Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3896346 A
Publication typeGrant
Publication dateJul 22, 1975
Filing dateJul 10, 1973
Priority dateNov 21, 1972
Also published asDE2532715A1
Publication numberUS 3896346 A, US 3896346A, US-A-3896346, US3896346 A, US3896346A
InventorsLouis A Ule
Original AssigneeElectronic Camshaft Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
High speed electromagnet control circuit
US 3896346 A
Abstract  available in
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Ule 1 July 22, 1975 [54] HIGH SPEED ELECTROMAGNET 3,682,144 8/1972 Suda 317/D1G. 4

CONTROL CIRCUIT Primary Examiner-J. D. Miller I t L A.U1 R11 Hll,Calf. [75] men or oms 0 mg l S 1 Assistant Exammer-l-larry E. Moose, Jr. [73] Assignee: Electronic Camshaft Corporation, An A or Firm-Wi1liam T, ONeil Rolling Hills, Calif.

[22] Filed: July 10, 1973 [57] ABSTRACT [21] Appl. No.: 377,956 A solid state electrical switching circuit of high effi- Related US. Application Data crency is employed to increase the speed With which an electromagnet operated device, such as a relay or a [63] commuanon'm'pan of 308368 hydraulic valve, can be actuated without increasing 1972 abandoned the power required to maintain the device in the actuated state. The circuit can also be made to provide the [52] 317/154; 317/1316 3l7/DIG' 6 momentary increased electrical current required to CI- obtain a given mechanical force when e g c [58] Field of Search 3l7/DIG. 4, 148.5 R, 1541, gap between the solenoid core and the movable pole: 317/157 307/13 piece is open. Both actuation and de-actuation speed of the electromagnet are increased and rapid deactua- [56] References C'ted tion is achieved either by a high reverse voltage ap- UNITED STATES PATENTS plied to the solenoid and the return of its energy to the 3,549,955 12/1970 Paine/Crawford 317/D1G. 4 power source or by a diode and capacitor network 3,579,052 5/1971 Kato et a1. 3l7/DIG. 4 which transfers the magnetic energy to a second sole- Bryden 4 noid thereupon becomes energi ecL 3,628,102 12/1971 Jauch et al 317/157 3,646,402 2/1972 Condon et al. 3l7/DIG. 4 2 Claims, 6 Drawing Figures PATENTEDJULZZ 1975 3.896346 sum 1 FIG. I





CROSS-REFERENCE TO RELATED APPLICATION This is a 'continuation-in-part of Application Ser. No. 308,268 filed Nov. 21, 1972, now abandoned.


where B is the magnetic induction in gauss and A is the cross-sectional area of the gap or pole face in square centimeters. For the ideal case, ignoring fringing magnetic fields, the magnetic induction B is equal to where N is the number of turns on the solenoid, I is the current in amperes, w is the width of the air gap in centimeters, his the length of the magnetic path in the core (both parts), A is the cross-sectional area of the core (assumed constant for this explanation), in square centimeters, and pt is the magnetic permeability of the core. The above expression for the magnetic induction B demonstrates that the permeability 11. should be as large as possible if large values of B are desired. In a typical electromagnet actuator the value of w or width of the air gap is relatively large compared to the term l,-/p., prior to actuation, and for this case B X (w) gauss.

induction B is inversely proportional to the gap width w, and therefore the mechanical force produced itself varies inversely as the square of the gap width. It is where F is the desired force in dynes. The instantaneous power required to achieve this force in a desired time of T seconds is FX (w) X l()1 T atts.

For example, to provide 15 pounds of force in a gap 0.1 inches wide in one millesecond requires about 175 watts of power. Yet, once the gap is closed (after actuation) the electrical power required to maintain a constant force of 15 pounds depends only on ohmic losses and may be a small fraction of a watt.

