Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3895646 A
Publication typeGrant
Publication dateJul 22, 1975
Filing dateNov 30, 1973
Priority dateNov 30, 1973
Publication numberUS 3895646 A, US 3895646A, US-A-3895646, US3895646 A, US3895646A
InventorsHowat Manuel G
Original AssigneeHowat Manuel G
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Self-regulating vane type valve for controlling fluid flow
US 3895646 A
Abstract
A conically shaped metallic vane type valve is used to control flow of fluid through an opening wherein the valve is placed. In a preferred form the valve is mounted in an opening of a building wall to control air flow into and out of the building and the vanes of the valve are made from a material having a tensile force such as to effect automatic opening and closing of the valve in response to changes in pressure acting on the valve. The vanes of the valve may also be coupled to bimetallic elements or, in one embodiment, made of laminated sheets of metals of different coefficients of expansion, thus being themselves bimetallic strips so as to open or close the valve in response to a temperature change. Adjacent edges of the leaves of the vanes have formations thereon to maintain alignment of adjacent leaves during opening and closing of the valve. The cone type valve is pointed against the direction from which increases in pressure are to be intercepted and a baffle circumscribes the valve on the outer face of the wall to deflect moving currents of air in a direction to facilitate effecting closing of the valve. In another embodiment, the cone type valve is pointed in the direction from which increases in pressure are to be intercepted and a baffle is positioned centrally of the vanes to deflect moving currents of air against them so as to urge the vanes to a closed condition.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [1 1 Howat 1 SELF-REGULATING VANE TYPE VALVE FOR CONTROLLING FLUID FLOW Manuel G. Howat, 24 Douglas St., Victoria, British Columbia, Canada Nov. 30, 1973 [76] Inventor:

[22] Filed:

[21] Appl. No.: 420,552

[58] Field of Search 137/525, 525.1, 525.3, 137/5255, 525.7, 527, 512.1, 517, 550,

References Cited UNITED STATES PATENTS [451 July 22,1975

ABSTRACT such as to effect automatic opening and closing of the Woods 236/93 X Andrus 138/46 Kraft 138/45 Tenney et a1. 137/5255 X Irgens l37/5l2.l Segelhorst et a1. 138/45 I-lempel 137/517 Norton 137/5l2.1 X

Hoffman 137/550 X Schieve 137/5251 X Schaaf 251/212 X Kayser 137/5251 X Mosher 137/5251 X v v v I l s). a). 30.201.

valve in response to changes in pressure acting on the valve. The vanes of the valve may also be coupled to bimetallic elements or, in one embodiment, made of laminated sheets of metals of different coefficients of expansion, thus being themselves bimetallic strips so as to open or close the valve in response to a temperature change. Adjacent edges of the leaves of the vanes have formations thereon to maintain alignment of adjacent leaves during opening and closing of the valve. The cone type valve is pointed against the direction from which increases in pressure are to be intercepted and a baffle circumscribes the valve on the outer face of the wall to deflect moving currents of air in a direction to facilitate effecting closing of the valve. In another embodiment, the cone type valve is pointed in the direction from which increases in pressure are to be intercepted and a baffle is positioned centrally of the vanes to deflect moving currents of air against them so as to urge the vanes to a closed condition.

5 Claims, 6 Drawing Figures PATENTEDJUL 22 ms FIG. 7.

FIG. 2.

SELF-REGULATING VANE TYPE VALVE FOR CONTROLLING FLUID FLOW BACKGROUND or INVENTION Vane type valves are known for controlling fluid flow as exemplified by US. Pat. No. 3,174,434 issued Mar. 23, 1965, to E. H. Schieve and US. Pat. No. 3,401,867 issued Sept. 17, 1968, to F. E. Long et al.

Valves of the foregoing type are used to control fluid flow opening and closing in'response to application of pressure by the fluid medium on the valve.-

One of the objects of the present invention is to provide a baffle around the valve arrangement to direct the moving fluid appropriately on the valve to effect clos- A further principal object of the present invention is to provide a valve with particular characteristics to maintain a balance in fluid flow by having the valve partially open under predetermined conditions of temperature and/or pressure and adapted to open and close progressively in response to changes occurring in those conditions to maintain a desired equilibrium of conditions on the inside and outside of, for example, a wall.

A further principal object of the present invention is to provide a vane type valve wherein the vanes are made of dissimilar metallic materials or coupled to bimetallic elements and thereby responsive to temperature changes.

