Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3895851 A
Publication typeGrant
Publication dateJul 22, 1975
Filing dateAug 23, 1973
Priority dateAug 23, 1973
Publication numberUS 3895851 A, US 3895851A, US-A-3895851, US3895851 A, US3895851A
InventorsBolton James Alfred, Peiffer Howard Richard
Original AssigneeAmp Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Brittle-surfaced connector
US 3895851 A
A crimp-type electrical connector especially useful for terminating aluminum wires wherein the ferrule portion is at least internally surfaced with brittle intermetallic compound, preferably formed by high temperature diffusion of a cladding-metal into the base-metal of the connector, which compound upon crimping breaks into small sharp particles which abrade and pierce the surface of the wire conductor to expose clean non-oxidized metal for forming intimate joints in the resulting connection.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Bolton et a1.

1 1 BRlTTLE-SL'RFACED CONNECTOR [75] Inventors: James Alfred Bolton,

Winston-Salem, NC; Howard Richard Peiffer, New Cumberland. Pa.

[73] Assignee: AMP incorporated, Harrisburg, Pa.

[22} Filed: Aug. 23, 1973 [21] Appl. No.: 390,975

[52] US. Cl 339/95 R; 174/84 C; 174/94 R; 339/276 T; 339/278 C [511 lnt.Cl. .1H0lR 11/20 [58] Field of Search 339/95, 97-99, 339/276, 278 C; 174/84 C, 94 R l56| References Cited UNITED STATES PATENTS 2,818,346 12/1957 Gossman 174/94 R July 22, 1975 3,052,750 9/1961 Cnhzluglr 1 1 4/90 3,100,933 8/1963 Hancock ct .11 174/94 R 3,148,086 9/1964 Seihert 174/94 R 3,157,735 11/1964 Stroup ct a1. 174/94 R Primary Examinerloseph H, McGlynn Attorney, Agent, or Firm-Russell J, Egan 1571 ABSTRACT A crimp-type electrical connector especially useful for terminating aluminum wires wherein the ferrule pnr tion is at least internally surfaced with brittle intermetallic compound, preferably formed by high tempera ture diffusion of a cladding-metal into the base-metal of the connector, which compound upon crimping breaks into small sharp particles which abrade and pierce the surface of the wire conductor to expose clean non-oxidized metal for forming intimate oints in the resulting connection 6 Claims, 2 Drawing Figures BRITTLE-SURFACED CONNECTOR The present invention relates to electrical connectors, and more especially to crimp-type electrical connectors primarily useful in terminating smaller aluminum wires as well as copper wires.

The termination of aluminum wires has always been a significant problem in the electrical arts due to the formation of a relatively non-conductive oxide surface layer on the aluminum which interferes with the formation of an effective aluminum-to-aluminum, aluminumto-copper, etc. crimp termination. For example, in the use of a typical standard copper crimp connector with a cylindrical ferrule, not only is the original termination somewhat inferior. but the inevitable micro-fissures remaining with the crimp structure result in rapid deterioration upon exposure to the natural environment. This deterioration occurs at such a rapid rate that under standard quality control testing for copper-wire to copper-connector crimp terminations (wherein the latter would result in only a small percentage increase in resistance after testing) the aluminum-wire to copperconnector connection after such testing results in at least a 50% increase in the resistance and more often with essentially open circuit terminations resulting.

There have been many attempts in the prior art to overcome these aforementioned difficulties in terminating aluminum wire. For example in the utility field. the interior of the crimp connector ferrule was often filled with a corrosion-inhibiting jelly and hard nickel particles which serve the purpose of breaking through the oxide layer during the crimp to expose fresh unoxidized aluminum for cold welding with the metal of the connector. and with the jelly serving to exclude subsequent corrosion from the external atmosphere. See for example US, Pat. No. 2,815,497. This found some usefulness in the larger utility-type connectors, but is not nearly so useful in the to 40 gauge wire range. Additionally, such connectors are more expensive and difficult to use.

Therefore it is an object of this invention to develop a crimp-type electrical connector for terminating solid or stranded aluminum wire, which is particularly useful in the smaller wire gauge ranges (e.g. l0 gauge to 40 gauge) all with a longevity and termination quality on the order of that achieved by copper terminations to copper wiring. It is a further object of this invention to achieve the foregoing result with a connector whose physical confirmation and field utilization is substantially identical to standard copper wire connectors and as such can utilize existing connector manufacturing tools and existing application tooling. It is a still further object of the present invention that the foregoing results be achieved by a relatively simple and comparatively inexpensive connector.

