Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3894560 A
Publication typeGrant
Publication dateJul 15, 1975
Filing dateJul 24, 1974
Priority dateJul 24, 1974
Also published asCA1022844A1
Publication numberUS 3894560 A, US 3894560A, US-A-3894560, US3894560 A, US3894560A
InventorsBaugh Benton F
Original AssigneeVetco Offshore Ind Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Subsea control network
US 3894560 A
Abstract
A new and improved subsea control system which eliminates the necessity of redundant control lines extending from the water surface to an underwater wellhead installation such as a christmas tree, including a multiple pressure responsive sequence valve mounted in a single hydraulic control line for providing direct control to the valves on the underwater installation under emergency conditions.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Baugh 1 July 15, 1975 SUBSEA CONTROL NETWORK 3,516.49! 6/1970 Lewis 166/6 Inventor: enton F- g ouston Tex. 3.530.885 9/1970 Fowler 137/236 [73] Assignee: Vetco Offshore Industries, Inc. Primary ExaminerWilliam R. Cline I Y Assistant ExaminerH. Jay Spiegel [22] Flled' Jul) 1974 Attorney, Agent, or Firm-Pravel 8!. Wilson [211 App]. No; 491,225

[57] ABSTRACT [52] 1.1.5. Cl. 137/606; 137/236; 166/75; A new and improved subsea control system which 251/14; 251/26; 251/130 eliminates the necessity of redundant control lines ex- [51 Int. Cl .i E211) 43/01 tending from the water surface to an underwater we11- [58] Field of Search 166/5, .6; 251/14, 26, head installation such as a christmas tree, including a 251/130; 137/567; 61/5358; 137/236, 606 multiple pressure responsive sequence valve mounted in a single hydraulic control line for providing direct [56] References Cited control to the valves on the underwater installation UNITED STATES PATENTS under emergency conditions.

3,486,556 12/1969 Burgess 166/6 9 Claims, 1 Drawing Figure 1 SUBSEA CONTROL NETWORK BACKGROUND OF THE INVENTION The field of this invention is subsea control systems for controlling underwater wellhead installations such as christmas trees under both normal and emergency conditions.

It is well known to use surface controlled christmas trees mounted at the wellhead of underwater wells to control production in such wells. Such christmas trees generally include a number of specific function operating valves which control the actual flow of oil from the well through a flow-line to some type of storage facility on the surface of the water. The christmas tree valves are controlled by various types of control systems including totally hydraulic systems, electro-hydraulic systems, and electric control systems. If the christmas tree control system is hydraulic or electro-hydraulic. it is necessary to extend at least one hydraulic supply line from the surface control platform down to the christmas tree in order to provide fluid under pressure to the wellhead.

Whenever electro-hydraulic or hydraulic control systems are used to control a subsurface christmas tree.

one of the most difficult problems to overcome is total failure of the control system. For example, if an electro-hydraulic control system is being used, an electrohydraulic control pod mounted on the christmas tree is connected to an electro-hydraulic supply line which extends to the surface. If the electro-hydraulic control pod fails, then it is virtually impossible to operate the christmas tree valves. In this case, if the control pod is removable, the control pod must be removed and replaced. If the control pod is permanent, or if the damage to the control pod occurs in the part of the pod which is permanently mounted onto the christmas tree, then it may be necessary to remove the entire tree. In either event, repair of the christmas tree and/or the control pod mounted with the christmas tree is ex tremely expensive, both in terms of the equipment necessary to accomplish the repair and in loss of production.

Because the repair expenses are so high, various systems have been proposed to extend the life of subsurface christmas tree control systems in order to eliminate the need for repair and thus eliminate or at least postpone production interruptions. One solution for extending the operating life of a christmas tree is to provide a separate, redundant control system which is identical to the main christmas tree control system. An example of such a redundant control system may be found in the Composite Catalog of Oil Field Equipment and Services, l9721973, Vol. 3, th Revision published by World Oil, pages 4l52-4l6l.

Another method of extending christmas tree operating life is to provide the conventional hydraulic control system, including the hydraulic control line and control pod in combination with a separate hydraulic supply line connected to some type of pressure operated valve, which valve is connected with the christmas tree valves through a shuttle valve for the purpose of operating the christmas tree valves in the event of failure of the main pod.