Many ingenious methods are available to ameliorate the above difficulties. The magnetic circuit may be provided with shaped pole faces to makethe mechanical force more uniform, mechanical linkages may be employed to increase the force with the gap open, or the voltage applied to the electromagnet winding may be made high initially and reduced after actuation. A thermally variable resistance such as an incandescent lamp may be connected in series with thewinding to produce a high inrush of current when the lamp is cold and its filament resistanceis low and to limit the current when the lamp comes up to temperature and its resistance is high. If the electromagnet actuated device is a relay, a pair of relay contacts may be used to reduce the solenoid current after actuation.

SUMMARY OF THE INVENTION The present invention employs switching transistors and diodes to apply a relatively high voltage to the winding of an electromagnet to increase the speed with which the current in the winding will rise to a desired value. Once the desired value of current has bee attained a further increase is prevented by negative current feedback, the current being maintained at near the desired value at very high efficiency by intermittent application of the same high voltage to the winding. To de-energize the electromagnet, the same high voltage is applied to the winding in the reverse direction to protherefore very difficult to obtain a constant mechanical force over any appreciable distance of travel of the pole piece and the force is the smallest when the gap is fully open, contrary to what is usually desired.

A further difficulty associated with electromagnet actuators is that a substantial amount of magnetic energy must be delivered to the open gap before the desired force is obtained, this predelivered energy being equal F X (W) X l0 joules, I

duce a cutoff speed equal to the turn-on speed, recovering, in the process, the energy stored in the electromagnet. The addition of a single capacitor to the circuit allows the initial current to rise momentarily to a much higher value than the desired steady-state holding current, this to provide a high mechanical force with the gap of the electromagnet open. When a pair of electromagnets are to alternately energized, energy is transferred from one to the other by a diode and capacitor network at arbitrarily high speed. Except for switching losses, which are low, and ohmic losses in the circuits, a theoretical efficiency of is attainable, the power consumption being only that required for mechanical actuation.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a complete schematic diagramof the high speed electromagnet control circuit.

FIG. 2 is a graph comparing the currents produced in the winding of an electromagnet for bothhigh and low values of applied voltage with the current produced by the circuit of FIG. 1.

FIG. 3 is a graph of the surge current produceable by the circuit of FIG. 1.

FIG. 4 is a simplified equivalent circuit for the circuit of FIG. 1.

FIG. 5 is a schematic diagram employing two circuits such as shown in FIG. I to alternately energize two electromagnets.

FIG. 6 is a simplified equivalent circuit for the circuit of FIG. 5 for the interval of energy transfer.

DESCRIPTION OF THE I PREFERRED EMBODIMENT Referring to FIG. I, the reference numeral I indicates an electromagnet having a moveable pole piece 3 which is used to actuate a mechanical device such as 'a relay or hydraulic valve. The voltage of the DC power source 6 is much higher than that required to provide the current necessary for the electromagnet when this current is limited only by the winding resistance. Transistor I0 acts as a switch responsive to an input control voltage to energize and de-energize the electromagnet I. When transistor 10 is in the non-conducting state, the electromagnet l and the battery are connected together in series with diodes 2 and 4, both of which act to prevent the flow of current to the winding of electromagnet I. When transistor 10 is caused to conduct by application of a control voltage to the junction of resistors 7 and 8, the electromagnet becomes conntected to the supply 6 in series with transistor 5. If transistor 5 is also caused to conduct, the full battery voltage, less the collector-emitter voltages of transistors 5 and 10, is impressed across the electromagnet winding. The current in this winding rises initially at the rate of E/L amperes per second, where E is the supply voltage of voltage source 6, and L is the inductance of the electromagnet. The winding current would eventually attain the value E/R amperes, where is the winding resistance, a value which, if allowed to continue, would possibly cause overheating of the winding or, if the magnetic circuit is closed by movement of pole-piece 3, would be much higher than that required to provide the desired mechanical force. The relationship between the desired holding current and the excessive current produced by the high voltage energizing of the winding of electromagnet l is shown as curve 21 in FIG. 2. Curve of FIG. 2 shows the current waveform produced when the winding is energized from a source of low voltage. It is seen that the low voltage, though it eventually produces the desired winding current, requires a much longer time to do so, whereas the high voltage, though it causes the desired current to be obtained more quickly, would, if continually applied, result in an excessive winding current. The circuit of FIG. 1 acts to provide the rapid current rise of curve 21 to the desired value and to prevent the current from exceeding this desired value thereafter, producing a current waveform such as curve 22 of FIG. 2.