According to the present invention, these and other objects and advantages of the present invention will be achieved by the treatment of crimp-type connectors formed from typical base-metal materials such as copper, brass, bronze, steel or the like with a claddingmetal such as aluminum, tin, indium, their equivalent alloys, or the like wherein the cladding-metal has been applied to the base-metal so as to diffuse substantially entirely into the surface of the base-metal to form a thin surface layer of the order of 30 to 300 micro inches thick ofa brittle intermetallic compound of said base-metal and said cladding-metal. As will be developed more fully below, this intermetallic compound surface layer may be formed on the surface of flat metal stock from which the connectors are formed. or may be formed on the surface of the otherwise completed connector as one of the last finishing steps in its manufacture.

In this specification and the accompanying drawings we have shown and described preferred embodiments of our invention and have suggested various alternatives and modifications thereof; but it is to be understood that these are not intended to be exhaustive and that many other changes and modifications can be made within the scope of the invention. These suggestions herein are selected and included for purposes of illustration in order that others skilled in the art will more fully understand the invention and the principles thereof and will thus be enabled to modify it and embody it in a variety of forms, each as may be best suited to the conditions of a particular use.

FIG. 1 is an isometric view of a standard crimp-type connector in which the present invention would commonly be utilized.

FIG. 2 is a vertical cross-section of the connector in FIG. 1 with the intermetallic layer illustrated in exaggerated thickness and delineation for purposes of clarity on the internal surface of the barrel and tongue of the connector.

Referring to the drawings, a common type of a closed barrel crimp connector 1 is utilized to illustrate the preferred embodiment of this invention. The connector 1 is composed of a crimp termination means 2; in the form of a barrel portion of ferrule 2, for receiving the wire 3 therein and a tongue portion 4 having an eyelet 5 for receiving a terminal post therethrough. The thin intermetallic layer 6 has been specifically illustrated in FIG. 2 as being formed on the internal surface of the base metal 7.

The brittle intermetallic conductive layer 6 not only typically serves as a protection for the base metal 7 against oxidation or the like. but is believed to give this novel connector its unique characteristics by reason of the extremely brittle or frangible surface which it forms. This surface 6 during crimping of the barrel 2 onto the wire 3 breaks into small sharp particles which abrade and pierce the surface of the conductor and, particularly in the case of aluminum. thereby expose clean non-oxidized aluminum while simultaneously exposing clean non-oxidized base-metal. During the crimping these exposed and cleaned surfaces of the terminal and conductor rub and work against each other under pressure and form extremely intimate joints or possibly cold welds.

The intermetallic surface 6 can be prepared in a number of ways. In one embodiment, a copper connector l was dipped in a molten bath of an aluminum silicon alloy protected by a common aluminum brazing flux. This produced a very hard frangible surface resulting in connectors which when crimped to solid aluminum wire showed exceptional life, even under adverse testing conditions. This dipping method is not only dangerous due to spattering and corrosiveness, but also proved very difficult to control; therefore giving non uniform surfaces of uneven thickness. Consequently a preferred method of forming the intermetallic layer 6 is by plating, roll cladding, or the like of the claddingmetal onto the base-metal in a thickness typically up to about 200 micro inches and thereafter heat treating to cause the entire cladding-metal to diffuse into the surface of the base-metal (the thickness of which resulting intermetallic compound layer 6 should not exceed about 300 micro inches). Because of thc brittle nature of the surface 6 formed. it is advantageous to postpone the heat treatment until after the stamping and forming operation has been finished. ln an example of the foregoing a thin aluminum cladding is rolled onto the surface of a relatively thicker copper sheet. which after tamping and forming into a connector is thereafter heat treated to allow the aluminum and copper to inter mingle and form an intermetallic compound. Similarly. a copper connector I which has been tin plated is thereafter heated to a high enough temperature to allow diffusion to occur between the tin and copper causing a tin-copper intermetallic compound to form. Similarly. steel may be plated with tin or coated with aluminum and at sufficiently higher temperature will form a hard brittle intermettalic which when crimped on aluminum wire will break through the aluminum oude skin and mechanically lock the wire to form a good electrical connection of high mechanical strength.

These latter rolling and plating methods not only give much greater control over the uniformity of thickness ofthe intermetallic lay er 6. but also over the placement of such layer on the surface ofthe connector 2. For ere ample in the dip method. the entire surface ofthe coir nector 2. if totally immersed. would be coated with the mtermetallic layer. However. the plating and rolling methods can be adapted to restrict the intermetallic layer to just one surface of the base metal from which the connector 1 is formed (as is the case illustrated in FIG 2 l. or even be restricted to the internal surface of the barrel portion 2 alone.

