Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3894932 A
Publication typeGrant
Publication dateJul 15, 1975
Filing dateNov 19, 1973
Priority dateNov 19, 1973
Publication numberUS 3894932 A, US 3894932A, US-A-3894932, US3894932 A, US3894932A
InventorsOwen Hartley
Original AssigneeMobil Oil Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Conversion of hydrocarbons with {37 y{38 {0 faujasite-type catalysts
US 3894932 A
Abstract
A single riser fluid catalytic cracking operation for converting a gas oil feed material and a gaseous fraction rich in C3-C4 hydrocarbons to form aromatics and isobutane is described. Conversion of the C3-C4 rich fraction is accomplished at a high temperature in an initial annular portion of the riser reactor before charging a gas oil feed to the suspension formed in the annular section. C3-C4 rich hydrocarbon streams may be converted at a lower temperature in a downstream portion of the riser.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Owen 5] July 15, 1975 1 CONVERSION OF HYDROCARBONS WITH 3.406.112 /1968 Bowles 208/153 Y FAUJASITE TYPE CATALYSTS 3.617.497 11/1971 Bryson et a1... 208/ 3,679,576 7/1972 McDonald 208/74 Inventor: Hartley Owen, Belle M a NJ. 3,692,667 9/1972 McKinney et a1. 208/ Assignee: Mobil Oil Corporation New York 3.706.654 12/1972 Bryson et a1. 208/74 N.Y. Primary Examiner-Delbert E. Gantz 122] Flled: 1973 Assistant ExaminerG. E. Schmitkons [2 1] Appl No: 417,001 Attorney, Agent. or FirmCharles A. Huggett; Carl D.

Farnsworth [52] US. Cl. 1. 208/74; 208/78; 208/120;

208/155; 208/156; 208/164; 760/676 R: [57] ABSTRACT 760/673 A single riser fluid catalytic cracking operation for [5 1] Int. Cl ..C10g 37/02; Cl0g 11/18; converting a gas oil feed material and a gaseous frac- B01 j 9/20 tion rich in C -C hydrocarbons to form aromatics and [58] Field of Search 208/74, 62, 71. 78 isobutane is described. Conversion of the C -C rich fraction is accomplished at a high temperature in an [56] References Cited initial annular portion of the riser reactor before UNITED STATES PATENTS charging a gas oil feed to the suspension formed in the 2 425 482 8/1947 M6861 .1 208/120 annular section' C3434 rich hydmcarbo" stream may 2:427:820 9/1947 Thomas 208/57 be converted at a lower temperature in a downstream 2.487.132 11/1949 Hemminger 208/ P 0f the riser- 2,908.630 10/1959 Friedman 203/74 4 Cl l D 2.999.061 9/1961 Persyn 208/67 'awmg 3.182.011 5/1965 Friedman 208/78 C -C H.yc Mixture r lsobutylene C -C Hyc Mixture or Sim CONVERSION OF HYDROCARBONS WITH Y" FAUJASITE-TYPE CATALYSTS BACKGROUND OF THE INVENTION The field of catalytic cracking and particularly the operations related to dense and dilute fluid phase catalytic operations have been undergoing progressive development since early I940. As new experience was gained in operating and design parameters, new catalyst compositions were developed which prompted a further refinement in known operating technology. With the development of high activity crystalline zeolite catalyst, the industry found a further need to improve upon its operating parameters to take advantage of the new catalysts activity, selectivity and operating sensitivity. The present invention is thus concerned with an improved method of cracking or catalytic operation which relates the catalyst activity and selectivity to processing parameters in a manner mutually con tributing to improving the conversion of available refinery feed materials.

