Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3895152 A
Publication typeGrant
Publication dateJul 15, 1975
Filing dateDec 26, 1973
Priority dateDec 26, 1973
Also published asCA999290A1, DE2446286A1
Publication numberUS 3895152 A, US 3895152A, US-A-3895152, US3895152 A, US3895152A
InventorsJon R Carlson, Robert G Jackson
Original AssigneeContinental Oil Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
A composite cellular construction
US 3895152 A
Abstract
A composite construction is provided comprising a load-bearing substrate, an impermeable liner, and disposed therebetween a circulatory system defined by a network of cells having side walls which are generally in lateral orientation to the liner and the load-bearing substrate, at least some of said side walls having apertures therein whereby at least some adjacent cells are in communication with each other. This construction has the capability of being formed with a variety of flow paths through the circulatory system whereby provision may be made for leak detection, inert gas circulation, heat exchange and the like.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 Carlson et al.

1 COMPOSITE CELLULAR CONSTRUCTION [75] Inventors: Jon R. Carlson; Robert G. Jackson,

both of Ponca City, Okla.

[73] Assignee: Continental Oil Company, Ponca City, Okla.

[22] Filed: Dec. 26, 1973 [21] Appl. No.: 428,554

[52] US. Cl. 428/116; 52/309; 52/615; 52/618; 220/9; 428/321 [51] Int. Cl B321) 3/12; B32b 27/40; B32b 3/10; E04c 2/32; 1332b 5/18 [58] Field of Search 161/68, 69, 109, 159-160, 161/190; 220/9 F, 9 LG; 52/309, 615, 618

[56] References Cited UNITED STATES PATENTS 3,249,659 5/1966 Voelker 161/68 X 3,698,145 10/1972 Newman et a1 161/68 X 3,732,138 S/1973 Almog 161/63 X July 15, 1975 3,755,056 8/1973 McGrew 161/68 FOREIGN PATENTS OR APPLICATIONS 932,58] 7/1963 United Kingdom 220/9 LG 951,923 3/1964 United Kingdom 220/9 1.0

Primary Examiner-Philip Dier Attorney, Agent, or FirmRonald J. Carlson (57] ABSTRACT 8 Claims, 8 Drawing Figures A COMPOSITE CELLULAR CONSTRUCTION This invention relates to a novel construction or assembly for containing liquid or gaseous components and having an integral circulatory system which may be conveniently employed for detecting leaks or purging and the like.

Various types of construction are known for containing liquids and gases. Oftentimes these constructions will include a liner covering the surface of a loadbearing member or wall wherein the liner is impermeable to the liquid or gaseous material in contact therewith. Some typical examples of such constructions are ceramic-lined reactors, resin or plastic-lined storage vessels, internally insulated cryogenic vessels, and the like. In these situations, the liner may be used to prevent contact between the liquids or gases and the loadbearing member due to their corrosive nature. due to their physical state as with cryogenic liquids, or due to other characteristics which would lead to failure of the load-bearing member. Other instances wherein such liners may be used include situations wherein the loadbearing member is not impermeable or where safety considerations must be met. These enumerated situations are merely exemplary and many others will undoubtedly occur to those working in the art.

In any event, when impermeable liners are employed it is desirable to be able to detect leaks which may develop in the liners prior to the time that adverse effects result from such leaks or at least sufficiently early that any adverse effects are minimized. It may, alternatively or additionally, be desirable for safety reasons to be able to purge the region immediately adjacent the liner opposite the side in contact with the contained liquids or gases.

Accordingly, this invention provides a novel construction or assembly for containing liquid or gaseous components and having an integral circulatory system which may be conveniently employed for detecting leaks in the liner, or for purging, or for any purpose wherein it is desirable to circulate a fluid between the liner and the load-bearing member. Briefly described, the construction or assembly comprises a load-bearing substrate. an impermeable outer liner, and disposed therebetween a circulatory system defined by a network of cells having side walls which are generally in a lateral orientation to the liner and the load-bearing substrate, at least some of said side walls having apertures therein whereby at least some of said cells are in communication with each other and define a continuous circulatory system.

