Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3894196 A
Publication typeGrant
Publication dateJul 8, 1975
Filing dateMay 28, 1974
Priority dateMay 28, 1974
Publication numberUS 3894196 A, US 3894196A, US-A-3894196, US3894196 A, US3894196A
InventorsRobert J Briskey
Original AssigneeZenith Radio Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Binaural hearing aid system
US 3894196 A
Abstract
An improved binaural hearing aid system comprises two complete electronic hearing aids, one for each ear of the user, with the hearing aid for the dominant ear having an emphasized high frequency response relative to that of the other hearing aid. Preferably, ear molds are provided for occluding ambient sounds from direct access to the ears. Means are provided for establishing a phase delay in the response of one hearing aid relative to that of the other, with the preferred phase delay between the audio signal components being substantially 180 DEG . The sensitivity of the hearing aid for the dominant ear is preferably at least 3 but no more than 6 db greater for frequency components in the range from 3,000 to 4,000 hertz than that of the hearing aid for the non-dominant ear. The system provides materially enhanced hearing response, and specifically substantially improved speech discrimination, in high ambient noise environments for individuals with substantially balanced or symmetrical hearing losses, a group representing about 85% of those with correctable hearing impairment.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [11] 3,894,196

Briskey July 8, 1975 BINAURAL HEARING AID SYSTEM two complete electronic hearing aids, one for each ear [75] Inventor: Robert J Briskey Des Plaines In of the user, with the hearing aid for the dominant ear having an emphasized high frequency response rela- [73] Assigneei Zenith Rad o Corp ra ion, cag tive to that of the other hearing aid. Preferably, ear

molds are provided for occluding ambient sounds from direct access to the ears. Means are provided for [22] Flled ay establlshing a phase delay In the response of one hear- [21] Appl. No.: 473,970 ing aid relative to that of the other, with the preferred phase delay between the audio signal components [52] U S Cl 179/107 179/1 G being substantially 180. The sensitivity of the hearing aid for the dominant ear is preferably at least 3 but no [51] Int. Cl H04r 25/00 more than 6 db greater for frequency components in 'ldf h ..l7 G,l7FD

[58] 9/1 0 the range from 3,000 to 4,000 hertz than that of the [56] References Cited hearing aid for the non-dominant ear. The system provides materially enhanced hearing response, and spe- UNITED STATES PATENTS cifically substantially improved speech discrimination,

Wengel G in ambient noise environments for individuals with substantially balanced or symmetrical hearing a on Primary ExaminerRalph D. Blakeslee Attorney, Agent, or FirmCornelius J. OConnor [57] ABSTRACT An improved binaural hearing aid system comprises losses, a group representing about 85% of those with correctable hearing impairment.

6 Claims, 2 Drawing Figures 1 13 I 1 l l I l I I I l I I I I I I l I P i 11 I f i i l l I l :14) 10 I I l l I I LEFT I RIGIHT I 15 I CHANNEL I CHANNEL r- AMPLIFIER AMPLIFIER I I I l I I I I I I i i l I i l I I l i I l A A I f-Q i i I l 7 I I r L i l I R IGHT CHANNEL AMPLIFIER FREQUENCY 5V JUL CHANNEL AMPLIFIER DECIBELS! BINAURAL HEARING AID SYSTEM BACKGROUND OF THE INVENTION This invention relates to electronic hearing aid systems and more particularly to binaural hearing aid systems for providing enhanced hearing response and substantially improved speech discrimination for most individuals suffering from correctable hearing impairment.

Heretofore electronic hearing aids have been developed in numerous styles and configurations and with diverse operating characteristics to compensate for various types of hearing impairment. The first electronic hearing aids were body-worn instruments connected by wire to an air conduction signal reproducer coupled to an earmold inserted in the ear canal. With the advent of the transistor and other miniature electronic components adapted for low voltage operation to permit the use of miniature batteries, various types of head worn electronic hearing aids have evolved, including eyeglass hearing aids, on-the-ear instruments suspended behind the external ear, and in-the-ear devices directly supported by the earmold. Different types of response characteristics have been devised for different types of hearing impairment, and other special features such as automatic gain control, vented earmolds, bone conduction reproducers, and the like have been provided for use in compensating special types of hearing deficiencies. With the advent of the head-worn instruments, binaural hearing assistance has been provided by the use of two independent instruments, one for each ear. At best however, even with all of the modern technological advances in circuits, components and manufacturing techniques, the quality and amount of hearing improvement has been undesirably limited, this in large part being due to frequency response limitations imposed by the use of miniaturized components.