SUMMARY OF THE INVENTION The present invention is directed to the conversion of hydrocarbons in the presence of a relatively large pore crystalline material of the faujasite type of crystalline zeolite. In a more particular aspect, the present invention is concerned with more completely utilizing the activity and selectivity characteristics of X and "Y faujasite crystalline aluminosilicate conversion catalyst to upgrade gas oil feed materials and normally gaseous hydrocarbon products such as those obtained in a gas oil conversion operation. In yet another aspect the present invention is concerned with using a faujasite cracking catalyst separated from a gas oil hydrocarbon conversion zone to upgrade particularly C and C, rich hydrocarbon gaseous material to higher boiling gasoline boiling material. The C -C rich gaseous material may be the product of a high temperature gas oil cracking operation or the gaseous hydrocarbons may be recovered from other available refinery sources. More particularly, the present invention is concerned with the cracking of gas oil boiling range hydrocarbon feed materials with a Y faujasite cracking catalyst under elevated temperature cracking conditions selected from within the range of 900F. to about 1 100F. at a hydrocarbon residence time in a once through conversion zone restricted to within the range l l to about 12 seconds. Catalyst to oil ratios may be selected from within the range of4 to about 20. Generally, it is preferred to accomplish cracking of the gas oil in an upflowing riser conversion zone discharging into cyclonic separation means in an upper portion of an enlarged vessel wherein products of gas oil cracking are separated from the catalyst used. The riser suspension may also be discharged adjacent the inlet to cyclonic separating means rather than directly into the cyclonic separating means as shown. The separated catalyst is collected in the lower portion of the vessel which is in open communication with the upper end of a lower extending stripping zone wherein the catalyst is stripped with countercurrent upwardly flowing stripping gas such as steam. The stripped products and products of conversion separated from the catalyst discharge from the riser conversion zone are combined with the cyclonically separated hydrocarbon vapors and passed to one or more downstream separation zones.

In accordance with this invention, C -C rich hydrocarbon mixture or an isobutylene rich stream is contacted with the Y faujasite conversion catalyst before contact with gas oil boiling range feed material in an initial portion of the riser or after initial contact with gas oil feed. The gas oil conversion is accomplished at a catalyst to hydrocarbon feed ratio in the range of 4 to about It) and an elevated hydrocarbon feed temperature sufficient to form a suspension at a temperature in the range of about 950 to about 1 F. Conversion of the C -C, rich hydrocarbon feed, on the other hand, is accomplished at temperatures above that relied upon for gas oil cracking or under lower temperature gas oil conversion temperatures. Thus the C -C, hydrocarbon rich feed which may be charged to the riser to encounter the regenerated catalyst at its highest temperature received from the regeneration zone may be converted at a temperature of about 1250F. before the suspension thereof is brought in contact with gas oil feed in the riser. Therefore, the residence time of the C -C hydrocarbon rich feed at high temperature conditions before gas oil contact may be up to l or 2 seconds or it may be only a fraction of a second, as little as one-tenth of a second, but the contact time under lower temperature conditions may be equal to or greater than that employed for the gas oil conversion operation. In any event, the conversion zone is maintained under conditions which can provide a hydrocarbon residence time within the range of l to about 12 seconds before separation of the suspension. This is so since either one of the feeds may be introduced to the riser conversion zone at spaced apart intervals lying in a downstream portion thereof. During this combination conversion operation, the Y faujasite catalyst provides hydrogen transfer activity and cyclization selectivity which converts introduced and formed C -C hydrocarbons to aromatics; alkyl aromatics and some low boiling gaseous material.

The C -C rich hydrocarbon feed material or the isobutylene rich feed may be separately furnace heated or heated by other suitable means to a temperature suitable for introducing to the riser conversion zone. The C -C rich hydrocarbon feed initially contacting the freshly regenerated catalyst may encounter significantly different high temperature residence times depending upon whether the gas oil is introduced to an initial, intermediate or downstream portion of the riser conversion zone.

Catalyst particles separated from the conversion zone are stripped in a stripping zone countercurrent to rising stripping gas such as steam as mentioned above. The stripped catalyst is then transferred to a catalyst regeneration zone, not shown, for the removal of deposited carbonaceous material by burning, thereby heating the catalyst to an elevated temperature in the range of ll50F. up to 1,500 or 1,600F.