The invention may be more fully understood by reference to the drawings wherein several embodiments are illustrated as follows:

FIG. I is a partial cross-sectional elevation view of an embodiment of a basic construction of the invention, which construction in its entirety will form a container.

FIG. 2 is a partial cross-sectional elevation view of a modification to the basic construction illustrated in FIG. I.

FIG. 3 is a partial cross-sectional view of the embodiment illustrated in FIG. 2 taken along line A-A showing the fluid flow paths between the cells.

FIG. 4 is a partial cross-sectional elevation view of a further modification to the basic construction illustrated in FIG. 1.

FIG. 5 is a partial cross-sectional view of the embodiment illustrated in FIG. 4 taken along line BB showing the fluid flow paths between the cells.

FIG. 6 is a partial cross-sectional elevation view of a further embodiment of the invention.

FIG. 7 illustrates schematically the manner in which a fluid may be circulated through a typical construction in accordance with the invention.

FIG. 8 illustrates a cylindrical vessel embodying the features depicted in FIG. 7.

Referring first to FIG. I, there is shown a construction comprising a load-bearing substrate 1, a cellular network 2 and an impermeable liner 3. This construction, in its entirety, may form a container for liquids or gases of any type such as a storage vessel, reactor. and the like, wherein the load-bearing substrate 1 represents the outer wall of the vessel or reactor.

The load-bearing substrate may be formed by any material having suitable strength and other properties for the particular use, for example, metals or metal alloys, glass fiber/resin laminates, wood and plastics may be used. It is also pointed out that the substrate may be formed by a single structural element or a plurality of structural elements which when combined provide the required characteristics.

The impermeable liner 3 serves primarily to prevent the liquids or gases being contained from directly contacting the load-bearing substrate. Thus, the liner need not necessarily possess the same strength characteristics as the load-bearing substrate. The liner does, however, need to be impermeable to the liquids or gases being contained. A variety of suitable materials are known for this purpose depending on the particular situation. Illustrative of such materials are glass and other ceramics; various plastics e.g. polyurethane, polystyrene, polyethylene, PVC, epoxy, resins, polyesters, and the like; metals e.g. stainless steel, aluminum, etc; and the like.

The cellular network 2 which defines a circulatory system between the liner and the load-bearing substrate is formed by a plurality of cells 4 having side walls 5 provided with apertures 6. As illustrated, each cell is in communication with the adjacent cells due to the presence of the apertures so that a fluid may be circulated therethrough. However, it should be understood that any pattern of cell communication may be provided as desired to provide a continuous circulatory system.

The particular configuration of the cells is not a significant feature as long as the side walls are generally oriented laterally between the liner and the loadbearing substrate. For example, the cellular network may comprise a honeycomb of hexagonally-shaped cells such as depicted in FIGS. 3 and 5 to be discussed hereinafter. On the other hand, superposed corrugated sheets joined in such a manner as to form a cellular network are suitable. Other configurations will be apparent to those skilled in the art.

The cells may be formed of a variety of materials which would have suitable properties such as paper, metal, plastic. and the like.

The apertures in the side walls of the cells will normally be provided at the time the cellular network is formed. Their frequency and location may be varied as desired to provide any type of flow path through the network. This ability to provide any type of flow path is a particularly significant feature of this invention. Obviously more than one aperture per side wall may be employed. Of course, if the cellular network is to provide some structural Support it will be necessary to take this function into consideration in designing the flow path as will be understood in the art.

Various techniques are known in the art for forming cellular networks of the type used in this invention and need not be further elaborated. Suffice it to say that the necessary apertures in the side walls may be punched, molded. or otherwise formed during performance of any of these techniques of construction or assembly.

