US5364725 *Mar 15, 1993Nov 15, 1994Eastman Kodak CompanyToner and developer containing acyloxy-t-alkylated benzoic acids as charge-control agent
US5382492 *Nov 29, 1993Jan 17, 1995Xerox CorporationQuaternary ammonium compound as charge adjuvants for positive electrostatic liquid developers
US5401809 *Dec 3, 1993Mar 28, 1995Hoechst AktiengesellschaftPolymer ammonium borates and processes for their preparation
US5480757 *Jun 8, 1994Jan 2, 1996Eastman Kodak CompanyTwo component electrophotographic developers and preparation method
US5516615 *Jan 31, 1995May 14, 1996Eastman Kodak CompanyStabilized carriers with β phase poly(vinylidenefluoride)
US5521268 *Mar 29, 1995May 28, 1996Eastman Kodak CompanyOdor reduction in toner polymers
US5637431 *Jun 27, 1996Jun 10, 1997Konica CorporationDeveloper for electrophotography
US5716752 *Apr 17, 1997Feb 10, 1998Xerox CorporationAdding magnetite, metal, metal oxide, metal carbide, or metal nitride to surface of toner comprising resin, wax, and colorant by injection in a fluidized bed milling device
US5763132 *Apr 17, 1997Jun 9, 1998Xerox CorporationAdhesion and cohesion of toners, polymer, metal, metal oxide, carbide, nitride, resin, wax and color
US5783346 *Jan 6, 1997Jul 21, 1998Eastman Kodak CompanyToner compositions including polymer binders with adhesion promoting and charge control monomers
US5916722 *Feb 5, 1998Jun 29, 1999Xerox CorporationMixing together a mixture of first toner with wax, toner is comprised of colorant, resin and wax and second toner comprised of resin, colorant and compatibilizer; enhanced flowability
US5948583 *Apr 13, 1998Sep 7, 1999Xerox CorpToner composition and processes thereof
US5968700 *Jan 30, 1998Oct 19, 1999Eastman Kodak CompanyToner compositions including crosslinked polymer binders
US5968702 *Nov 24, 1997Oct 19, 1999Eastman Kodak CompanyDissolving hyperdispersant in ethyl acetate; mixing with polymer; homogenizing, evaporation, washing, drying; electrostatics
US6004714 *Aug 11, 1998Dec 21, 1999Xerox CorporationBinder, colorant, and a silica containing a coating of an alkylsilane.
US6017668 *May 26, 1999Jan 25, 2000Xerox CorporationToner compositions
US6087059 *Jun 28, 1999Jul 11, 2000Xerox CorporationToner and developer compositions
US6190815Aug 11, 1998Feb 20, 2001Xerox CorporationToner compositions
US6194117Aug 26, 1999Feb 27, 2001Xerox CorporationCarrier composition and processes thereof
US6207338Mar 10, 1999Mar 27, 2001Eastman Kodak CompanyToner particles of controlled morphology
US6228549May 17, 2000May 8, 2001Heidelberg Digital L.L.C.Development of electrostatic latent images
US6232026May 17, 2000May 15, 2001Heidelberg Digital L.L.C.Development of electrostatic latent images
US6369136Dec 31, 1998Apr 9, 2002Eastman Kodak CompanyElectrophotographic toner binders containing polyester ionomers
US6380297Aug 12, 1999Apr 30, 2002Nexpress Solutions LlcPolymer particles of controlled shape
US6420078Dec 28, 2000Jul 16, 2002Xerox CorporationAlumina particles treated with an alkylalkoxysilane such as decyltrimethoxysilane; higher loading without increased light scattering
US6426170May 7, 2001Jul 30, 2002Xerox CorporationToner and developer compositions with charge enhancing additives
US6451495May 7, 2001Sep 17, 2002Xerox CorporationPotassium stearate
US6482562Aug 31, 2001Nov 19, 2002Eastman Kodak CompanyDissolving polymer in organic solvent, dispersing in a stabilizer and homogenizing, adding a flocculating agent of a cationic surfactant that is an ammonium salt, evaporating the organic solvent, washing and drying