Consistently superior results have been achieved with the use of a connector made according to the present invention when crimped on solid aluminum wire 3. Somewhat less consistent results are achieved when stranded aluminum wire is used in place of solid aluminum wire. This is understandable. because the superior function of the inventive connector is due to the interaction during the crimp between the outer surface of the wire 3 and the intermetallic layer 6. in the case of multi-ftlament stranded aluminum wire only those portions of those strands of the wire 3 in contact with the intermetallic surface 6 are deriving benefit from this superior interaction and the aluminum-to'aluminum surface interaction of the strand surfaces within the wire remain as before and are therefore subject as before to relatively rapid failure due to corrosion from naturally occurring external phenomena resulting front heat cycling. creep and the like.

However. by carefully controlled crimping methods insuring a high degree of crimping. but not so much as to lose the wire by undue extrusion from the crimping area. the reliability of the inventive connectors is increased even in the case of stranded aluminum wires. Terminations from the inventive connectors are in any event greatly superior to prior art crimp-type terminations to stranded aluminum wire.

It should be emphasized that for the intermetallic surface 6 to be effective. essentially all of the claddingmetal should be diffused into the basemetal. and vice versa. so that little or no unmodified cladding-metal remains on the surface.

In a series of experiments. a number of Copper connectors of the type illustrated in FIG. 1 were plated with tin in an ordinary stannate plating bath. or with tin piated over a flash plated copper. or plated with a bright tin which contains an organic brightener that gives the plated tin a shiny appearance; or alternatively with an indium plating. The plating thicknesses ranged between 51) and 300 micro inches at a diffusion temperature of silt!" or l()()(lF for diffusion times ranging from 3U seconds. through 5. to and up to 20 minutes. As a standard of comparison three connectors with copper-copper standard tin llltl micro inches). bright tin (50 micro inches). and indium ltltl micro inches) plating. respectively. were subjected to normal cnvironmental quality control testing along with the aforementioned tin or indium intermetallic compound surfaced inventive connectors. as follows: air quenched thermal shock lplus l5tl( to -55C. 15 cycles). current o\erload 15 minutes on and 15 minutes off at 40 amperes for l2 gauge wire or 52 amperes for l gauge wire). humidity (96% at 90C for llttt hours). and salt spray sodium chloride for 48 hours at room tern perature).

By comparison. in some cases the standard aluminum terminations. after testing. showed open circuits while in the best cases they showed such deterioration of resistance that their resistance was 50% higher than their initial values. In contrast. the connectors prepared according to the present invention were. after testing. to higher than their initial values. The foregoing environmental testing was made on otherwise identical copper base-metal connectors crimped to solid aluminum wire by the same crimping tool.

From these foregoing experiments. it was determined that for tin (as the cladding-metal on a copper connector (as the base-metal) the preferred thickness of the plating applied for subsequent diffusion should range between and 200 micro inches. Upon diffusion this would result in a maximum significant depth of diffusion of about 300 micro inches. Any amount less than this foregoing range would not give a sufficient surface treatment to achieve a meaningful effect while any more than this range would result in excessive brittleness and cracking of the surface prior to crimping, all resulting in undesired unreliability. The preferred temperature for effecting this diffusion of the plating tin into the copper is from 600F to l2UOF with a diffusion time of from 5 to 30 minutes.

Naturally steel would require considerably higher temperatures and similarly dipping into molten baths will require similarly higher temperatures (l000 to IUF in the case of tin). The temperature ranges are generally determined by having to be high enough in order for the diffusion to be swift enough to be economically feasible but below the melting temperature of the intermetallic compounds and of the base-metal.

We claim:

1. An electrical connector having a crimptermination means for receiving an electrical Wire and forming a connection therewith upon crimping thereto. comprising said means being formed of a conductive base-metal whose surface for engaging said wire is at least in substantial part an integral. continuous. thin, frangible. conductive. intermetallic compound layer less than about 300 micro inchese thick. said layer being composed solely of metals.

2. A connector according to claim 1 wherein said intermetallic compound layer is at least partially formed of said base-metal.