To illustrate two of many possible flow paths through a cellular network reference is made to FIGS. 2-5 wherein the network is illustrated as a honeycomb of hexagonally-shaped cells. In FIG. 2 each cell 14 is shown with an aperture 16 through each side wall 15. This design provides flow paths between an individual cell and each of the six adjacent cells as shown by the small double arrows. Contrasted with this omnidirectional flow path the apertures may be positioned in such a manner as to provide more control over the flow path. An example ofa controlled flow path is illustrated in FIGS. 4 and 5 wherein apertures 26 are provided only in those side walls of cells 24 which are aligned along the same axis. As a result, a series of parallel flow paths aligned with the same axes are provided. These flow paths may be interconnected with each other by simply providing apertures in a suitable side wall so that an overall curvilinear flow path throughout the entire structure formed by the construction of this invention, e.g. a vessel or reactor.

Referring next to FIG. 7, means are illustrated for circulating a fluid through a circulatory system formed by a cellular network such as that described above. The construction shown in FIG. 7 may be more easily understood if one considers such construction as defining a cylindrical vessel C such as illustrated in FIG. 8. Common features illustrated in the two drawings include the load-bearing substrate 61 which forms the other surface of vessel C, the impermeable liner 63 which forms the inner surface of vessel C, and the manifold 67 having inlet 68 and outlet 69 all of which will be described further hereinafter. It is to be understood that, in use, vessel C will be provided with a suitable base and top secured thereto, preferably of similar construction as the side.

In FIG. 7, the construction is shown comprising loadbearing substrate 61 and impermeable liner 63 with cellular network 62 disposed therebetween. These elements and their assembly are the same as the corresponding elements shown in FIG. I and described hereinbefore. Thus, the cellular network 62 defines a circulatory system formed by cells 64 having side walls 65 provided with apertures 66. The flow path provided by the design illustrated is like that shown in FIG. 3 wherein each cell is in communication with all adjacent cells. In addition, the cellular network is provided with an optional insulation layer 71 which fills a portion of each cell 64 and lies adjacent the load-bearing substrate 61. This insulation layer may be foamed plastic such as polyurethane foam, fiberglass, or other conventional insulations and may itself be porous or impermeable as known in the art. Foamed plastic may be foamed in situ during assembly. It is preferred that loose insulation materials be sprayed with an adhesive or other suitable material such as a tackifier to cause at least the materials at the surface to adhere to each other in order that no interference with the circulatory system is incurred.

Disposed between the opposite ends and in sealing engagement with the assembly comprised of the loadbearing substrate 61 and cellular network 62 is manifold 67 having fluid inlet 68 and fluid outlet 69. Manifold 67 preferably does not extend entirely through the construction of this invention but only to the extent of the circulatory system of the cellular network. Thus, as shown, the impermeable liner 63 and the load-bearing substrate overlie the manifold. Fluid inlet 68 is in communication with the cellular network on one side of the manifold whereas fluid outlet 69 is in communication with the cellular network on the other side. By introducing a fluid through inlet 68 to the circulatory system it will flow through the cells of the cellular network and eventually reach the outlet 69 and be withdrawn from the system. Connecting inlet 68 and outlet 69 to a suitable circulation pump the fluid may be continuously circulated through the circulatory system of the construction of the invention.

The invention contemplates the circulation of various fluids for various purposes through the circulatory system. The term fluids is intended to encompass both liquids and gases. For example, air may be circulated as a sweep gas to remove any materials that may gradually seep through the liner. On the other hand, safety considerations may require the use of an inert fluid for this purpose. The fluid being circulated may be used for heating or cooling by passing it through an external heat exchanger. In these situations the fluid would normally be a liquid. A particular use, and one considered of primary importance for the construction of this invention, is that of passing a fluid through the circulatory system to detect leaks that may develop in the liner. Normally a gas will be used for this purpose. The gas will be of different composition than the materials being contained on the other side of the liner. Thus, if a leak in the liner should develop the circulating gas becomes contaminated and by passing the contaminated gas or a portion thereof through a standard analyzer for detecting changes in composition, e.g. gas-liquid chromatograph, such leak may be quickly detected.