The control of the electromagnet holding current to the desired value is achieved by feedback control employing a resistor 11 of relatively low resistance to produce a feedback voltage proportional to the electromagnet winding current. This feedback voltage is compared with a reference voltage appearing across resistor 14 which represents the desired value of steady state current in the winding of electromagnet 1. Resistor 14 is part of the voltage divider network comprised of resistors 12 and 14 providing a desired fraction of the voltage appearing across Zener diode 9 which is energized through resistor 8 by the same input control voltage that is used to bias transistor 10 into conduction. The current feedback voltage from resistor 11 is applied directly to the inverting input of the integrated circuit operational amplifier 17 while the voltage across resistor 14, representing the desired winding current, is applied to the non-inverting input of the same amplifier 17. Resistor 16 from the output of amplifier 17 to the non-inverting input, provides positive feedback of a controlled amount to cause amplifier 17 to operate as a Schmidt trigger. Typically, the feedback is adjusted so that the holding current through the winding of electromagnet l is maintained within about 10% of the desired value as shown in curve 22 of FIG. 2. Amplifier 17 drives transistor 24 through its base resitor 18. When transistor 24 is caused to conduct, the switching power transistor 5 is biased into conduction by current flow through its base resistor 19.

Transistor 5 will be alternately conducting and nonconducting as the output of the Schmidt trigger alternates polarity. While transistor 5 is in the nonconducting state, transistor 10 meanwhile held in conduction continually by application of a control voltage to the junction of resistors 7 and 8, the current through the winding of the electromagnet 1, since it cannot stop abruptly, is switched to diode 4. In this passive state, the only voltage acting to reduce the current in the winding is that due to the winding I X R voltage drop, the voltage across resistor 11 and the voltages across transistor 10 and diode 4 which are relatively low. Typically the voltage acting to decrease the current in the winding is a small fraction of that applied to the winding to produce the current so that the current in the winding of electromagnet I will decay at a much lower rate than it recovers, exhibiting a waveform such as curve 20 of FIG. 2. Thus the voltage supply 6 is applied to the solenoid only intermittently to maintain the desired value of holding current, typically only 5% of the time. In this manner relatively little power is required of voltage source 6 to maintain the desired current in the winding; only that required to supply the power losses in transistors 5 and 10, diode 4, resistor 11, and the ohmic losses in the winding of the electromagnet 1.

For the electromagnet to remain energized in the manner described, the control voltage appearing between ground and the junction of resistors 7 and 8 must be maintained at a value sufficient both to bias transistor 10 into conduction and to operate Zener diode 9 at its breakdown voltage. When this control voltage is removed, transistor 10 will cease to conduct and the voltage across the Zener diode 9 will fall to zero. Either one of these two conditions, a zero reference voltage to amplifier 17, or transistor 10 rendering non-conducting,

would suffice to reduce the current in the winding of i the electromagnet l to zero. When both conditions are present, as is the case when the control voltage is removed, both transistors 5 and 10 are rendered nonconducting, the former byv virtue of a zero reference voltage supplied to amplifier 17, the latter as described above. The current in the winding of electromagnet l, which cannot cease suddenly, is provided a path now through diodes 2 and 4 in series with the supply 6 which in this instance appears across the winding of the electromagnet with a polarity reversed from that by which the winding was energized. This relatively high voltage,

appearing across the winding of the electromagnet in a direction to reverse the current through it causes the current to decay with the same high speed with which the winding was initially energized, but the current is prevented from reversing by both diodes 2 and 4. Thus the current in the winding is reduced to zero with great speed and the energy corresponding to this current is returned to the voltage source. Curve 23 in FIG. 2 showns the current waveform at cutoff.