OBJECTS OF THE INVENTION It is a primary object of the invention to provide a new and improved binaural electronic hearing aid system.

A more specific object of the invention is to provide an improved binaural electronic hearing aid system which affords enhanced hearing response, and in particular substantially improved speech discrimination response, as compared with prior art techniques for providing binaural hearing assistance.

SUMMARY OF THE INVENTION In accordance with the invention, a new and improved system for binaurally enhancing auditory response in an individual having hearing impairments of comparable character in both ears comprises first and second electronic hearing aids each including a microphone, an amplifier, a reproducer and means for coupling the output of the reproducer to an ear of the user. The two electronic hearing aids have similar frequency response characteristics, but the instrument associated with the dominant ear of user is provided with an emphasized high frequency response relative to that of the instrument associated with the non-dominant ear. In addition, means are provided for establishing a phase delay in the response of one hearing aid with respect to that of the other.

BRIEF DESCRIPTION OF THE DRAWINGS The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further objects and advantages thereof, may best be understood by reference to the following description taken in connection with the accompanying drawing, in the several figures of which like reference numerals identify like elements, and in which: 7

FIG. 1 is a schematic diagram of a binaural electronic hearing aid system embodying the present invention; and

FIG. 2 is a graphical representation of the frequency response characteristics of the two hearing aids embodied in the system of FIG. 1.

DESCRIPTION OF' THE PREFERRED EMBODIMENT Before proceeding with a description ofthe preferred embodiment of the invention, a consideration of some of the hearing phenomena associated with. normal binaural hearing may be helpful. sounds a rejdistingui shed by their characteristics of frequency, intensity and time. With normal hearing,,soundswhich are directly in front and in back ofan individual, and which are equal in frequency, intensity. and time, maybe literally indistinguishable one from the other. .However the hearing mechanism detects the slightest changes in any of these characteristicsand reacts to differences as new bits of information to be analyzed in binaural listening. Even a slight movement of the head will change some very small part of the acoustic signal and the location of the sound source will be better defined. In normal binaural hearing, or listening, the head is positioned to enhance one or several characteristics to provide additional clues about the sound and its source to assist in understanding the signal and interpreting it.

Intensity or loudness provides the most common clue used by the normal ear for locating sound sources. When a loud sound is heard on one side, a judgement is made that the source of the sound is on that side and a distance is estimated. This spatial judgement of place and distance could be and often is influenced by the frequency and the time of the acoustic signal; however, the loudness provides the initial clue.

The time characteristic, which is also referred to as phase, is related to the cyclical characteristic of sound. The frequency of a pure tone is defined in terms of the number of cycles occurring each sound. Each cycle of an acoustic signal consists of a compression segment of the wave and a rarefaction segment of the wave. If two pure tone signals are presented in-phase, the compressions of the wave arrive at the cars at the same time. If the two signals are presented out-of-phase, a compression wave arrives at one car at the same time that a rarefaction wave arrives at the other. Depending on the frequency and the environment, a sound will be received by the two ears either in-phase or out-of-phase, or both in the case of a complex sound.

Complex sounds are constantly changing in any listening environment, and this requires continual analysis of differences in the acoustic signal which represent clues used in realizing a binaural hearing experience. I-Iead movement helps accentuate differences in the clues. A slight movement of the head alters the relative intensity, time of arrival, and phase of the signals representing the difference clues at each respective ear. All of these effects provide the auditory system with different bits of information. These differences are analyzed physiologically to assist in identifying the meaningful part of the signal and its direction of origin.