BRIEF DESCRIPTION OF THE DRAWING The FIGURE is a diagrammatic sketch in elevation of an arrangement of hydrocarbon conversion zones for catalytically converting selected hydrocarbon feeds with a fluid conversion catalyst.

DISCUSSION OF SPECIFIC EMBODIMENTS Referring now to the FIGURE, there is shown a riser conversion zone 2 supplied with hot regenerated catalyst by conduit 4 provided with a catalyst flow control valve 6. Steam is introduced to a bottom portion of riser 2 by one or more steam inlet conduits 8 and/or and a gas oil feed is introduced by inlet conduit 12 which projects upwardly into the bottom portion of riser 2. A C -C rich hydrocarbon fraction may be introduced separately or with steam by conduit 8 to the bottom portion of riser 2 for admixture with hot regenerated catalyst. A suspension of catalyst in upflow gasiform hydrocarbon material with or without steam provides a mix temperature of at least llOOF. initially formed and passed upwardly through an annular section of riser 2 about a gas oil inlet means l2 under velocity conditions selected to provide a hydrocarbon residence time as low as about one-tenth ofa second up to about 1 or 2 secondsfiThe upflowing initially formed suspension in the annulirs of riser 2 is thereafter combined with preheated hydrocarbon feed such as a gas oil feed introduced by conduit 12 projecting upwardly into the bottom of riser 2. The thus formed suspension at an elevated cracking temperature of at least l000F. is caused to flow upwardly through the remaining portion of the riser under hydrocarbon conversion conditions. On the other hand, the gas oil feed may be introduced at spaced intervals along the riser as by conduits l4 and 16. In yet another embodiment it is contemplated initially lifting the hot regenerated catalyst with steam or other inert gas before contact with the gas oil feed introduced by conduit 12 for upward flow through the riser. Additional gas oil feed may also be added downstream to the thusformed suspension. Thereafter gaseous hydrocarbons rich in C and C hydrocarbons are introduced to the upflowing suspension by conduit 16 or a further downstream inlet conduit not shown permitting a minimum residence time of about 1 second for ldw temperature upgrading as herein described. In the arrangement of the FIGURE. the suspension in riser 2 is discharged into cyclonic separation zones 18 and 20 housed in the upper portion of vessel 22 wherein separation of catalyst from hydrocarbon vapors is accomplished. Hydrocarbon vapors separated from catalystthen pass into a plenum chamber 24 for removal from the vessel by conduit 26. Catalyst separated from hydrocarbon vapors in cyclonic means 18 and 20 pass by diplegs 28 and 30 to a fluid bed of catalyst 32 maintained in the lower portion of the vessel 22. The fluid bed of catalyst 32 is in open communication with a lower extending stripping zone 34 therebelow to which the fluid bed of catalyst moves generally downward countercurrentto rising stripping gas introduced by conduit 36. The stripping zone is maintained at a temperature within the range of 900F. to l 150F. and the higher temperatures may be facilitated by the addition of hot regenerated catalyst to the catalyst in the stripping zone by means not shown. Stripped catalyst is removed from a bottom portion of the stripping zone by conduit 38 for transfer to a catalyst regeneration zone not shown. Stripped catalyst may also be recycled to the riser inlet by conduit means not shown when it is desired to provide catalyst to hydrocarbon ratios greater than 20 and as high as about 80.

The fluid bed of catalyst 32 separated from the riser conversion zone 2 is at an elevated temperature and may be in the range of from about 900F. to about I F. As suggested above, gaseous hydrocarbon feed such as a mixture of C -C hydrocarbons may be used to form a high temperature suspension in a bottom portion of riser 2 by use of either conduit 12 or 8 alone or in combination with one another before gas oil is introduced to a downstream portion of riser 2 as by one or both of conduits l4 and 16. Also. as a means for controlling catalyst to hydrocarbon ratios in the riser an inert gas may be initially employed to form a suspension in a bottom portion of the riser into which C. and lighter hydrocarbons and gas oil are dispersed as herein provided. The suspension formed will vary considerably in temperature as herein provided and in catalystlhydrocarbon ratio but generally will be in the range of ID to about 40.