It is also an object of the present invention to provide a vane type valve wherein adjacent meeting edges of the vanes have formations thereon maintaining alignment of the adjacent abutting edges of the vanes during opening and closing of the valve and effecting a relatively quiet closure of the valve.

Valves incorporating the foregoing features are particularly suitable for controlling air flow into and out of rooms of a building or other enclosures, for example, automotive bodies. The tensile forces of the vane elements may be chosen such as to provide a valve which is partially open at predetermined atmospheric conditions and opens and closes in response to changes of the same or changes in pressure from air flowoutide of the body.

SUMMARY OF INVENTION There is provided, accordingly, in accordance with the present invention a vane type valve normally partially open in a predetermined state of atmospheric conditions and having tensile properties of the vanes so as to effect opening or closing of the valve in response to changes in those atmospheric conditions.

There is further provided in accordance with one aspect of the present invention a vane type valve which is conically shaped and having a plurality of segments tapering toward the apex. Each segment may consist of a bimetallic material or be coupled to a bimetallic element and thereby be responsive to temperature changes to effect opening and/or closing of the valve.

There is provided in accordance with a further aspect of the present invention a cone shaped vane type metallic valve circumscribed adjacent its base by a baffle so shaped as to direct moving air currents in a direction ing at the apex with adjacent segments disposed in abutting relation and having formations on the adjacent abutting edges to maintain alignment of the adjacent segments during opening and closing of the valve and to cause progressive engagement of the edges during closure.

There is further provided in accordance with the present invention a method of controlling air flow into and out of an enclosure by a valve of the foregoing characteristics wherein such valve is normally in a partially open condition at a preselected state of atmospheric pressure and/or temperature conditions and responsive to changes in those conditions to maintain requisite air flow of conditions into and out of the enclosure so as to maintain the preselected state of conditions within the enclosure.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front elevational view of an outside wall of a building having a vane type valve mounted in a opening through the wall;

FIG. 2 is a section through the wall showing the valve of FIG. I mounted therein;

FIG. 3 is a view similar to FIG. 2 showing the valve in cross-section and in an open state;

FIG. 4 is a front elevational view of only the open valve shown in FIG. 3;

FIG. 5 is a cross-sectional view of a conical portion of the valve in FIG. 2 taken along section 5-5; and

FIG. 6 is a cross-sectional view similar to FIG. 3 showing a modified valve arrangement having a baffle therein.

DETAILED DESCRIPTION OF THE DRAWINGS Referring to the drawings, there is shown a portion of a wall 10 of a building having a surface 11 exteriorly of the building and a surface 12 located interiorly of the building. The wall has an opening 13 extending therethrough and which is circumscribed on the outside wall surface 11 by a baffle 14 projecting outwardly therefrom. The baffle 14 has an inner concave surface 15 extending outwardly from the opening. The baffle 14 may be integrally formed with the wall as, for example, in a concrete wall or, alternatively. as shown in FIG. 3, the baffle may be a separate element securable to the wall.

A vane type valve 20 is mounted in the opening for controlling flow of air through the opening. The valve 20 has a cylindrical portion 21 which fits snugly into the opening 13 mounting the valve in the opening. The cylindrical wall 21 merges into a conical portion 22 pointing in a direction to the exterior of the building. The conical portion 22 has a plurality of slits 23 extending from the apex toward the cylindrical wall portion, thereby providing a plurality of vanes or leaves 24. Each vane 24 has opposed marginal edges 25 and 26 abutting marginal edges of vanes 24 adjacent thereto. The abutting edges 25 and 26 have formations thereon to maintain alignment of edges 25 and 26 of adjacent vane elements during opening and closing of the valve. As shown in FIG. 5, the formations consist of a groove 27 in edge 25 and a rib 28 in the edge 26. These edge structures, by providing a progressive meshing of the vane edges during closure, reduce the level of noise produced by the valve.

In a preferred embodiment, each vane 24 is made of bimetallic strip of material of particular characteristics or coupled to such a strip so as to be responsive to changes in air temperature for opening and closing of the valve in response to changes in temperature.

In FIG. 5 the vanes 24 consist of three laminated sheets designated 29, 30 and 31. The sheet 30 is interposed between the outer sheets 29 and 31 and offset therefrom to provide the respective groove and rib 27 and 28 in opposite edges of the vane.