US6566025Jan 16, 2002May 20, 2003Xerox CorporationPolymeric particles as external toner additives
US6589703May 11, 2001Jul 8, 2003Heidelberger Druckmaschinen AgElectrographic methods using hard magnetic carrier particles
US6610451Dec 26, 2000Aug 26, 2003Heidelberger Druckmaschinen AgSpacing agent on the surface of tonar particle comprises acrylic polymer, silicone-based polymer, styrenic polymer, fluoropolymer, silica or inorganic oxide or mixture
US6692880May 6, 2002Feb 17, 2004Heidelberger Druckmaschinen AgElectrophotographic toner with stable triboelectric properties
US6696212Mar 27, 2001Feb 24, 2004Heidelberger Druckmaschinen AgFor electrostatic magnetic imaging
US6723481May 11, 2001Apr 20, 2004Heidelberger Druckmaschinen AgMethod for using hard magnetic carriers in an electrographic process
US6766136Mar 31, 2003Jul 20, 2004Eastman Kodak CompanyDevelopment systems for magnetic toners and toners having reduced magnetic loadings
US6797448May 3, 2002Sep 28, 2004Eastman Kodak CompanyElectrophotographic toner and development process with improved image and fusing quality
US7014976Aug 4, 2003Mar 21, 2006Eastman Kodak CompanyImproved wear resistance and a reduced tendency to contaminate with toner particles; coating comprises a base elastomeric cushion layer covered by an elastomeric surface layer whose hardness is equal to or less than the base layer
US7016632Jun 23, 2003Mar 21, 2006Eastman Kodak CompanyUse toners with hard magnetic carrier particles with a non-magnetic, cylindrical shell for transporting developers improves image quality by reducing granularity and by providing a constant, stable developer life
US7033720Jun 2, 2004Apr 25, 2006Eastman Kodak CompanyDevelopment systems for magnetic toners and toners having reduced magnetic loadings
US7056637Jun 12, 2003Jun 6, 2006Eastman Kodak CompanyElectrophotographic toner with uniformly dispersed wax
US7087355Mar 18, 2005Aug 8, 2006Eastman Kodak CompanyElectrophotographic toner containing polyalkylene wax or high crystallinity wax
US7211362Oct 27, 2004May 1, 2007Eastman Kodak CompanyFuser member with tunable gloss level and methods and apparatus for using the same to fuse toner images
US7229735Jul 26, 2004Jun 12, 2007Xerox CorporationToner compositions
US7314696Jun 13, 2001Jan 1, 2008Eastman Kodak CompanyElectrophotographic toner and development process with improved charge to mass stability
US7867678Jun 2, 2009Jan 11, 2011Eastman Kodak Companycomposition suitable for non-contact heating comprising an amorphous binder of a number average molecular weight between 1000 and 20,000 and having a glass transition temperature between 50 and 100 C, and crystalline rheology modifier capable of lowering the melt viscosity of the polymer binder
US7914963Dec 12, 2007Mar 29, 2011Eastman Kodak CompanyToner composition
US7956118Sep 25, 2008Jun 7, 2011Eastman Kodak CompanyMethod and preparation of chemically prepared toners
US8147948Oct 26, 2010Apr 3, 2012Eastman Kodak CompanyPrinted article
US8227165Jul 29, 2010Jul 24, 2012Eastman Kodak CompanyBending receiver using heat-shrinkable film
US8404424Feb 8, 2011Mar 26, 2013Eastman Kodak CompanySecurity enhanced printed products and methods
US8406672Jul 29, 2010Mar 26, 2013Eastman Kodak CompanyBending receiver using heat-shrinkable toner