The method and system of the FlGURE above described may be modified considerably in operating combinations without departing from the concepts of the present invention. In addition to the embodiments above identified. riser 2 may be substantially external to vessel 22 and stripping zone 34 rather than pass upwardly through substantially the center thereof. In this arrangement, the riser relied upon to upgrade C and lower boiling hydrocarbons and gas oil may be pro vided with additional hot freshly regenerated catalyst in a downstream portion of the gas oil riser conversion section. In one or more of the above defined embodiments, the C and lower boiling gaseous feed components contact active conversion catalyst of the faujasite type at a temperature within the range of 700F. up to about l 100F. and the gas oil feed contacts the faujasite catalyst preferably at temperatures in excess of 900F. and as high as l 100F. In yet a further embodiment it is contemplated employing a riser system in which the gas oil feed initially forms a high temperature catalyst/oil suspension in the bottom annular portion of the riser about inlet conduit 12 through which dispersion steam is introduced, additional gas oil feed may be added to the suspension as by conduit 14 and a C rich stream may then be added to the upflowing suspension as by conduit 16. In other words, lower boiling gaseous hydrocarbons such as a C -C rich stream is brought in contact with the gas oil-catalyst suspension in a downstream or upper portion of the riser conversion zone.

DISCUSSION OF SPECIFIC EXAMPLE A series of conversion runs with an isobutylene rich feed were made under selected temperature and hydrocarbon residence time conditions which support the improved operations contemplated bythe present invention and variations thereon. A catalyst comprising 15 percent REY was contacted under the conditions identified in the table below which produced the results TABLE Unit Hopper (dense bed) Riser [dilute phase. steady state) Run No. IROC- I93 l94 I96 l97 Temp. "F 1050 l050 I050 850 850 'r gas. sec. 46 22 7 8 l7 Cat/gas (wt/wt) 29 41 4O 40 80 Conversion (NLB):

Unconv. butylene 5.4 8.7 l7.4 29.3 27.4 3L7 9.l 14.6

Propylene 33 4.] l 1.9 4.3 5.5

TABLE Cntinued Unit Hopper (dense bed) Riser (dilute phase. steady state) Run No. IHUC- I93 I94 I95 I96 197 Temp. F 1050 I050 1050 850 850 1' gas. sec. 46 22 7 K I? (at/gas (wt/wt) 29 4| 4t] 40 Ht) lsohutune I99 23.7 34.! 42.0 J74 C,,+ gaso. 3.3 4.3" I98 l3.8 [73 Other C,- gases 39H 32.4 81) I68 2.5 l2 65 20.6 Coke 29.0 208 8.8} Hill} I41] No liquid trap used identified. It was observed upon examination of the product that a considerable amount of hydrogen trans fer occurred along with the production of a significant amount of liquid product. The liquid product was identified as consisting chiefly of toluene, xylenes, trimethylbenzenes and naphthalenes. Runs were made at a temperature of lO50F. and 850F. using a wide spread in hydrocarbon residence time.

It will be observed from these data, that at the shorter residence time used for the riser conversion runs, cracking of isobutylene to lower molecular weight gases and to coke is much reduced. However, at totai conversion levels of 82.6. 67.8 and 90.9 percent of the isobutylene, losses to undesirable products are l2.2l percent and the ratios of isobutane to butylene plus propylene range from 1.15 to 3.25.

Thus run 195 effected at a high temperature and short residence time supports a concept of the present invention where the hot freshly regenerated catalysts initially contact the C -C rich feed in the lower portion of the riser reactor before coming in contact with gas oil feed material. On the other hand. run 196 supports a concept of this invention wherein previously used catalyst reduced to a lower temperature is contacted in a down-stream portion of the riser reactor with a C -C rich gaseous hydrocarbon feed material. Thus in any of the operating embodiments herein contemplated and defined. a Y faujasite conversion catalyst has activity and selectivity for hydrogen transfer reaction and olefin cyclization reaction leading to the production of significant quantities of isobutane and aromatics.