The optional addition of capacitor 13 across resistor 12, shown by the dotted lines in FIG. 1, will cause the initial surge current in the winding of electromagnet 1 to be much larger than the desired or permissible steady state value. This large initial current is advantageous in providing a high mechanical force in the electromagnet when a maximum gap separates the pole pieces 3 from the core. Momentarily, the full voltage of zener diode 9 becomes the reference voltage corresponding to a higher initial reference current which will decay exponentially to the steady state reference current as shown in curve 26 of FIG. 3. The magnitude of this higher initial reference current and the associated time constant can be adjusted to desired values by the proper choice of capacitance value and suitable modifications of the voltage divider network comprised of resistors 12 and 14 as is well known to those skilled in the art. Once the surge current reaches the reference value it would tend to continue except for a relatively slow exponential decay as shown in curve 25 of FIG. 3, were it not for the fact that at some value of current the pole piece 3 of electromagnet 1 would move to close the gap. The motion of pole-piece 3 under mechanical force of the magnetic field withdraws energy from the field and results in a corresponding reduction in the current in the winding of electromagnet l, as shown in curve 27 of FIG. 3. After the the current in the winding is reduced to the desired steady state value by whatever means, the voltage across resistor 14 remains constant and the current waveform is as shown by curve 22 of FIG. 2.

Should the pole-piece 3 fail to be actuated during the high initial surge current through the winding of the electromagnet 1, the high current in the winding, shown as curve 25 in FIG. 3 will tend to persist but with no further drain upon power supply 6 until the value decays to the reference steady state value. Thus a high mechanical force remains to actuate pole-piece 3 for an appreciable length of time, a desirable circumstance. If the pole-piece fails to move, the energy it would have taken is dissipated as heat in the winding of the electromagnet.

When two solenoids are to be operated alternately, as is often the case, for example to achieve a bidirectional mechanical motion or to control a three-way solenoid valve, the energy of one electromagnet being deenergized can be used to produce the high voltage to energize the second electromagnet at high speed without the aid of a separate high voltage source. To clarify the mechanism by which the energy transfer from one electromagnet to another is made to take place, a simplified equivalent circuit of the circuit of FIG. 1 is shown in FIG. 4, where, for greater ease of comprehension, the switching transistors 5 and of FIG. 1 are represented respectively by on-off switches 5 and 10. When switches 5 and 10 in FIG. 4 are open, as shown, no current flows in the solenoid 1.To energize solenoid l continuously, switch 10 is closed continuously and switch 5 is closed intermittently as required to bring and maintain the current in solenoid at a desired value as described previously. When solenoid 1 is to be dethereby applying the full voltage of voltage source 6 across the solenoid 1 in a polarity opposing the flow of current. i

In FIG. 5 two circuits, such as shown in FIG. 4, are employed to control two solenoids, circuit 35 controlling solenoid 1 with simplified circuit elements 2, 4, 5 and 10 as described above, and a second similar circuit 36 controlling a second solenoid 31 with simplified circuit elements 32, 34, 33 and 30 corresponding in function respectively to circuit elements 2, 4, 5 and 10 of circuit 35. The two solenoid control circuits 35 and 36 are coupled to a voltage source 6 through diode 28 and are shunted by capacitor 29. Not shown in FIG. 5 are the input signals and control circuitry which control the operation of switches 5, 10, 30 and 33, these being as shown in FIG. 1. Though with the circuit of FIG. 5, solenoids 1 and 31 may be operated independently, it is required for energy transfer from one to the other that they be operated alternately, and in this respect when an on signal is'applied to circuit 35, an off" signal is assumed applied simultaneously to circuit 36, a mode of control most easily obtained by driving circuits 35 and 36 with the complementary outputs of a flipflop circuit. In this either-or mode of operation, where either one of two electromagnets is to be energized but not both, one of the two circuits 35 or 36 will be in the on state, say circuit 35, and in this state switch 10 will be closed, switch 5 will operate intermittently under current feedback control to maintain the current in solenoid 1 at the desired value, and switches 30 and 33 of circuit 36 will remain open, solenoid 31 thereby remaining un-energized. When solenoid 1 is to be deenergized and solenoid 31 simultaneously energized,

switches 5 and 10 are opened under the action of the effecting control signal, switch 30 is closed and switch 33 is actuated under current feedback control to bring and maintain the current in solenoid 31 to the desired value.