The construction of the invention may take the form of various embodiments all of which include the basic structure described with respect to FIG. 1. For example, as depicted in FIG. 2, an insulation layer 17 may be provided to partially fill the cellular network in the regions adjacent the load-bearing substrate 11. It should be noted that this embodiment is the same as that described in reference to FIG. 7. Fabrication of an embodiment of this type may be accomplished by securing a preformed cellular network to the loadbearing substrate in the shape of a container, filling the cells of the cellular network with insulation to a suitable depth not interfering with the circulatory system, and subsequently applying and securing the impermeable liner.

Another embodiment is depicted in FIG. 4 which is similar to that described above except that an additional barrier member 28 to prevent passage of fluids may be interposed between the impermeable liner 23 and the cellular network comprised of cells 24. Such barrier member may be metallic sheet or foil or an impermeable plastic layer. The load-bearing substrate 21 and insulation 27 are the same as those hereinbefore described.

FIG. 6 depicts a further embodiment of the construc tion of the invention which is contemplated for specific use in the form of a storage vessel for a cryogenic liquid such as liquid natural gas. As with previous embodiments there is a load-bearing substrate 31 which may form the outer wall of the storage vessel. in juxtaposition thereto is a cellular network 32 comprising cells 34 with side walls 35 having apertures 36 thereby defining a circulatory system. Overlying the upper portion of the cellular network, as it appears in the drawing, is an impermeable liner 33. The liner in this case is formed by an impermeable polyurethane foam or like material and is in contact with the cryogenic liquid thus forming the primary barrier. The upper edges of the cell walls of the cellular network are embedded in the liner to ensure their intimate attachment.

Disposed within the cells 34 of the cellular network in the region adjacent the load-bearing substrate is an insulation 37. Such insulation is of an impermeable type thereby forming a secondary barrier to protect the loadbearing substrate and may be the same as that forming the liner 33. This insulation only partially fills the cells 34 so as not to interfere with the circulatory system.

Optionally, there may also be disposed in the region of the cells 34 forming the circulatory system a porous insulation 38 such as glass fibers or loose perlite granules or similar material which will not render the circulatory system inoperative yet still provide an additional insulating function.

Quite obviously many other variations on the basic construction of the invention are readily apparent and need no specific description. For example, in the embodiment of FIG. 6, rather than insulation being used for the liner 33 and the insulation 37 ceramic coatings might be employed, thus forming a container which would be well suited for conducting a variety of reactions.

It is also pointed out that the plastic layers may contain reinforcement such as reinforcing fibers, a scrim, a woven fabric, or the like, if the strength requirements are such that this is necessary.

The method of application and securing of the various elements to each other will be dictated primarily by consideration of the type of materials being employed as is known in the art.

Thus having described the invention in detail, it will be understood by those skilled in the art that certain variations and modifications may be made without departing from the spirit and scope of the invention as defined herein and in the appended claims.

We claim:

1. A composite unitary construction comprising a load-bearing substrate, an outer impermeable liner of polyurethane foam, and disposed therebetween a circulatory system defined by a network of cells having side walls which are generally in lateral orientation to the liner and the load-bearing substrate, said circulatory system being secured to said substrate and said liner, said cells being partially filled with an impermeable polyurethane foam insulation, and at least some of said side walls having apertures therein whereby at least some adjacent cells are in communication with each other.

2. A composite construction according to claim 1 wherein the cells are of a honeycomb type.

3. A composite construction according to claim 2 wherein only certain side walls have apertures so as to define a continuous circuitous flow path through the circulatory system.

4. A composite construction according to claim 1 wherein a porous insulation is disposed in the cells between the impermeable insulation layer and the impermeable liner.

5. A composite construction according to claim I wherein the polyurethane foam of the impermeable liner is reinforced with fibers or scrim.