In the method and system of this invention it is contemplated processing hydrocarbon feed materials other than gas oil as specifically discussed above. That is, it is contemplated processing higher boiling residual oils, resids and hydrogenated charge materials such as hydrogenated gas oils. and hydrogenated resid.

Having thus generally described the method and means of the present invention and discussed specific embodiments related thereto, it is to be understood that no undue restrictions are to be imposed by reason thereof except as defined by the following claims.

I claim:

I. A method for converting hydrocarbons with faujasite conversion catalyst which comprises,

passing an upflowing suspension of hot regenerated faujasite conversion catalyst in a C -C gaseous hydrocarbon fraction at a temperature of about l250F. through a lower annular portion of a riser conversion zone for a residence time in the range of ().l to 2 seconds.

LII

introducing a higher boiling hydrocarbon fraction of at least gas oil boiling range into said upflowing suspension downstream of said annular zone at one or more spaced apart downstream intervals and converting the introduced higher boiling fraction at a temperature in the range of 900F. to l000F. at a hydrocarbon residence time up to about 10 seconds to a product rich in aromatics.

separating the suspension following traverse of said riser conversion zone into a hydrocarbon phase and a catalyst phase. and sequentially stripping and regenerating said separated catalyst phase.

2. The method of claim I wherein the suspension after traversing the riser conversion zone is cyclonically separated into a hydrocarbon phase and a catalyst phase, the catalyst phase is stripped with stripping gas and a portion of the stripped catalyst is recycled to the inlet of the riser conversion zone.

3. A method for converting gas oils and low boiling C -C hydrocarbons with a faujasite conversion catalyst which comprises,

passing a suspension of faujasite cracking catalyst suspended in a hydrocarbon feed material of at least gas oil boiling range at an initial temperature of at least 1000F. upwardly through a riser conversion zone under conditions to provide a hydrocarbon residence time up to about l0 seconds, introducing hydrocarbons rich in C and C hydrocarbons into said suspension to obtain conversion thereof to aromatics and isobutane,

separating the suspension into a hydrocarbon phase and a catalyst phase, recovering the hydrocarbon phase, and stripping the separated catalyst before regeneration thereof.

4. In a riser hydrocarbon conversion operation the improvement which comprises,

passing a suspension comprising a gas oil high boiling hydrocarbon fraction admixed with faujasite catalyst at a temperature of at least 950F. upwardly through a conversion zone.

adding the high boiling fraction incrementally to the upflowing suspension,

introducing a hydrocarbon fraction rich in C and C hydrocarbons into a downstream portion of said suspension in said riser conversion zone maintained under conditions to produce a product rich in isobutane,

separating the suspension upon discharge from the conversion zone into a hydrocarbon phase and a catalyst phase, recovering the hydrocarbon phase, recovering and stripping the catalyst phase.

* l i l:

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2425482 *Feb 26, 1944Aug 12, 1947Texas CoPretreatment of reactivated hydrocarbon cracking catalyst with normally gaseous olefins
US2427820 *Oct 27, 1941Sep 23, 1947Universal Oil Prod CoCatalytic cracking process
US2487132 *Dec 9, 1944Nov 8, 1949Standard Oil Dev CoContacting gaseous fluid with solid particles
US2908630 *Sep 1, 1953Oct 13, 1959Sinclair Refining CoProcess for cracking a plurality of hydrocarbon oils in a suspension of catalyst particles in a riser reactor
US2999061 *Aug 27, 1958Sep 5, 1961Tidewater Oil CompanyButadiene conversion of c4 fraction of unsaturated hydrocarbons
US3182011 *Jun 5, 1961May 4, 1965Sinclair Research IncCracking a plurality of hydrocarbon stocks
US3406112 *Dec 26, 1967Oct 15, 1968Mobil Oil CorpCatalytic cracking process
US3617497 *Jun 25, 1969Nov 2, 1971Gulf Research Development CoFluid catalytic cracking process with a segregated feed charged to the reactor
US3679576 *Jan 6, 1970Jul 25, 1972Commw Oil Refining Co IncFluidized catalytic cracking apparatus and process
US3692667 *Nov 12, 1969Sep 19, 1972Gulf Research Development CoCatalytic cracking plant and method
US3706654 *Nov 12, 1969Dec 19, 1972Gulf Research Development CoFluid catalytic cracking processes and means
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3974062 *Oct 17, 1974Aug 10, 1976Mobil Oil CorporationConversion of full range crude oils with low molecular weight carbon-hydrogen fragment contributors over zeolite catalysts
US4064038 *Oct 21, 1974Dec 20, 1977Universal Oil Products CompanyFluid catalytic cracking process for conversion of residual oils
US4422925 *Dec 28, 1981Dec 27, 1983Texaco Inc.Catalytic cracking
US4479870 *Feb 29, 1984Oct 30, 1984Jop Inc.Use of lift gas in an FCC reactor riser
US4541922 *Sep 17, 1984Sep 17, 1985Uop Inc.Use of lift gas in an FCC reactor riser
US4541923 *Nov 19, 1984Sep 17, 1985Uop Inc.Catalyst treatment and flow conditioning in an FCC reactor riser
US4606810 *Apr 8, 1985Aug 19, 1986Mobil Oil CorporationFCC processing scheme with multiple risers
US4717466 *Sep 3, 1986Jan 5, 1988Mobil Oil CorporationConversion of hydrogen deficient heavy hydrocarbon feed to gasoline
US4717467 *May 15, 1987Jan 5, 1988Mobil Oil CorporationInjecting lift gas
US4752375 *Sep 3, 1986Jun 21, 1988Mobil Oil CorporationSingle riser fluidized catalytic cracking process utilizing a C3-4 paraffin-rich co-feed and mixed catalyst system
US4802971 *Jan 14, 1988Feb 7, 1989Mobil Oil CorporationSingle riser fluidized catalytic cracking process utilizing hydrogen and carbon-hydrogen contributing fragments
US4830728 *Feb 19, 1988May 16, 1989Mobil Oil CorporationUpgrading naphtha in a multiple riser fluid catalytic cracking operation employing a catalyst mixture
US4853105 *Feb 1, 1988Aug 1, 1989Mobil Oil CorporationMultiple riser fluidized catalytic cracking process utilizing hydrogen and carbon-hydrogen contributing fragments
US4861741 *Feb 8, 1988Aug 29, 1989Mobil Oil CorporationMixed catalyst system and catalytic conversion process employing same
US4865718 *Feb 8, 1988Sep 12, 1989Mobil Oil CorporationMaximizing distillate production in a fluid catalytic cracking operation employing a mixed catalyst system
US4871446 *Sep 2, 1987Oct 3, 1989Mobil Oil CorporationCatalytic cracking process employing mixed catalyst system
US4874503 *Dec 22, 1988Oct 17, 1989Mobil Oil CorporationMultiple riser fluidized catalytic cracking process employing a mixed catalyst
US4888103 *Sep 3, 1986Dec 19, 1989Herbst Joseph AProcess of stripping in a catalytic cracking operation employing a catalyst mixture which includes a shape selective medium pore silicate zeolite component
US4892643 *Apr 11, 1989Jan 9, 1990Mobil Oil CorporationUpgrading naphtha in a single riser fluidized catalytic cracking operation employing a catalyst mixture