SUMMARY OF THE INVENTION It is an object of this invention to provide a new and improved subsea control system for operating an underwater wellhead installation such as a christmas tree or a blowout preventer stack which is capable of extending the operating life of the wellhead while eliminating the necessity of use of two separate hydraulic supply lines extending from the water surface down to the underwater installation.

In the preferred embodiment of this invention, the subsea control system includes an electro-hydraulic control pod mounted with a wellhead valve system, which wellhead valve system includes various known control valves for normally operating the well. Twoway hydraulic control valves are mounted with the wellhead valve system or installation and are hydraulically connected to the various wellhead control valves and to the hydraulic control pod. A multiple pressure responsive failsafe or sequence valve is connected with the two-way hydraulic control valves and to the control pod. the failsafe valve providing various distinct fluid output signals in response to fluid input signals of various pressures. A surface control means and a single hydraulic control line extend from the surface of the water into hydraulic connection with the failsafe valve in order to provide variably pressured input signals to the failsafe valve. And. the tailsale valve includes means for providing a normal output operating signal to the control pod for operating the control pod under normal conditions and further includes means providing separate output signals directly to the two-way valves for operating the wellhead valves under emergency conditions.

DESCRIPTION OF THE DRAWING The FIG. is a schematic view of an underwater installation such a christmas tree which is connected to the new and improved failsafe control system of the preferred embodiment of this invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT The letter C generally designates in the drawing the subsea control system of the preferred embodiment of this invention for controlling an underwater installation such as the christmas tree T mounted subsea. The christmas tree T is illustrated as being mounted onto a wellhead connector 10 which in turn is mounted onto a wellhead guide structure II. The christmas tree T, the wellhead connector 10 and the guide structure 11 are all subsea equipment well known in the oil industry. For example, a suitable guide structure 11 is illustrated on page 4500 of the Composite Catalog of Oil Field Equipment and Services, Volume 3, page 4500, published by World Oil, l972l973. Further a suitable wellhead connector such as [0 is illustrated on page 4509 of the same volume. In addition, a suitable christmas tree T is illustrated on pages 4536-4537 of the same volume.

The numbers 12, 14, 15 and I6 designate valve operators for certain christmas tree vlves such as production valves, testing valves and safety valves, all of which are known in the art. The valve operators 12-16 are hydraulically operated to open and close such valves using hydraulic pressure. The christmas tree T further includes a christmas tree manifold 17 having mounted thereon a christmas tree cap 18.

The subsea control system C includes the surface control system 20 which is schematically illustrated as a panel 20a mounted above the water line 21. The surface control system may be similar to the control system illustrated on page 4164 of Volume 3 of the Composite Catalog of Oil Field Equipment and Services, l972-1973. Of course, it is understood that the control panel 200 is merely representative of the entire surface control system which is adapted to provide hydraulic fluid under pressure and suitable electric signals to the underwater christmas tree T for operating the valves mounted thereon controlled by valve operators such as l2-16.

The christmas tree T has mounted thereon a control pod 23 which is adapted to receive hydraulic signals and electrical signals from the surface control system 20 for the purpose of operating the valve operators such as l2l6. The control pod 23 may be landed with the christmas tree T itself or may be landed on the christmas tree T after the christmas tree T is secured at the wellhead. The control pod 23 may be known in the art and may be a pod similar to the control pods illustrated on pages 4l54-4l59 in Volume 3 of the Composite Catalog of Oil Field Equipment and Services, 1972-l973. A flowline 24 extends from a surface storage facility (not shown) downwardly to a flowline connector station such as described in U.S. Pat. Application, Ser. No. 386,431 now US. pat. No. 3866677 filed on Aug. 7, i973 in the name of invention Benton F. Baugh who is also the inventor of the invention set forth herein. The flowline connector station 25 basically includes a christmas tree connection terminal 250 which connects to the christmas tree T itself through a tree flowline such as 240. The flowline connector station 25 additionally includes a flowline connecting terminal 25b connected to the flowline 24. The flowline connector terminal 25b is landed and operably connected with the christmas tree flowline connector terminal 25a in order to make operable connection to transfer oil from the christmas tree T to the surface.