One or more air filters of conventional type are mounted in the cylindrical portion of the valve. Shown in FIG. 3 are two air filters 40 and 41, each having a filtering element circumscribed by an annular ring 42 .of such size as to snugly fit in the cylindrical valve portion 21. The filtering element may be any conventional fibrous or electrostatic type.

The valve element for controlling flow of air into and out of a room preferably has a normally partially open position at certain desired atmospheric conditions. Changes from those standard conditions'effect opening or closing of the valve depending upon the tensile characteristics of the metal vanes. Closing ofthe valve is also facilitated by the baffle 14 which has an inner surface curved towards the valve to direct moving air currents against the outer surface of the leaves and thereby effect closing of the valve upon movement of air above a predetermined velocity. The bimetallic strips effect opening and closing in response to temperature changes. During opening and closing adjacent edges of the vanes mate in abutting relation with opening and closing of the valve occurring by progression of effectively rolling contact or scissor-like action of the edges. Alignment of the vanes is maintained by the formations on the respective vanes.

An alternative embodiment of a valve in accordance with the present invention is illustrated in FIG. 6. In the illustrated embodiment, wall 10 is shown as having an aperture .50 therethrough. The walls of aperture 50 through wall 10 converge in a smooth curve from the outer face 11 of wall 10 to the inner face 12 of wall 10. An annular element 52 projects from wall surface 11 so as to surround opening 50. Projecting into aperture 50 from element 52 and integral with element 52 is a concave part 54 havinga plurality (four in the illustrated embodiment) of opertures 56 therethrough and circumferentially spaced there about. Thus, any air passing through aperture 50 must pass through apertures 56. To progressively close the apertures 56, four vanes 58 of generally triangular configuration are mounted, at their apexes, to the mid-point of element 54 and within the cavity defined by that element. Each vane is curved from its apex to its base, the curvature being normally greater than the curvature of the inner face provided by parts 52 and 54 so that the vanes are normally spaced from the inner surface of parts 52 and 54 and the apertures 56 are normally open.

A baffle 60 of generally bulbous shape is positioned centrally of vanes 58 and is mounted in position by a threaded rod 62 extending from the inner end of baffle 60 through the centre of part 54 and provided at its innermost end, with a nut 63.

If it is desired that this valve be actuated solely by pressure, the vanes 58 may each be formed of uniform sheet of resilient material so that, by virtue of their shape, they are more flexible adjacent their apexes than adjacent their bases. Air flowing through the valve will be deflected onto the vanes 58 by baffle 60 to create a force urging them towards element 54 to close the apertures 56. The velocity of air flow is, of course, dependent on the pressure difference across wall 10 and therefore, as the pressure on face 11 of wall 10 increases with respect to the pressure on face 12 of wall 10, the vanes will progressively close access to the apertures 56 to reduce the flow therethrough or to maintain it constant, depending on the particular design properties of the vanes 58. A force of the air flow on the vanes will initially cause bending of the vanes adjacent their apexes, since, as previously mentioned, the vanes are more flexible at this point. A progressive increase in pressure on the vanes will decrease the curvature of the vanes progressively so that the vanes will move outwardly into engagementwith the inner surface of element 54 progressively from their apexes towards their bases. This provides a smooth, progressive closure of the valve without excessive noise or shock loading even under the influence of wind gusts or the like.

The FIG. 6 embodiment can also be used as a thermally sensitive valve by making the vanes themselves of bimetallic material so that a change in temperature will result in a change in the curvature of the varies for either openings or closing of the valve.

In the FIG. 6 embodiment the aperture 50 and annular element 52 may be provided by an appropriately shaped integral element of, for example, sheet metal, plastics or the like.

Also shown in FIG. 6, is a cylindrical sleeve element 64 mounted on inner face 12 of wall 10 and projecting therefrom axially aligned with two aperture 50. The sleeve 64 is constructed to receive two filter elements 66.

As an alternative arrangement, the cylindrical element 64 may be recessed into the wall in a suitably shaped portion of aperture 50. This has the effect. of providing a smooth inner face 12 of wall free from any projections. a Additionally, element 64 may be integral with element 52 to provide an integral unit that can be installed in a suitably shaped opening through wall 10.