3. A connector according to claim 2 wherein said base-metal is copper.

4. An electrical connector having a crimptermination means for receiving an electrical wire and forming a connection therewith upon crimping thereto, comprising said means being formed of a base-metal chosen from the group consisting of copper, brass bronze, or steel and with at least the substantial portion of the interconnection surface of said means for engaging said wire being a thin, continuous, integral layer of intermetallic compound formed of said copper and tin. =r

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2818346 *Oct 4, 1954Dec 31, 1957Gossman Harry GCompositions for use with electrical connectors
US3052750 *Sep 15, 1959Sep 4, 1962Amp IncHigh tensile splice
US3100933 *Oct 15, 1956Aug 20, 1963Gen Motors CorpMethod of cold welding aluminum
US3148086 *Oct 9, 1961Sep 8, 1964Seibert Philip M HProcess of placing a copper layer on an aluminum electrical connector
US3157735 *Jun 27, 1961Nov 17, 1964Aluminum Co Of AmericaMetallic particle compositions for mechanically joined electrical conductors
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4922068 *May 26, 1988May 1, 1990Bangs Edmund RDensified braided switch contact
US6334798 *Apr 6, 2000Jan 1, 2002Yazaki CorporationMethod of and structure for connecting electric wire and connecting terminal
US6716071 *Oct 9, 2002Apr 6, 2004Autonetworks Technologies, Ltd.Molded electrical connector
US6942529 *Dec 12, 2003Sep 13, 2005Yazaki CorporationPress-clamping terminal
US7906046Apr 4, 2008Mar 15, 2011Panduit Corp.Antioxidant joint compound and method for forming an electrical connection
US8245396 *Dec 16, 2008Aug 21, 2012Yazaki CorporationMethod for crimping terminal to aluminum electric wire
US8268196Jan 13, 2011Sep 18, 2012Panduit Corp.Antioxidant joint compound and method for forming an electrical connection
US8519267Feb 16, 2009Aug 27, 2013Carlisle Interconnect Technologies, Inc.Terminal having integral oxide breaker
US9252505 *Aug 30, 2012Feb 2, 2016Autonetworks Technologies, Ltd.Terminal connector, electric wire with terminal connector, and method of connecting terminal connector and electric wire
US9385449 *Aug 26, 2013Jul 5, 2016Carlisle Interconnect Technologies, Inc.Terminal/connector having integral oxide breaker element
US20030171042 *Oct 9, 2002Sep 11, 2003Autonetworks Technologies, Ltd.Molded connector
US20040157504 *Dec 12, 2003Aug 12, 2004Yazaki CorporationPress-clamping terminal
US20070264861 *Sep 8, 2005Nov 15, 2007Scheuermann Stefan JCrimped Connection
US20090250508 *Apr 4, 2008Oct 8, 2009Panduit Corp.Antioxidant Joint Compound and Method for Forming an Electrical Connection
US20100018768 *May 19, 2009Jan 28, 2010Hitachi Cable, Ltd.Cable with crimping terminal and method of making the same
US20110107597 *Jan 13, 2011May 12, 2011Panduit Corp.Antioxidant Joint Compound & Method for Forming an Electrical Connection
US20110225820 *Dec 16, 2008Sep 22, 2011Yazaki CorporationMethod for crimping terminal to aluminum electric wire
US20130344723 *Aug 26, 2013Dec 26, 2013Carlisle Interconnect Technologies, Inc.Terminal/connector having integral oxide breaker element
US20140224535 *Aug 30, 2012Aug 14, 2014Autonetworks Technologies, Ltd.Terminal connector, electric wire with terminal connector, and method of connecting terminal connector and electric wire
US20150333415 *May 19, 2015Nov 19, 2015Yazaki CorporationMinute current crimping terminal and minute current wire harness
USD737216 *Apr 1, 2014Aug 25, 2015The Noco CompanyElectrical connector
USD737782 *Apr 1, 2014Sep 1, 2015The Noco CompanyElectrical connector
DE102014015805B3 *Oct 24, 2014Feb 18, 2016Isabellenhütte Heusler Gmbh & Co. KgWiderstand, Herstellungsverfahren dafür und Verbundmaterialband zum Herstellen des Widerstands
EP0018863A1 *Mar 31, 1980Nov 12, 1980The Bendix CorporationElectrical crimp type termination for aluminium wire
EP0485295A1 *Nov 7, 1991May 13, 1992Duclos ChimieConnecting piece for electrical conductors especially for earth taps
EP0959534A2 *May 21, 1999Nov 24, 1999Volkswagen AktiengesellschaftElectrical connector, in particular for ground connection
EP0959534A3 *May 21, 1999Jan 3, 2001Volkswagen AktiengesellschaftElectrical connector, in particular for ground connection
WO2006042587A1 *Sep 8, 2005Apr 27, 2006Contitech Techno-Chemie GmbhCrimped connection
WO2016062369A1Sep 25, 2015Apr 28, 2016Isabellenhütte Heusler Gmbh & Co. KgElectric component, method for producing the electric component, and composite material strip for producing the component
U.S. Classification439/387, 174/94.00R, 439/878, 174/84.00C, 439/886
International ClassificationH01R4/62, H01R4/58
Cooperative ClassificationH01R4/62
European ClassificationH01R4/62