A hydraulic supply line 22a and an electrical supply line 22!; extend from the surface control system 20 downwardly to the christmas tree T along with the flowline 24. The electrical supply line 22b may be connected to the control pod 23 by any suitable connection means such as that schematically illustrated at 23a. Hydraulic connection to the control pod 23, however, is made utilizing the subsea control system C of the preferred embodiment of this invention. Accordingly a second hydraulic supply line 26 is connected to the christmas tree flowline terminal 250 and extends into hydraulic connection with a multiple pressure responsive failsafe or sequence valve 27 mounted onto the christmas tree cap 18. The hydraulic line 26 makes up hydraulic connection with the hydraulic supply 22a through the flowline connector 25 in order to provide a fluid input signal to the sequence valve 27.

The sequence valve 27 is the subject of the previously described US. Pat, Application, Ser. No. 464,771, filed Apr. 29, 1974 and invented by Benton F. Baugh. The function of the sequence valve is to receive an input signal through line 26, which signal may be at various pressures, and provide separate and distinct output signals according to the pressure of the input signal. The sequence valve 27 includes four output modes or paths 27a, 27b, 27c, and 27d. The output path or line 27a is a hydraulic line extending from the sequence valve 27 to the control pod 23 for the purpose of providing hydraulic fluid under a particular pressure to the control pod 23. Under normal operating conditions, hydraulic fluid under pressure is provided through the sequence valve 27 and through output line 27a; and, the control pod 23 is operated utilizing such hydraulic pressure in line 27a in combination with electrical signals sent from the control system 20 to the pod 23. i

The output path or line 27b is also a hydraulic line which is connected to a two-way valve or shuttle valve 28 mounted on the tree. The sequence valve output path or line 270 is connected to a second shuttle valve 29 and the sequence valve output path or line 27b is connected to a third shuttle valve 30.

The shuttle valves 28-30 are two-way hydraulic control valves such as disclosed on page 4223 of Volume 3 of the Composite Catalog of Oil Field Equipment and Services, 19724973. The shuttle valve 28 includes a pod input line 28a and an output line 2817 which is connected with the valve operator 14. The shuttle valve 29 includes pod input line 29a and valve output line 29b connected to the valve operator l5; and, the shuttle valve 30 includes pod input line 30a and valve output line 30b. The shuttle valve 28 provides an output signal through output line 28b to valve operator 14 in response to a fluid input signal from either the pod input line 280 or the sequence valve output line 27b. Similarly, the shuttle valve 29 provides a fluid output signal to valve operator 15 in response to a fluid input signal either from line 28a or from line 270, which is the sequence output line connected to that shuttle valve. The shuttle valve 30 provides the fluid output signal to line 30b and thus to valve operator 16 in response to a fluid input signal either from pod input line 300 or from sequence valve output line 27d.

Thus the valve operators such as 14, 15 and 16 are operable based upon receipt of output signals from the shuttle valves 28-30, respectively. And, the shuttle valves 28-30 provide output signals in response to fluid input signals from either the control pod 23 or from the sequence valve 27.

The sequence valve 27 is capable of diverting a fluid input signal through line 26 into any of the four lines 27a-27d, depending upon the fluid pressure level of the input signal in line 26. Further, whenever the fluid input signal in line 26 is diverted through the sequence valve 27 into any one particular output line, for example 27a, fluid pressure is not provided through any of the other output lines 27b-2 7d.

In operation and use of the subsea control system C of this invention. the sequence valve is run or lowered onto the christmas tree either with the christmas tree cap or the pod 23. Upon landing on the tree, suitable hydraulic connectors known in the art connect the sequence valve to the pod 23 and to the shuttle valves 28-30. In the preferred embodiment, fluid pressure through input line 26 is diverted into the pod input line 27a at a first pressure level. This first pressure level is used exclusively during normal operating conditions. Under normal conditions, the subsea control pod 23 receives the fluid pressure through line 27a and in cooperation with electrical signals from line 221), controls the application of hydraulic fluid through lines 280, 29a, and 30a in order to direct fluid into the shuttle valves 28-30 respectively, and thus control the operation of valve operators 14-16.