. Rather than including the cylindrical element 64, the filters 66 may be of annular configuration and secured to the inner end of part 54 by nut 63 and tarbaded rod While the referred embodiment of the valve in FIG. 6 is shown and discribed as having trianglar vanes secured to part 54 at their apices, it is also possible to provide a valve having the same or similar operational properties with other shapes of vane. For example, rectangular vanes may be used, provided there are of sufficient width to cover the apertures 56. With retangular vanes, the inner, fixed ends of the vanes need not be secured to the part 54 at the centre point thereof but rather at any convenient position between the midpoint and the apertures 56. A similar connecting arrangement is equally applicable to the trianglar vane arrangement although it would be preferred that vanes connected in this matter be rather of truncated triangular form.

It is also possible to provide a valve in accordance with the FIG. 6 embodiment that is relatively shallow, i.e. wherein the part 54 has a small curvature. With this arrangement, it is possible to eliminate the baffle since the air flowing past the vanes 58 and through'the apertures 56 will create a sufficient pressure differential across the vanes to effect there closing.

I claim:

1. A fluid flow control system comprising:

a. means defining a fluid flow passage through a wall and having an inlet and outlet respectively on opposite sides of the wall;

b. a baffle circumscribing said inlet of the passage and having a concave inner surface extending outwardly in a direction away from the wall from immediately adjacent the inlet for directing fluid flow inwardly in a direction toward the axis of the inlet;

c. a fluid flow control device mounted in said inlet consisting of a generally conically shaped segmental valve comprising a plurality of resiliently flexible triangular shaped segmental vanes secured along one edge thereof to said fluid flow passage defining means in contiguous relation around the periphery of the inlet adjacent the juncture of the baffle means and the inlet, said vanes each projecting outwardly from the wall and tapering to provide free terminal ends normally spaced apart from one another allowing fluid flow through said passage; and

d. means retaining edges of segments in continuous rolling contact during flexing of the segments wherein the free ends thereof move in directions toward and away from one another, said baffle directing a portion of fluid flow toward the valve against outer faces of vanes and thereby varying the valve opening in response to changes in velocity of the fluid flow.

2. A valve as defined in claim 1 wherein said means maintaining adjacent edges in rolling contact comprises a groove in one edge of a vane and a rib in an opposite edge. the rib and groove being disposed in mating relation on adjacent vane elements.

3. A valve as defined in claim 1 including a longitudinally extending annular sleeve on the base of the valve and at least one air filter detachably mounted in said sleeve.

4. A fluid flow control device as defined in claim 1 including means controlling opening and closing of the valve in response to changes in temperature.