The foregoing discussion has been directed to a consideration of binaural hearing with the ears unoc- :luded. When the ears are occluded by the insertion of ear molds to provide amplification of sounds by wearable electronic hearing aids, the clues are altered by restriction of the acoustic input in bandwidth or frequency, intensity, or phase relationship. Moreover, the total hearing aid system (comprising microphone, amplifier, reproducer and ear canal coupling) not only compresses the dynamic intensity range and the bandwidth and alters the phase relationships by the inertia of the system elements, but it also adds artificial noise from the electronic circuits. In a quiet acoustic environment, sufficient clues, still exist to give localization and enhance intelligibility when using two independent monaural hearing aids. However, when the acoustic environment includes a background of substantial noise or undesired signals, the remaining clues are further reduced or obscured completely. The additional noise from the electronic circuitry reduces the usable dynamic range of the aid and the resulting signals reaching the occluded ears become dimensionally uniform. Because of the random characteristic of background noise, it has no discrete phase identification and this renders it non-directional, causing it to be perceived or sensed equally by both ears and yielding a sensation of sound located in the center of the head. Localized sources of desired signals are characterized by phase differences which, if detected, lateralize the signal away from the center of the head to one side or the other toward the point of origin.

It is known that additional information and improved binaural hearing can be provided for hearing-impaired persons by simply employing two monaural hearing aids that are 180 out of phase with each other. It has been observed that most individuals experience a greater capacity for processing binaural information in this anti-phasic condition and also that they accept the use of amplification more readily. In accordance with the present invention, however, it has been discovered that still further improvement in binaural hearing and in speech discrimination may be achieved, for persons with a relatively balanced or symmetrical hearing impairment, by additionally providing a deliberate mismatch in the frequency response characteristics of the two instruments.

It has been known for some time that the same hemispheric asymmetry of the human brain which leads to natural dominance of one hand over the other also establishes natural visual and aural superiority of one side over the other. Just as most people are right handed, most exhibit right-eye and right-ear dominance or superiority. An article reporting on recent experimental work in this field and on findings that right-ear superiority is widespread appears in the Journal of the Acoustical Society ofAmerica, Volume 55, No. 2, Feb., 1974,

* pages 319-327.

system comprising two deliberately mismatched electronic hearing aids, with the instrument for the dominant ear exhibiting a stronger frequency response for signal components in the range from 3,000 to 4,000 hertz, and by providing a phase delay in the output of one hearing aid with respect to that of the other. Preferably, the instrument for the dominant ear provides not less than 3 db and not more than 6 db greater response in the frequency range from 3,000 to 4,000 hertz, and the phase delay between the respective signal components is substantially In the preferred embodiment of the invention shown in FIG. 1, left and right electronic hearing aids 10 and 11, comprising microphones 12, 13, amplifiers l4, l5 and sound reproducers 16, 17, respectively, are provided. Hearing aids l0 and 11 are preferably of the head-worn type, i.e., eyeglass hearing aids, on-the-ear aids, or in-the-ear instruments, and sound reproducers l6 and 17 are coupled by air conduction tubes 18, 19 respectively to full-occlusion type ear molds (not shown) inserted in the left and right ear canals of the user 20, who is assumed to have a right-side dominant ear. Means are provided for establishing a phase delay in the response of hearing aid 11 relative to that of hearing aid 10; in the preferred embodiment of FIG. 1, this is accomplished by reversing the output connections between right channel amplifier 15 and reproducer 17 of hearing aid 11 relative to those between left channel amplifier l4 and reproducer 16 in hearing aid 10 thus providing a phase delay of substantially 180 between the respective left and right signal components.

In an alternative embodiment of the invention the substantially 180 phase delay between the respective left and right signal components is accomplished by adding a phase reversal circuit in the right channel amplifier.