If the control pod 23 should fail, the application of fluid pressure at the first pressure level through the line 27a to the control pod 23 is of little or no use to actually operate the valve operators 14-16. When such an emergency condition occurs. the sequence valve 27 may be shifted to a second. third or fourth pressure level in order to operate any of the valve operators 14-16. For example. upon failure of the control pod 23, the pressure in supply line 22aand hydraulic input line 26 is increased to a second pressure level (higher than the first pressure level which shifts the sequence valve 27 to a second position wherein the fluid in line 26 is diverted into sequence output line 27b. The fluid in sequence output line 27b is directed into the shuttle valve 28 and then outwardly through the shuttle output line 28binto the valve operator 14 in order to operate the valve connected therewith.

increasing the fluid pressure level in the supply line 22a and thus into the input line 26 to a third higher pressure level will cause the sequence valve to shift and divert the fluid at the third pressure level into the shuttle valve 29 through sequence valve output line 27: The fluid diverted into the shuttle valve 29 is then passed through shuttle valve output line 29b to valve operator in order to operate the valve connected therewith. In a similar manner, the valve operator 16 can be actuated by increasing the fluid pressure level in lines 220 and 26 to a fourth pressure level higher than the three previous pressure levels thereby causing the sequence valve 27 to shift and deliver the fluid under pressure through line 27d into shuttle valve 30. As has been previously explained, each of the shuttle valves such as 28 acts to provide an output fluid signal through output line such as 2811 in response to a fluid signal through either of the input lines such as 280 or 27b. In this manner. the sequence valve 27 may be utilized to override the subsea control valve pod 23 whenever necessary.

The sequence valve 27 may also be connected to the control pod 23 such that. under normal operating conditions. fluid pressure in lines 22a and 26 is diverted into the pod input line 280 when the fluid pressure is at a fourth, highest pressure level. Under these circumstances, the sequence valve is utilized to deliver hydraulic fluid under pressure to any of the three shuttle valves 28-30 whenever the fluid pressure in lines 22a and 26 is reduced to a third, second or first pressure level, all of which are consecutively lower than the fourth, highest pressure level. This mode of operation is particularly advantageous when the control pod 27 may fail due to a pressure leak which might cause difficulties in increasing the pressure in the sequence valves sufficiently to a second. higher pressure level to move it out of its first position.

In the preferred embodiment of this invention as stated herein, the subsea control system C has been de scribed in terms of controlling the valves on a christmas tree T. It should be understood, that the same principles apply to any remote. underwater wellhead installation including a blowout preventer stack mounted at the wellhead during drilling operations. It is noted that the mounting of the sequence valve on the christmas tree cap 18 allows the control pod 23 to be removed and repaired while the sequence valve is used to operate the tree T.

The foregoing disclosure and description of the invention are illustrative and explanatory thereof. and various changes in the size, shape. and materials as well as in the details of the illustrated construction may be made without departing from the spirit of the invention. For example, it should be understood that the se- Ill quence valve 27 can be run or lowered onto the christmas tree T with the pod 23. itself instead of with the tree cap 18. In either event. the sequence is removable and retractable from the tree T. Also. the signal output lines such as 2717 for the sequence valve 27 can be connected to more than one valve operator if desired.

I claim:

1. A new and improved subsea control system for operating a wellhead valve system at a subsea wellhead installation, comprising:

a wellhead valve system having various valve operators mounted therewith for normally operating and controlling flow through said wellhead valve system. said wellhead valve system including an electro-hydraulic control pod for normally operating said various valve operators;

two-way hydraulic control valves mounted with said wellhead valve system;

said control pod being hydraulically connected to said various valve operators through said two-way valves;

21 multiple pressure responsive failsafe valve connected to said twowvay hydraulic control valves and to said control pod. said multiple pressure responsive valve providing various distinct fluid output signals in response to a change in pressure of a single fluid input signal;

a surface control means and a single hydraulic control line extending into hydraulic connected with said multiple pressure responsive valve in order to deliver a variable fluid input signal from said surface control means to said multiple pressure re sponsive valve; and

said multiple pressure responsive valve including means providing an output operating signal to said hydraulic control pod under normal operating conditions and further. providing output signals directly to said two-way valves for operating said valve operators under emergency conditions.

2. The structure set forth in claim 1, including:

ssaid surface control means and said single hydraulic control line including means for delivering a first fluid input signal to said multiple pressure responsive valve which delivers a first fluid output signal to said control pod. said control pod utilizing such first fluid output signal for delivering valve operating signals to said two-way valves for operating said valve operators under normal conditions.