6. A composite construction according to claim 1 wherein the cells are metal, plastic, or paper.

7. A composite construction according to claim 1 wherein the cells are metal.

8. A composite construction according to claim 1 wherein a barrier member is interposed between and secured to the impermeable liner and the circulatory system to further prevent passage of fluids.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENT NO. I 3,895,152 DATED July 15, 1975 INVENTORtS) 1 Robert G. Jackson and Jon R. Carlson tt is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown betow:

Column 3, line 39, change "other" to "outer" Signed and Scaled this third D3) 0f February 1976 [SEAL] Arrest.

RUTH C. MASON C. MARSHALL DANN Arresting ()jfr'cer (mnmr'ssiuner 0f Parents and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3249659 *Jul 19, 1961May 3, 1966Allied ChemMethod of making laminated panel structures
US3698145 *Aug 3, 1970Oct 17, 1972Secr Defence BritHollow structure with core of interwoven strips
US3732138 *Mar 31, 1971May 8, 1973Almog EPanel constructions
US3755056 *Oct 16, 1970Aug 28, 1973Martin Marietta CorpCellular insulation for use with low temperature liquids
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4035535 *Feb 2, 1976Jul 12, 1977Rolls-Royce (1971) LimitedGas turbine engines
US4084366 *Nov 14, 1975Apr 18, 1978Haworth Mfg., Inc.Sound absorbing panel
US4132042 *Jan 13, 1978Jan 2, 1979Vincent Di MaioDoor structure and method for forming such structure
US4162341 *Nov 21, 1977Jul 24, 1979Suntech, Inc.Honeycomb insulation structure
US4170952 *Jan 17, 1977Oct 16, 1979Mcdonnell Douglas CorporationCryogenic insulation system
US4198454 *Oct 27, 1978Apr 15, 1980American Air Filter Company, Inc.Lightweight composite panel
US4244439 *Oct 31, 1978Jan 13, 1981ElektronikcentralenSound-absorbing structure
US4282280 *Dec 30, 1976Aug 4, 1981Cook William H JunHeat insulation for tanks at cryogenic and higher temperatures, using structural honeycomb with integral heat radiation shields
US4468423 *Nov 17, 1982Aug 28, 1984Arlie HallInsulating cell element and structures composed thereof
US4469129 *Apr 22, 1982Sep 4, 1984Dixon John WAbove ground gasoline storage apparatus
US4625710 *Jun 17, 1985Dec 2, 1986Sumitomo Chemical Company, LimitedHollow structure panel for heat storage material and process for producing heat storage material panel using the same
US4803105 *Feb 13, 1987Feb 7, 1989Essex Specialty Products, Inc.Reinforcing sheet for the reinforcement of panel and method of reinforcing panel
US4803108 *May 1, 1987Feb 7, 1989Essex Specialty Products, Inc.Honeycomb reinforcing sheet for the reinforcement of panels and method of reinforcing panels
US4821484 *Feb 3, 1987Apr 18, 1989Buchtal Gesellschaft Mit Beschrankter HaftungDouble floor construction
US4948007 *Jun 22, 1989Aug 14, 1990Xerxes CorporationUnderground storage tank of corrosion-resistant materials with internal steel rib
US5167352 *Sep 5, 1990Dec 1, 1992Robbins Howard JDouble wall tank system
US5180619 *Jun 19, 1991Jan 19, 1993Supracor Systems, Inc.Perforated honeycomb
US5809702 *Dec 23, 1996Sep 22, 1998Hitachi, Ltd.Surface layer ground establishment block, surface layer ground using the same and method for utilizing the same
US5840397 *Nov 8, 1996Nov 24, 1998Supracor Systems, Inc.Sports pad
US5840400 *Nov 12, 1992Nov 24, 1998Supracor Systems, Inc.Perforated core honeycomb panel system
US5923003 *Dec 2, 1997Jul 13, 1999Northrop Grumman CorporationExtended reaction acoustic liner for jet engines and the like