The respective frequency response characteristics of hearing aids l0 and 11 are plotted in FIG. 2, in which the solid-line curve represents the frequency response characteristic of hearing aid 10 for the non-dominant ear, while the frequency response characteristic of the dominant-ear instrument 11 is essentially the same except for frequency components in the range between 3,000 and 4,000 hertz as shown by the dot-dash curve. In this frequency range, from 3,000 to 4,000 hertz, the response of the dominant-ear instrument 11 is materially emphasized relative to that of the non-dominantear instrument 10; it has been found that by emphasizing the dominant-ear response by at least 3 db in this frequency range, a substantial improvement in speech lateralization and binaural separation, as well as a significant improvement in speech discrimination, is achieved. Little or no improvement is realized in quiet environments, but in high background noise situations or environments, where the hard of hearing experience the most serious difficulty because of their hearing impairment, a marked improvement is realized. It has also been found, however, that if the dominant-ear instrument 11 is provided with more than a 6 db stronger response in the frequency range from 3,000 to 4,000 hertz, little or no improvement is realized. Accordingly, in the preferred embodiment of the invention, the amount of emphasis in the response of the dominantear instrument relative to that of the non-dominant-ear instrument, in the frequency range from 3,000 to 4,000 hertz, is at least 3 db but not more than 6 db.

Thus the invention provides a new and improved binaural auditory response enhancement system which, in noisy environments, and for hearing-impaired persons with relatively balanced or symmetrical hearing impairment, provides a marked improvement in lateralization or source localization, in speech discrimination, and in general comfort in wearing the instruments as compared with prior binaural hearing aid systems.

While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and, therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.

What is claimed is:

l. A system for binaurally enhancing auditory response in an individual having hearing impairments of comparable character in both ears, which system comprises:

a first electronic hearing aid having a predetermined frequency response characteristic and comprising a microphone, an amplifier, a reproducer, and means for coupling the output of said reproducer to the non-dominant ear of said individual;

a second electronic hearing aid having a similar frequency response characteristic but with emphasized high-frequency response relative to that of said first hearing aid and comprising a microphone, an amplifier, a reproducer, and means for coupling said reproducer to the dominant ear of said individ 6 ual;

and means for establishing a phase delay in the response of said second hearing aid relative to that of said first hearing aid.

2. A binaural auditory response enhancing system according to claim 1, in which said means for coupling the outputs of said reproducers to the non-dominant and dominant ears comprise respective ear molds adapted to be inserted in the ear canals of said individual for occluding direct aural response.

3. A binaural auditory response enhancement system according to claim 1, in which the response of said second hearing aid is emphasized by from 3 to 6 db relative to that of said first hearing aid in the frequency range from 3,000 to 4,000 hertz.

4. A binaural auditory response enhancement system according to claim 1, in which said phase delay in the response of said second hearing aid relative to that of said first hearing aid is substantially 5. A binaural auditory response enhancement system according to claim 4, in which said phase delay is established either by adding a phase reversal circuit in the amplifier or by reversing the output connections be tween the amplifier and the reproducer in said second hearing aid relative to those in said first hearing aid.

6. A binaural auditory response enhancement system according to claim 1, in which said first and second hearing aids are adapted to be head-worn with their microphones in the vicinity of the non-dominant and dominant ears, respectively.