In the interval of transition, duringwhich solenoid 1 becomes de-energized and solenoid 31 becomes energized, diode 28 prevents the return of energy from solenoid l to the voltage source 6, whereupon the current from solenoid 1 is discharged into capacitor 29, raising its voltage to a value which may be as high as desired for a suitably small value of capacitance of capacitor 29, and which voltage is impressed across solenoid 31, likewise energizing it as quickly as desired within the voltage breakdown limits of the circuit elements employed. Since, during the interval of transition, diodes 28, 32 and 34 are non-conducting and may be replaced by open circuits, and correspondingly transistors 5 and 10 may also be replaced by open circuits and the elements represented by numerals 2, 4, 30 and 33 are all conducting and may be represented by short circuits, the mechanism of energy transfer from one solenoid to another is most readily made apparent by recourse to the simplified equivalent circuit of FIG. 6 where e is the instantaneous voltage across the capacitor 29, the latter having a capacity of C farads, L is the inductance in henries of the two solenoids l and 31, each assumed, for purposes of illustration to have an inductance of L henries, and the voltage ofthe voltage supply is assumed to be E volts. The two currents in the solenoids 1 and 31 flow in the direction shown and are denoted sinwt M smmt l L E coswt I -sinwt,

l i T [l coswtl where tan l For an extremely large value of C, or in effect a very large capacitor 29, we may use the approximation that for small angles, the trigonometric tangent of an angle is equal to its value in radians, for which case the switchover time T can be given explicitly as IL T seconds,

which, to give an example, would be 4.l67 milleseconds for typical values of supply voltage E of l2.0 volts, solenoid inductance of 0.1 henries and solenoid current of 0.5 amperes. This switchover time, using a very large capacitor. is the same switchover time that would be obtained with the circuit of FIG. 1 for one solenoid having a voltage supply 6 of 12.0 volts. For smaller values of capacitance C of capacitor 29, the switchover time T may be made as small as desired, provided safe voltage limits of the circuit elements are not exceeded. Thus, for a desired switchover time of one millesecond, the first expression given above for the switchover time T can be solved for the requisite value of C from the known values of circuit parameters I, E, L and T, which, for the values assumed in the pres- LII cnt example, results in a value C for capacitor 29 of 4.0 microfarads.

-When a small value of capacitance C is used to obtain a short switchover time T from one solenoid to another, it is important that the peak voltage appearing across capacitor 29 not be excessive. The peak value e,,,.,,,, of the voltage e may easily shown to be given by the following expression:

For a very large value of C, this voltage will be equal to the voltage E of the voltage supply 6, and for values of E, L and C of the above example, the value of e would be only 57 volts. To produce a switchover time of one millesecond in this example with the circuit of FIG. 1 only, would have required a voltage supply 6 of 50 volts, yet it was produced with the circuit of FIG. 4 with a supply voltage E of only 12.0 volts and with a peak voltage not much in excess of the above mentioned 50.0 volts. Thus the addition of one capacitor 29 and one diode '28 to a pair of basic circuits 35 and 36 provides for energy transfer from one solenoid to another at high speed using only a single low voltage supply. An advantage of the lower supply voltage is the reduced probability of damaging the switching transistors in short circuit conditions and the greater ease with which the switching transistors may be protected; further, since all transistors are employed in a switching mode they dissipate relatively little power and low power transistors can be used to control relatively high power solenoids.