3. The structure set forth in claim 2, including:

said surface control means and said hydraulic control line providing a second fluid input signal to said multiple pressure responsive valve, which includes means for delivering said second input signal to at least one of said two-way valves for directly operating at least one of said valve operators.

4. The structure set forth in claim 3. including:

said multiple pressure responsive valve including means for closing off the delivery of said fluid to said control pod in conjunction with said delivery of fluid to one of said two-way valves.

5. The structure set forth in claim 3, wherein:

said first fluid input signal is at a higher pressure than said second fluid input signal.

6. The structure set forth in claim 3, wherein said second fluid input signal is at a higher pressure than said first fluid input signal.

7. The structure set forth in claim 1, including:

7 8 said two-way valves delivering fluid pressure signals 9. The structure set forth in claim 1, including:

from either said pod or from said multiple pressure said multiple pressure responsive failsafe valve being responsive valve to said valve operators. landed separable from said pod such that said well 8. The structure set forth in claim 1, including: can remain operating through said sequence valve said multiple pressure responsive valve being landed 5 with said pod removed.

with said control pod onto said christmas tree.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3486556 *May 1, 1967Dec 30, 1969Stewart & Stevenson Inc JimUnderwater connecting apparatus
US3516491 *Jun 28, 1967Jun 23, 1970Hydril CoUnderwater control system
US3530885 *Oct 19, 1966Sep 29, 1970Rockwell Mfg CoWellhead assembly
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4034774 *Jul 7, 1975Jul 12, 1977Lone Star Gas CompanyLow point control system
US4174000 *Feb 16, 1978Nov 13, 1979Fmc CorporationMethod and apparatus for interfacing a plurality of control systems for a subsea well
US4337829 *Jul 23, 1980Jul 6, 1982Tecnomare, S.P.A.Control system for subsea well-heads
US4355547 *May 30, 1979Oct 26, 1982Bl Cars LimitedContinuously variable ratio transmission
US4497369 *Aug 13, 1981Feb 5, 1985Combustion Engineering, Inc.Hydraulic control of subsea well equipment
US4687179 *Nov 29, 1985Aug 18, 1987Smith Gordon MAutomatic valve actuator and control system
US6046685 *Sep 17, 1997Apr 4, 2000Baker Hughes IncorporatedRedundant downhole production well control system and method
US6161618 *Aug 6, 1999Dec 19, 2000Dtc International, Inc.Subsea control module
US6484806Jan 30, 2001Nov 26, 2002Atwood Oceanics, Inc.Methods and apparatus for hydraulic and electro-hydraulic control of subsea blowout preventor systems
US7216714 *Aug 17, 2005May 15, 2007Oceaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US7216715 *May 5, 2006May 15, 2007Oceaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US7222674 *May 5, 2006May 29, 2007Oceaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US7243729 *Oct 18, 2005Jul 17, 2007Oceaneering International, Inc.Subsea junction plate assembly running tool and method of installation
US7306043Oct 22, 2004Dec 11, 2007Schlumberger Technology CorporationSystem and method to control multiple tools through one control line
US7650942 *Dec 22, 2005Jan 26, 2010Remote Marine Systems LimitedSub sea control and monitoring system
US7650943 *Dec 22, 2005Jan 26, 2010Vetco Gray Controls LimitedHydraulic control system
US7690433May 5, 2006Apr 6, 2010Oceeaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US7934562 *Dec 2, 2005May 3, 2011Vetco Gray Scandinavia AsHybrid control system and method
US8096365 *Dec 9, 2009Jan 17, 2012Vetco Gray Controls LimitedHydraulic control system
US8336629 *Oct 2, 2009Dec 25, 2012Schlumberger Technology CorporationMethod and system for running subsea test tree and control system without conventional umbilical