l l l

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2266669 *Apr 15, 1940Dec 16, 1941Ray O Vac CoHearing aid device
US2896024 *Oct 28, 1954Jul 21, 1959Texas Instruments IncHearing-aid having directional reception characteristics
US3243525 *Nov 13, 1962Mar 29, 1966Eaton ArthurHearing intensifying and directing apparatus
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4048444 *Aug 15, 1975Sep 13, 1977Giampapa Vincent CPhonostethoscope conversion unit for amplification and clarification of corporeal sounds
US4087629 *Jan 10, 1977May 2, 1978Matsushita Electric Industrial Co., Ltd.Binaural sound reproducing system with acoustic reverberation unit
US4421488 *Mar 3, 1981Dec 20, 1983Paul ParlenviAid for curing or mitigating stammering
US4791673 *Dec 4, 1986Dec 13, 1988Schreiber Simeon BBone conduction audio listening device and method
US5434924 *Mar 6, 1991Jul 18, 1995Jay Management TrustHearing aid employing adjustment of the intensity and the arrival time of sound by electronic or acoustic, passive devices to improve interaural perceptual balance and binaural processing
US5479522 *Sep 17, 1993Dec 26, 1995Audiologic, Inc.Binaural hearing aid
US5617477 *Mar 8, 1995Apr 1, 1997Interval Research CorporationPersonal wearable communication system with enhanced low frequency response
US5680465 *Apr 5, 1995Oct 21, 1997Interval Research CorporationPersonal portable communication device
US5680466 *Oct 6, 1994Oct 21, 1997Zelikovitz; JosephOmnidirectional hearing aid
US5682434 *Jun 7, 1995Oct 28, 1997Interval Research CorporationWearable audio system with enhanced performance
US5687245 *Jun 7, 1995Nov 11, 1997Interval Research CorporationSampled chamber transducer with enhanced low frequency response
US5694475 *Sep 19, 1995Dec 2, 1997Interval Research CorporationAcoustically transparent earphones
US5757932 *Oct 12, 1995May 26, 1998Audiologic, Inc.Digital hearing aid system
US5815579 *Dec 1, 1995Sep 29, 1998Interval Research CorporationPortable speakers with phased arrays
US5953434 *Jul 3, 1997Sep 14, 1999Boyden; James H.Headband with audio speakers
US6301367Jun 11, 1998Oct 9, 2001Interval Research CorporationWearable audio system with acoustic modules
US7664277May 29, 2007Feb 16, 2010Sonitus Medical, Inc.Bone conduction hearing aid devices and methods
US7682303Oct 2, 2007Mar 23, 2010Sonitus Medical, Inc.Methods and apparatus for transmitting vibrations
US7724911Apr 27, 2007May 25, 2010Sonitus Medical, Inc.Actuator systems for oral-based appliances
US7796769Feb 7, 2007Sep 14, 2010Sonitus Medical, Inc.Methods and apparatus for processing audio signals
US7801319Feb 7, 2007Sep 21, 2010Sonitus Medical, Inc.Methods and apparatus for processing audio signals
US7844064May 29, 2007Nov 30, 2010Sonitus Medical, Inc.Methods and apparatus for transmitting vibrations
US7844070Feb 7, 2007Nov 30, 2010Sonitus Medical, Inc.Methods and apparatus for processing audio signals
US7854698Mar 18, 2010Dec 21, 2010Sonitus Medical, Inc.Methods and apparatus for transmitting vibrations
US7876906Feb 7, 2007Jan 25, 2011Sonitus Medical, Inc.Methods and apparatus for processing audio signals
US7945068Dec 11, 2008May 17, 2011Sonitus Medical, Inc.Dental bone conduction hearing appliance
US7974845Feb 15, 2008Jul 5, 2011Sonitus Medical, Inc.Stuttering treatment methods and apparatus
US8000958May 14, 2007Aug 16, 2011Kent State UniversityDevice and method for improving communication through dichotic input of a speech signal
US8023676Mar 3, 2008Sep 20, 2011Sonitus Medical, Inc.Systems and methods to provide communication and monitoring of user status
US8041066Jan 3, 2007Oct 18, 2011Starkey Laboratories, Inc.Wireless system for hearing communication devices providing wireless stereo reception modes
US8150075Jan 20, 2009Apr 3, 2012Sonitus Medical, Inc.Dental bone conduction hearing appliance
US8170242Dec 11, 2008May 1, 2012Sonitus Medical, Inc.Actuator systems for oral-based appliances