I claim:

1. In combination with an electromagnetically operated device, a circuit for producing rapid current growth in the coil of said device, and for maintaining a predetermined level of current in said coil, an electrical circuit comprising:

a source of relatively high voltage capable of effecting rapid current growth in said coil;

semiconductor switching means responsive to external control for applying said high voltage source to energize said coil, said semiconductor switching means operating in a switching mode as a substantially non-dissipative element;

first means for sensing the current in said coil to open said semiconductor switching means when a predetermined coil current value is reached, and for closing said switch intermittently thereafter, to maintain said predetermined coil current value;

and second means subject to external control for applying said high voltage source to said coil in opposite polarity, thereby accelerating the rate of current decline in said coil.

2. Apparatus according to claim 1 in which a shunt diode path is provided to permit continued current flow through said coil, said diode being poledso as not to conduct in response to forward energization from said source, but to conduct in response to the reverse coil voltage extant between applications of said source intermittently to said coil by said first means.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3549955 *Aug 19, 1969Dec 22, 1970NasaDrive circuit for minimizing power consumption in inductive load
US3579052 *Aug 5, 1969May 18, 1971Nippon Denso CoSystem for driving a. d. c. electromagnet
US3582734 *Apr 24, 1969Jun 1, 1971Raytheon CoCoil driver with high voltage switch
US3628102 *Oct 6, 1969Dec 14, 1971Ncr CoExciter apparatus for impact member solenoid
US3646402 *Aug 20, 1970Feb 29, 1972Bell Telephone Labor IncSwitching of inductances
US3682144 *Apr 1, 1970Aug 8, 1972Hitachi LtdControl device for fuel supply in internal combustion engines
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4041546 *Jun 4, 1976Aug 9, 1977Ncr CorporationSolenoid driver circuit
US4048665 *Dec 17, 1975Sep 13, 1977Honeywell Information Systems ItaliaDriver circuit for printer electromagnet
US4059844 *Jun 4, 1976Nov 22, 1977Ncr CorporationSolenoid driver circuit
US4176387 *Feb 27, 1978Nov 27, 1979The Bendix CorporationInductive drive circuit for setting three different levels of load current including a downshift delay
US4180026 *Mar 28, 1977Dec 25, 1979Robert Bosch GmbhApparatus for controlling the operating current of electromagnetic devices
US4234903 *Feb 27, 1978Nov 18, 1980The Bendix CorporationInductive load driver circuit effecting slow hold current delay and fast turn off current decay
US4295177 *Aug 7, 1979Oct 13, 1981Lucas Industries LimitedControl circuits for solenoids
US4326234 *Jun 6, 1980Apr 20, 1982Westinghouse Electric Corp.Electrically held power relay circuit with reduced power dissipation
US4327394 *Jun 28, 1979Apr 27, 1982The Bendix CorporationInductive load drive circuit utilizing a bi-level output comparator and a flip-flop to set three different levels of load current
US4453652 *Sep 16, 1981Jun 12, 1984Nordson CorporationControlled current solenoid driver circuit
US4481554 *Aug 18, 1983Nov 6, 1984Towmotor CorporationVoltage adaptive solenoid control apparatus
US4595968 *May 31, 1985Jun 17, 1986Robert Bosch GmbhElectronic final stage for switching electro-magnetic valve with the assistance of controlled current source
US5729422 *Mar 24, 1995Mar 17, 1998Robert Bosch GmbhDevice and method for triggering an electromagnetic consumer
US5907466 *Jul 30, 1996May 25, 1999Robert Bosch GmbhDevice and process for activating at least two electromagnetic loads