5. A valve as defined in claim 4 wherein said vanes each consist of bimetallic laminated strips of metal and thereby providing said means opening and closing of valve in response to changes in temperature.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2437287 *Dec 15, 1943Mar 9, 1948Standard Thomson CorpHeat exchange apparatus
US2460407 *Dec 10, 1945Feb 1, 1949Andrus Orrin EWasher for garden hose couplings
US2593315 *Oct 31, 1946Apr 15, 1952Dole Valve CoFlow control device
US2609660 *Feb 25, 1946Sep 9, 1952TenneyResonating pulse jet engine
US2725075 *Feb 2, 1952Nov 29, 1955Outboard Marine & Mfg CoTandem check valves
US2829674 *Jun 11, 1954Apr 8, 1958Segelhorst August LAutomatic fluid control means
US2864394 *May 27, 1954Dec 16, 1958Mcdowell Mfg CompanyAutomatic relief valve
US2934083 *Oct 7, 1955Apr 26, 1960Norton Charles BCompressor valve
US3155110 *Dec 3, 1962Nov 3, 1964Vernay LaboratoriesRubber check and relief valve
US3174434 *Jun 24, 1963Mar 23, 1965Tait Mfg Co TheSump pump
US3319560 *Oct 11, 1965May 16, 1967Gen Motors CorpDirectional air vent nozzle with flexing vanes
US3470711 *Nov 24, 1967Oct 7, 1969Dana CorpLubrication system for a universal joint
US3717883 *Nov 23, 1970Feb 27, 1973Techno CorpCardiac valve replacement
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4142544 *Apr 5, 1977Mar 6, 1979Sulzer Brothers LimitedSafety element for closing a line from a pressure vessel
US4159078 *Mar 7, 1978Jun 26, 1979Werner DiermayerDraft control arrangement for combustion apparatus
US4272013 *May 23, 1979Jun 9, 1981Werner DiermayerVent control arrangement for combustion apparatus
US4308885 *Dec 1, 1980Jan 5, 1982Sulzer Brothers LimitedTubular safety element for closing a flow line
US4325293 *Nov 20, 1979Apr 20, 1982Ingo BleckmannApparatus for making infusion drinks
US4465102 *May 17, 1982Aug 14, 1984The Warren Rupp CompanyCheck valve
US4480784 *Jun 3, 1983Nov 6, 1984Bennett Milton DHot water cutoff safety valve for showers
US5340291 *Feb 16, 1991Aug 23, 1994Putzmeister-Werk Maschinenfabrik GmbhFlow restraining device for a thick matter conveying apparatus
US5487406 *Sep 30, 1994Jan 30, 1996Jirasek; James D.Drain control valve and manifold system
US5655520 *Aug 23, 1993Aug 12, 1997Howe; Harvey JamesFlexible valve for administering constant flow rates of medicine from a nebulizer
US5803121 *Apr 17, 1997Sep 8, 1998Chrysler CorporationAir bag venting system
US5901751 *Mar 8, 1996May 11, 1999Applied Materials, Inc.Restrictor shield having a variable effective throughout area
US6000415 *May 12, 1997Dec 14, 1999Applied Materials, Inc.Method and apparatus for positioning a restrictor shield of a pump in response to an electric signal
US6039262 *Sep 14, 1998Mar 21, 2000The United States Of America As Represented By The Secretary Of The ArmyPassive bimetallic actuator for heat transfer
US6227464 *Aug 23, 1999May 8, 2001Masco Corporation Of IndianaIn-line basket filter and anti-siphon valve assembly for spray spout and the like
US6896240Nov 25, 2002May 24, 2005Heru Prasanta WijayaDiaphragmed air valve system
US6918526 *May 27, 2004Jul 19, 2005Wen-Sheng HuangMuffler for staple guns
US7237619 *Jul 23, 2003Jul 3, 2007Mehr Ralph RAutomatic fire sprinkler having a variable orifice
US7347423 *Apr 26, 2002Mar 25, 2008Safematic OyArrangement in connection with mechanical seal
US7363939 *Jan 26, 2005Apr 29, 2008Zf Friedrichshafen AgBleed valve
US7481244 *May 24, 2007Jan 27, 2009Bioquiddity, Inc.Fluid flow control device
US8191571 *Jul 30, 2008Jun 5, 2012Hamilton Sundstrand CorporationFluid circuit breaker quick disconnect coupling
US8882002 *Jul 20, 2011Nov 11, 2014Watershield LlcAdjustable smooth bore nozzle
US20040155409 *Apr 26, 2002Aug 12, 2004Hannu TryggArrangement in connection with mechanical seal
US20050017095 *Jul 23, 2003Jan 27, 2005Mehr Ralph R.Automatic fire sprinkler having a variable orifice
US20050178447 *Jan 26, 2005Aug 18, 2005Anton FritzerBleed valve
US20090147474 *Jun 18, 2008Jun 11, 2009Hon Hai Precision Industry Co., Ltd.Apparatus for preventing refluence of air in an electronic device
US20100024894 *Feb 4, 2010Himmelmann Richard AFluid circuit breaker quick disconnect coupling
US20120085840 *Jul 20, 2011Apr 12, 2012Watershield LlcAdjustable Smooth Bore Nozzle
US20120180875 *Jul 14, 2010Jul 19, 2012Belimo Holding AgFlow limiter
US20130031711 *Aug 3, 2011Feb 7, 2013Sean WalshPool filter systems including pool jet fittings
CN102734519A *Jun 28, 2012Oct 17, 2012中国科学院东北地理与农业生态研究所Adjusting valve with adjustable flow rate
CN102734519BJun 28, 2012Jan 22, 2014中国科学院东北地理与农业生态研究所Adjusting valve with adjustable flow rate
EP0794267A2 *Mar 5, 1997Sep 10, 1997Applied Materials, Inc.A restrictor shield for a wafer processing apparatus
EP0941827A2 *Dec 10, 1998Sep 15, 1999Wildgruber Baustoffwerke GmbH & Co. KGApparatus for on-site production of pumpable mortars
WO2001090552A1 *Aug 8, 2000Nov 29, 2001Heru Prasanta WijayaDiaphragmed air valve system
Classifications
U.S. Classification137/468, 137/517, 137/849, 236/93.00R, 138/45
International ClassificationF16K17/38, F16K17/36
Cooperative ClassificationF16K17/38
European ClassificationF16K17/38