US6021612 *Jul 16, 1996Feb 8, 2000C&D Technologies, Inc.Sound absorptive hollow core structural panel
US6061993 *Oct 11, 1996May 16, 2000Safety Rail System AsConstruction module, method for producing such modules and the use of the module
US6135238 *Apr 23, 1999Oct 24, 2000Northrop Grumman CorporationExtended reaction acoustic liner for jet engines and the like
US6460721Feb 1, 2000Oct 8, 2002Exxonmobil Upstream Research CompanySystems and methods for producing and storing pressurized liquefied natural gas
US6767606Aug 29, 2002Jul 27, 2004The Boeing CompanyVented cell structure and fabrication method
US7147124Mar 25, 2003Dec 12, 2006Exxon Mobil Upstream Research CompanyContainers and methods for containing pressurized fluids using reinforced fibers and methods for making such containers
US7434659 *Apr 4, 2005Oct 14, 2008Hexcel CorporationAcoustic septum cap honeycomb
US7694840 *Sep 1, 2004Apr 13, 2010H2Safe, LlcStorage vessel chamber for storing fuels such as hydrogen
US7854298 *May 9, 2008Dec 21, 2010Hexcel CorporationAcoustic septum cap honeycomb
US7882891May 9, 2006Feb 8, 2011Mitutoyo CorporationPrecision surface plate
US8066098 *Dec 6, 2010Nov 29, 2011Hexcel CorporationAcoustic septum cap honeycomb
US8151376Mar 10, 2009Apr 10, 2012ConfiHips, LLCCompliant impact protection pad
US8266858 *Feb 17, 2010Sep 18, 2012Unisaf Enterprise Company LimitedWaterproof heat-insulation construction method and module
US8413761 *Oct 24, 2011Apr 9, 2013Hexcel CorporationAcoustic honeycomb with perforated septum caps
US8561827Mar 19, 2010Oct 22, 2013H2Safe, LlcStorage vessel chamber for storing fuels such as hydrogen
US8727072 *Mar 6, 2013May 20, 2014Hexcel CorporationMethod for making acoustic honeycomb
US8732869Mar 6, 2012May 27, 2014Comfihips, LlcCompliant impact protection pad
US20070023432 *Jan 30, 2004Feb 1, 2007Seow Stephen K CPanels for floating covers, floating covers and methods for making them
US20110197532 *Feb 17, 2010Aug 18, 2011Teng Chung-HsienWaterproof heat-insulation construction method and module
US20120037449 *Oct 24, 2011Feb 16, 2012Hexcel CorporationAcoustic honeycomb with perforated septum caps
CN1862244BMay 11, 2006Oct 5, 2011株式会社三丰Precision surface plate
DE19931704B4 *Jul 8, 1999May 3, 2007Gaz-Transport Et TechnigazIn die Tragstruktur eines Schiffs integrierter dichter und thermisch isolierender Tank mit verbesserter Eckstruktur
DE19931705B4 *Jul 8, 1999Apr 3, 2008Gaz-Transport Et TechnigazIn die Tragstruktur eines Schiffs integrierter dichter und thermisch isolierender Tank mit verbesserter Eckstruktur
DE102005051691B4 *Oct 28, 2005Jan 17, 2008Gaz Transport Et TechnigazDichter und thermisch isolierter Tank aus aneinanderliegenden wärmedämmenden Elementen
EP0008960A2 *Sep 13, 1979Mar 19, 1980Sekisui Kagaku Kogyo Kabushiki KaishaA foamed resin structural material and process for manufacturing the same
EP1721700A1 *May 3, 2006Nov 15, 2006Mitutoyo CorporationPrecision surface plate with honeycomb structure and heat transfer device
WO1994003327A1 *Aug 3, 1992Feb 17, 1994Supracor Systems IncPerforated honeycomb
WO1994015778A1 *Jan 13, 1994Jul 21, 1994Supracor Systems IncMethod and apparatus for masking the acoustic signature of vessels
WO1998008640A2 *Aug 28, 1997Mar 5, 1998Nicholas McmahonStructure comprising honeycomb core and outer skin and method for its fabrication
WO2000057102A1 *Feb 2, 2000Sep 28, 2000Exxonmobil Upstream Res CoImproved systems and methods for producing and storing pressurized liquefied natural gas