US8393399 *Nov 30, 2010Mar 12, 2013Hydril Usa Manufacturing LlcBlowout preventer with intervention, workover control system functionality and method
US8464797 *Jun 16, 2010Jun 18, 2013Hydril Usa Manufacturing LlcSubsea control module with removable section and method
US8653985Sep 18, 2008Feb 18, 2014Vetco Gray Controls LimitedShutdown system
US20100006299 *Oct 4, 2007Jan 14, 2010Fluor Technologies CorporationDual Subsea Production Chokes for HPHT Well Production
US20110079395 *Oct 2, 2009Apr 7, 2011Schlumberger Technology CorporationMethod and system for running subsea test tree and control system without conventional umbilical
US20110265885 *Jun 16, 2010Nov 3, 2011Hydril Usa Manufacturing LlcSubsea Control Module with Removable Section and Method
US20120132436 *Nov 30, 2010May 31, 2012Hydril Usa Manufacturing LlcBlowout Preventer with Intervention, Workover Control System Functionality and Method
EP0009364A2 *Sep 12, 1979Apr 2, 1980Fmc CorporationApparatus for remote hydraulic control of a subsea well device
WO1982003887A1 *May 1, 1981Nov 11, 1982Hurta Gary LeeHydraulic control of subsea well equipment
WO1987001157A1 *Jul 24, 1986Feb 26, 1987Cbv Ind MecanicaValve module, specially for undersea petroleum wells
WO1987001158A1 *Jul 24, 1986Feb 26, 1987Cbv Ind MecanicaValve module, specially for undersea petroleum wells
WO1987001159A1 *Jul 24, 1986Feb 26, 1987Cbv Ind MecanicaValve module, specially for undersea petroleum wells
WO1988003596A1 *Nov 5, 1987May 19, 1988Myrmidon Subsea Controls LtdSubsea systems and devices
WO1997023708A1 *Dec 23, 1996Jul 3, 1997Koopmans Sietse Beheer BvWellhead apparatus
WO2000008297A1 *Aug 6, 1999Feb 17, 2000Dtc International IncSubsea control module
WO2005081077A2 *Feb 17, 2005Sep 1, 2005Fmc Kongsberg Subsea AsSubsea control system
WO2013062421A1 *Oct 25, 2012May 2, 2013Subsea Solutions AsMethod and device for extending lifetime of a wellhead
WO2013112054A1 *Jan 25, 2012Aug 1, 2013Subsea Solutions AsMethod and device for extending at least the lifetime of a christmas tree or an umbilical
Classifications
U.S. Classification137/606, 166/368, 251/129.3, 251/14, 251/26, 137/236.1
International ClassificationE21B33/035, E21B43/00, E21B33/03, E21B43/01
Cooperative ClassificationE21B33/0355
European ClassificationE21B33/035C
Legal Events
DateCodeEventDescription
Nov 7, 1990ASAssignment
Owner name: FSSL, INC., 525 JULIE RIVERS DRIVE, SUGAR LAND, TX
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:VETCO GRAY INC.;REEL/FRAME:005535/0294
Effective date: 19900126
Nov 7, 1990AS02Assignment of assignor's interest
Owner name: FSSL, INC., 525 JULIE RIVERS DRIVE, SUGAR LAND, TX
Owner name: VETCO GRAY INC.
Effective date: 19900126
Jul 25, 1990ASAssignment
Owner name: VETCO GRAY INC., A DE CORP., DELAWARE
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:005379/0755
Effective date: 19900130
Jul 25, 1990AS17Release by secured party
Owner name: CITIBANK, N.A.
Owner name: VETCO GRAY INC., A DE CORP.
Effective date: 19900130
Mar 16, 1987ASAssignment
Owner name: VETCO GRAY INC.,
Free format text: MERGER;ASSIGNORS:GRAY TOOL COMPANY, A TX. CORP. (INTO);VETCO OFFSHORE INDUSTRIES, INC., A CORP. (CHANGED TO);REEL/FRAME:004748/0332
Effective date: 19861217
Feb 5, 1987ASAssignment
Owner name: CITIBANK, N.A.,
Free format text: SECURITY INTEREST;ASSIGNOR:VETCO GRAY INC., A DE. CORP.;REEL/FRAME:004739/0780
Effective date: 19861124
May 1, 1986ASAssignment
Owner name: VETCO OFFSHORE INDUSTRIES, INC., 7135 ARDMORE ROAD
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:VETCO OFFSHORE, INC., A CORP. OF DE.;REEL/FRAME:004572/0533
Effective date: 19860421
Sep 29, 1982ASAssignment
Owner name: VETCO OFFSHORE, INC. 5740 RALSTON ST.VENTURA,CA.93
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:VETCO INC.;REEL/FRAME:004056/0858
Effective date: 19820922