US6061226 *Feb 26, 1998May 9, 2000Electrowatt Technology Innovation AgRelay circuit with cyclical controlled capacitor
US6474276May 17, 2000Nov 5, 2002Fev Motorentechnik GmbhMethod for controlling an electromagnetic valve drive mechanism for a gas exchange valve in an internal combustion piston engine
US6795291 *Jan 23, 2002Sep 21, 2004Ford Global Technologies, LlcElectromechanical valve assembly for an internal combustion engine
US6948461May 4, 2004Sep 27, 2005Ford Global Technologies, LlcElectromagnetic valve actuation
US7295417May 4, 2004Nov 13, 2007Ford Global Technologies, LlcElectromagnetic valve actuation with series connected electromagnet coils
US20050248902 *May 4, 2004Nov 10, 2005Kotwicki Allan JElectromagnetic valve actuation with series connected electromagnet coils
DE2612914A1 *Mar 26, 1976Oct 6, 1977Bosch Gmbh RobertFinal stage circuit regulator for electromagnetic fuel injector - has two point regulator to check final stage if required value output is over stepped
DE2706436A1 *Feb 16, 1977Aug 17, 1978Bosch Gmbh RobertElectronic circuit controlling fuel injection system - uses pulses measuring speed and air flow to control fuel valves
DE3135123A1 *Sep 4, 1981Apr 8, 1982Tokyo Shibaura Electric CoSpritzduesen-steuerschaltung
DE3423769A1 *Jun 28, 1984Jan 9, 1986Bosch Gmbh RobertSchaltendstufe, insbesondere eines schaltreglers fuer ventilmagnete
EP0008509A1 *Aug 3, 1979Mar 5, 1980LUCAS INDUSTRIES public limited companyControl circuits for solenoids
EP0027056A2 *Oct 9, 1980Apr 15, 1981Ford Motor Company LimitedA circuit for extending the range of operation of an electromagnetic fuel injector
EP0027056A3 *Oct 9, 1980Oct 7, 1981Ford Motor Company LimitedMethod of controlling an electromagnetic fuel injector
EP0049183A1 *Sep 11, 1981Apr 7, 1982The Bendix CorporationFuel control system for a diesel internal combustion engine and method of energizing a fuel injector within a cylinder of such an engine
EP0087618A1 *Feb 7, 1983Sep 7, 1983Siemens AktiengesellschaftEnergy saving energising circuit for relays in an apparatus with a charging capacitor, in particular an audio frequency remote-control receiver
EP0150492A2 *Dec 22, 1984Aug 7, 1985Robert Bosch GmbhCurrent regulator for electromagnetic actuator
EP0150492A3 *Dec 22, 1984Sep 25, 1985Robert Bosch GmbhCurrent regulator for electromagnetic actuator
EP0184939A2 *Dec 12, 1985Jun 18, 1986Technological Research Association Of Highly Reliable Marine Propulsion PlantA method of controlling electromagnetic devices and a controller therefor
EP0184939A3 *Dec 12, 1985Mar 2, 1988Tech Res Ass Highly ReliableA method of controlling electromagnetic devices and a controller therefor
EP0305344A1 *Aug 2, 1988Mar 1, 1989MARELLI AUTRONICA S.p.A.A circuit for the piloting of inductive loads, particularly for operating the electro-injectors of a diesel-cycle internal combustion engine
EP0395741A1 *Feb 23, 1989Nov 7, 1990Caterpillar IncDriver circuit for solenoid operated fuel injectors.
EP0865059A1 *Jul 7, 1997Sep 16, 1998Electrowatt Technology Innovation AGCircuit arrangement for energy saving operation of a relay
WO1987005075A1 *Feb 16, 1987Aug 27, 1987Robert Bosch GmbhMethod and circuit for driving electromagnetic consumers
WO1995028721A1 *Mar 24, 1995Oct 26, 1995Robert Bosch GmbhProcess and device for controlling electromagnetic consumers
WO2000011346A1 *Aug 18, 1999Mar 2, 2000Werner ArnoldElectronic circuit for pulse generation
WO2000071861A1 *May 17, 2000Nov 30, 2000Fev Motorentechnik GmbhMethod for controlling an electromagnetic valve drive mechanism for a gas exchange valve in an internal combustion piston engine
U.S. Classification361/154
International ClassificationF02D41/20, H01H47/32
Cooperative ClassificationF02D2041/2017, F02D2041/201, F02D2041/2058, F02D41/20, H01H47/325
European ClassificationF02D41/20, H01H47/32B