US4923593 *Jan 19, 1989May 8, 1990Institut Francais Du PetroleCracking catalyst and catalytic cracking process
US4927522 *Dec 30, 1988May 22, 1990Mobil Oil CorporationMultiple feed point catalytic cracking process using elutriable catalyst mixture
US4966681 *Mar 30, 1989Oct 30, 1990Mobil Oil CorporationOligomerization of lighter products to high octane gasolines
US5012026 *Feb 14, 1989Apr 30, 1991Mobil Oil Corp.Turbulent fluid bed paraffin conversion process
US5087349 *Oct 22, 1990Feb 11, 1992Stone & Webster Engineering CorporationControlling riser reactor temperature profile by using atomizing quenching streams
US5139748 *Nov 30, 1990Aug 18, 1992UopDirects jets of atomized feed into flowing stream of catalyst particles
US5158669 *Nov 15, 1990Oct 27, 1992UopSeparation of catalyst using dissipator plates
US5273720 *Nov 16, 1992Dec 28, 1993UopFCC stripper with shiftable baffles
US5314611 *Oct 27, 1992May 24, 1994UopExternal integrated disengager stripper and its use in fluidized catalytic cracking process
US5316657 *Nov 27, 1992May 31, 1994UopFluidized catalytic cracking
US5316662 *Oct 27, 1992May 31, 1994UopIntegrated disengager stripper and its use in fluidized catalytic cracking process
US5435973 *Apr 25, 1994Jul 25, 1995UopImproved recovery of hydrocarbon product, removing entrained gases from fluidized catalyst prior to regeneration, fluidized bed catalytic cracking
US5449498 *May 27, 1994Sep 12, 1995UopFCC stripper with multiple integrated disengager
US5549814 *Dec 8, 1994Aug 27, 1996UopRadial baffles
US5565177 *Dec 18, 1995Oct 15, 1996UopStacks for fluidized catalytic cracking
US6416656Jun 22, 2000Jul 9, 2002China Petrochemical CorporationCatalytic cracking process for increasing simultaneously the yields of diesel oil and liquefied gas
US6680030Jun 8, 2001Jan 20, 2004Uop LlcWith downcomers, for a fluidized catalytic cracking (fcc) process; improved stripping efficiency and catalyst flux through the stripping vessel
US6740227Dec 21, 2000May 25, 2004Uop LlcFluidized catalytic cracking; covering barrier stripping apertures on incline surface
US6780308Nov 21, 2001Aug 24, 2004Uop LlcProviding baffle-style stripper with openings configured to promote greater volumetric flow rate of stripping medium to move through bottom section of baffle than through top section minimizes generation of dead zones at low fluxes
US7022221Aug 16, 2002Apr 4, 2006Uop LlcStripping apparatus and process
US7077997Aug 16, 2002Jul 18, 2006Uop LlcFluidized catalytic cracking on cantilever support; controlling heat expansion
US7118715Nov 20, 2003Oct 10, 2006Uop LlcProviding baffle-style stripper with openings configured to promote greater volumetric flow rate of stripping medium to move through bottom section of baffle than through top section minimized generation of dead zoned at low fluxes
US7736491 *May 19, 2004Jun 15, 2010Petroleo Brasileiro S.A. - PetrobrasProcess for the fluid catalytic cracking of mixed feedstocks of hydrocarbons from different sources
US7799286Oct 31, 2007Sep 21, 2010Uop LlcStripping apparatus
US7914610Oct 31, 2007Mar 29, 2011Uop LlcStripping process
US7972565Sep 25, 2008Jul 5, 2011Uop LlcStripping apparatus with multi-sloped baffles
US8062507Sep 25, 2008Nov 22, 2011Uop LlcStripping process with multi-sloped baffles
EP0154676A2 *Sep 7, 1984Sep 18, 1985Uop Inc.Use of dual-function lift gas in a FCC reactor riser
EP0171460A1 *Dec 17, 1984Feb 19, 1986Ashland Oil, Inc.Residual oil cracking process using dry gas as lift gas initially in riser reactor
EP0369536A1 *Nov 10, 1989May 23, 1990STONE & WEBSTER ENGINEERING CORPORATIONProcess for selectively maximizing product production in fluidized catalytic cracking of hydrocarbons
Classifications
U.S. Classification208/74, 208/164, 585/312, 585/319, 208/156, 585/407, 585/271, 208/120.15, 208/155, 208/78
International ClassificationC10G11/18, C10G11/00
Cooperative ClassificationC10G11/18
European ClassificationC10G11/18