US8435712May 21, 2008May 7, 2013Eastman Kodak CompanyDeveloper for selective printing of raised information by electrography
US8465899Oct 26, 2010Jun 18, 2013Eastman Kodak CompanyLarge particle toner printing method
US8530126Oct 26, 2010Sep 10, 2013Eastman Kodak CompanyLarge particle toner
US8626015Oct 26, 2010Jan 7, 2014Eastman Kodak CompanyLarge particle toner printer
US8749845Jul 31, 2012Jun 10, 2014Eastman Kodak CompanySystem for determining efficient combinations of toner colors to form prints with enhanced gamut
US8755699Jul 31, 2012Jun 17, 2014Eastman Kodak CompanyNoise reduction in toner prints
US8760719Jul 31, 2012Jun 24, 2014Eastman Kodak CompanyPrinting system with observable noise-reduction using fluorescent toner
USH1889 *Oct 12, 1999Oct 3, 2000Xerox CorporationToner compositions
USRE32883 *Nov 30, 1983Mar 7, 1989Xerox CorporationQuarternary ammonium sulfate or sulfonate charge control agents for electrophotographic developers compatible with viton fuser
DE2702526A1 *Jan 21, 1977Jul 28, 1977Oce Van Der Grinten NvEin-komponenten-entwicklerpulver und verfahren zu dessen herstellung
DE2806691A1 *Feb 16, 1978Aug 31, 1978Mita Industrial Co LtdFestes, leitendes mittel
DE3213615A1 *Apr 13, 1982Oct 28, 1982Eastman Kodak CoToner und entwickler fuer die durchfuehrung elektrophotographischer entwicklungsverfahren
EP0005952A1 *May 21, 1979Dec 12, 1979Xerox CorporationElectrostatographic toner containing an alkyl pyridinium compound and imaging method
EP0161128A1 *Mar 20, 1985Nov 13, 1985EASTMAN KODAK COMPANY (a New Jersey corporation)Two-component dry electrostatic developer composition
WO1997009656A1 *Sep 5, 1996Mar 13, 1997Hodogaya Chemical Co LtdElectrostatic image developing toner
WO2007075941A1Dec 21, 2006Jul 5, 2007Eastman Kodak CoChemically prepared porous toner
WO2008027184A1Aug 13, 2007Mar 6, 2008Eastman Kodak CoCustom color toner
WO2009142726A1May 19, 2009Nov 26, 2009Eastman Kodak CompanyDeveloper for selective printing of raised information by electrography
WO2010074720A1Dec 14, 2009Jul 1, 2010Eastman Kodak CompanyMethod of preparing toner having controlled morphology
WO2010080099A1Dec 10, 2009Jul 15, 2010Eastman Kodak CompanyToner surface treatment
WO2011003898A1Jul 6, 2010Jan 13, 2011Basf SeToner resins for electronic copying purposes
WO2011136997A1Apr 20, 2011Nov 3, 2011Eastman Kodak CompanyToner containing metallic flakes
WO2012015633A1Jul 19, 2011Feb 2, 2012Eastman Kodak CompanyBending receiver using heat-shrinkable film
WO2012015676A1Jul 22, 2011Feb 2, 2012Eastman Kodak CompanyBending receiver using heat-shrinkable toner
WO2012015786A1Jul 26, 2011Feb 2, 2012Eastman Kodak CompanyMethod for forming surface decorated particles
WO2012015891A1Jul 27, 2011Feb 2, 2012Eastman Kodak CompanySurface decorated particles
WO2012109045A2Jan 31, 2012Aug 16, 2012Eastman Kodak CompanyPrinted product with authentication bi-fluorescence feature
WO2012109081A1Feb 2, 2012Aug 16, 2012Eastman Kodak CompanySecurity enhanced printed products and methods
WO2013043475A1Sep 14, 2012Mar 28, 2013Eastman Kodak CompanyAntibacterial and antifungal protection for toner image
WO2013166227A1May 2, 2013Nov 7, 2013Eastman Kodak CompanyUse of fluorescing toners for imaging
WO2014022252A1Jul 29, 2013Feb 6, 2014Eastman Kodak CompanyPrinting system with noise reduction
Classifications
U.S. Classification430/108.2
International ClassificationG03G9/097
Cooperative ClassificationG03G9/09741
European ClassificationG03G9/097D1