US8177705Nov 5, 2010May 15, 2012Sonitus Medical, Inc.Methods and apparatus for transmitting vibrations
US8208642 *Jul 10, 2006Jun 26, 2012Starkey Laboratories, Inc.Method and apparatus for a binaural hearing assistance system using monaural audio signals
US8224013May 12, 2009Jul 17, 2012Sonitus Medical, Inc.Headset systems and methods
US8233654Aug 25, 2010Jul 31, 2012Sonitus Medical, Inc.Methods and apparatus for processing audio signals
US8254611Dec 11, 2008Aug 28, 2012Sonitus Medical, Inc.Methods and apparatus for transmitting vibrations
US8270637Feb 15, 2008Sep 18, 2012Sonitus Medical, Inc.Headset systems and methods
US8270638Oct 15, 2009Sep 18, 2012Sonitus Medical, Inc.Systems and methods to provide communication, positioning and monitoring of user status
US8291912Aug 20, 2007Oct 23, 2012Sonitus Medical, Inc.Systems for manufacturing oral-based hearing aid appliances
US8358792Dec 23, 2009Jan 22, 2013Sonitus Medical, Inc.Actuator systems for oral-based appliances
US8433080 *Aug 22, 2007Apr 30, 2013Sonitus Medical, Inc.Bone conduction hearing device with open-ear microphone
US8433083May 16, 2011Apr 30, 2013Sonitus Medical, Inc.Dental bone conduction hearing appliance
US8515114Oct 11, 2011Aug 20, 2013Starkey Laboratories, Inc.Wireless system for hearing communication devices providing wireless stereo reception modes
US8585575May 14, 2012Nov 19, 2013Sonitus Medical, Inc.Methods and apparatus for transmitting vibrations
US8588447Jul 17, 2012Nov 19, 2013Sonitus Medical, Inc.Methods and apparatus for transmitting vibrations
US8649535Sep 13, 2012Feb 11, 2014Sonitus Medical, Inc.Actuator systems for oral-based appliances
US8649543Aug 12, 2011Feb 11, 2014Sonitus Medical, Inc.Systems and methods to provide communication and monitoring of user status
US8660278Jun 11, 2012Feb 25, 2014Sonitus Medical, Inc.Headset systems and methods
US8712077Jul 20, 2010Apr 29, 2014Sonitus Medical, Inc.Methods and apparatus for processing audio signals
US8712078Aug 10, 2012Apr 29, 2014Sonitus Medical, Inc.Headset systems and methods
US8737653Dec 30, 2009May 27, 2014Starkey Laboratories, Inc.Noise reduction system for hearing assistance devices
US8795172Dec 7, 2007Aug 5, 2014Sonitus Medical, Inc.Systems and methods to provide two-way communications
US20090052698 *Aug 22, 2007Feb 26, 2009Sonitus Medical, Inc.Bone conduction hearing device with open-ear microphone
EP1879426A2 *Jun 26, 2007Jan 16, 2008Starkey Laboratories, Inc.Method and apparatus for a binaural hearing assistance system using monaural audio signals
WO1981002513A1 *Mar 3, 1981Sep 17, 1981P ParlenviAid for curing or mitigating stammering
WO1988009105A1 *May 11, 1988Nov 17, 1988Arthur JampolskyParadoxical hearing aid
WO1992008330A1 *Nov 1, 1991May 2, 1992Cochlear Pty LtdBimodal speech processor
WO1996028000A1 *Feb 26, 1996Sep 12, 1996Interval Research CorpPortable speakers with enhanced low frequency response
WO1997021322A1 *Oct 17, 1996Jun 12, 1997Interval Research CorpPortable speakers with phased arrays
WO2009025917A1 *Jun 3, 2008Feb 26, 2009Sonitus Medical IncBone conduction hearing device with open-ear microphone
WO2010022456A1 *Aug 27, 2009Mar 4, 2010Peter BlameyBinaural noise reduction
Classifications
U.S. Classification381/23.1, 381/328, 381/312, 381/1
International ClassificationH04R25/00
Cooperative ClassificationH04R25/552
European ClassificationH04R25/55B
Legal Events
DateCodeEventDescription
Sep 2, 1992ASAssignment
Owner name: ZENITH ELECTRONICS CORPORATION
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST NATIONAL BANK OF CHICAGO, THE (AS COLLATERAL AGENT).;REEL/FRAME:006243/0013
Effective date: 19920827
Jun 22, 1992ASAssignment
Owner name: FIRST NATIONAL BANK OF CHICAGO, THE
Free format text: SECURITY INTEREST;ASSIGNOR:ZENITH ELECTRONICS CORPORATION A CORP. OF DELAWARE;REEL/FRAME:006187/0650
Effective date: 19920619