Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3897782 A
Publication typeGrant
Publication dateAug 5, 1975
Filing dateJan 7, 1974
Priority dateJan 7, 1974
Also published asDE2461870A1
Publication numberUS 3897782 A, US 3897782A, US-A-3897782, US3897782 A, US3897782A
InventorsDeger C Tunc
Original AssigneeJohnson & Johnson
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Body fluid barrier films
US 3897782 A
Abstract
A barrier film is provided for a product used in contact with body fluids. The barrier film comprises an alkali salt of a sulfated cellulose ester, with a degree of sulfate substitution satisfactory to render the film resistant to body fluids and yet dispersible in low salt concentration aqueous solutions such as those found in a household water closet. There is also disclosed a process for preparing alkali salts of sulfated cellulose esters comprising sulfating woodpulp, acylating the sulfated wood pulp, and precipitating the desired product in an aqueous precipitation medium maintained at a specified pH range.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Tune 1 1 Aug. 5, 1975 1 BODY FLUID BARRIER FILMS [75] lnvcntor: Deger C. Tune, East Brunswick. NJ.

[73] Assignec: Johnson & Johnson, New

Brunswick. NJ.

221 Filed: Jan. 7, 1974 1211 Appl.No.:43l,4S5

[52] U.S. Cl. 128/290; 260/215; 161/232 [51] Int. Cl. A6" 13/16 [58] Field of Search 128/290 R, 290 W, 296.

156] References Cited UNITED STATES PATENTS 3335,1211 8/1967 Hlilllelal 260/215 3,624.06) 11/1971 Schweiger 1 260/215 3.702,?145 l 1/1972 Schweiger 260/215 3.800.797 4/1974 Tunc 123/290 R Primary ExaminerRichard A. Gaudet Assistant ExaminerHenry S. Layton 5 7 1 ABSTRACT A barrier film is provided for a product used in contact with body fluids. The barrier film comprises an alkali salt of a sulfated cellulose ester, with a degree of sulfate substitution satisfactory to render the film resistant to body fluids and yet dispersible in low salt concentration aqueous solutions such as those found in a household water closet. There is also disclosed a process for preparing alkali salts of sulfated cellulose esters comprising sulfating woodpulp, acylating the sulfated wood pulp, and precipitating the desired product in an aqueous precipitation medium maintained at a specified pH range.

13 Claims, 6 Drawing Figures BODY FLUID BARRIER FILMS BACKGROUND OF THE INVENTION This invention concerns the incorporation of protective barrier films in products to be contacted in use with fluids exuded from the body such as blood, menstrual fluid and urine. Specifically, the barrier films of this invention are useful in connection with absorbent products such as sanitary napkins, diapers, dressings and the like and are likewise useful as liners for ostomy bags, bedpans, and other receptacles for body exudates. The films exhibit adequate tensile strength and retain their structural integrity when in contact with the aforesaid body fluids, and are still readily dispersible in water so that the film or the combination of film and product may be disposed of in an ordinary water closet.

Heretofore, the choice of suitable barrier films has been extremely limited in that those properties desirable in films used for this purpose, are infrequently found in combination. For example, the barrier film must be sufficiently strong to resist disintegration for a reasonable period of time when in use, i.e., the films must be insoluble or at least only slightly soluble in body fluids and must exhibit substantial tensile strength when subjected to such fluids. In conflict with this criterion, it is important that the barrier film be readily dispersible in water so that the absorbent product can be conveniently flushed away. Heretofore, barrier films have been incapable of adequately meeting both criteria.

A suitable barier film must also have sufficient abrasive strength to withstand wear and tear when the product is one which is to be worn, such as a dressing, a sanitary napkin or a diaper, and at the same time, must be adequately soft and flexible so as to be comfortable and not exhibit the noise of rattling frequently associated with tough resinous films. Once more, these criteria are in conflict and a material suitably possessing both properties has heretofore been unknown.

Finally, a body fluid barrier film, especially if it is used in disposable products, should be inexpensive. The barrier films of this invention are inexpensive as they may be made from wood pulp which is readily and economically available.

SUMMARY OF THE INVENTION In accordance with this invention, a barrier film is provided, in a product for contacting body fluids, which is dispersiblc in water and resistant to said body fluids, said barrier film comprising a film of an alkali salt ofa sulfated cellulose ester. Preferably the sulfated cellulose ester is chosen from the group consisting of alkali cellulose ester sulfates wherein the acyl group comprises from I to 6 carbon atoms; more preferably the acyl group comprises from I to 4 carbon atoms.

Examples of these resins are such alkali cellulose ester sulfates as sodium, potassium or lithium cellulose acetate sulfate, sodium, potassium or lithium cellulose acetate-butyrate sulfate, sodium cellulose propionate sulfate and potassium cellulose butyratc sulfate. Most preferably the barrier film of the present invention comprises sodium cellulose acetate sulfate. If so desired, the films may comprise mixtures of the various alkali cellulose acylate sulfates above mentioned.

It has now been discovered that these resinous films exhibit the unusual properties of retaining their tensile strength in salt solutions such as body fluids while readily dispersing in tap water. It has further been discovered that these unique properties are a function of the degree of sulfate substitution (hereinafter, D.S.") which expresses the average number of sulfate groups per anhydroglucose unit of the cellulosic ester. In general, by increasing the D8. of a particular resin, the films cast therefrom will exhibit increasing dispersibility in water and decreasing strength in salt solutions. It has been discovered that by utilizing resins having a D8. varying from about 0.l to about 0.45, a barrier film used, for example, as a protective barrier in an absorbent product such as a sanitary napkin or diaper or, alternatively, as a liner for a bedpan or ostomy bag, will exhibit sufficient strength in body fluids and will readily disperse in water. Preferably, the D8. should range from about 0.15 to about 0.40, and more preferably from about 0.27 to about 0.36.

The resins used in the products of this invention have been found to be compatible with readily available plasticizers which may be incorporated into the barrier film to produce a relatively noiseless, comfortable product such as an absorbent napkin or diaper without affecting its ability to disperse in water. Various other additives, such as fillers, coloring agents, and stabilizing agents may also be included in the barrier films of this invention.

According to the present invention there are also provided novel methods for the preparation of alkali salts of sulfated cellulose esters. Formerly sucn resins were precipitated from solution in the reaction medium in which they were prepared by treatment with various organic solvents, particularly isopropanol. This method is economically unattractive because it requires either that costly organic solvent be lost during processing or that expensive solvent recovery equipment be purchased and installed. It has now been found that alkali cellulose ester sulfates may be economically and safely recovered from solution in the reaction mixture in which they were prepared by precipitation in an aqueous medium maintained at a pH between about 3 and about 8, and preferably at a pH of from about 3.5 to about 5.5. The required pH range may be achieved by adding a base to the aqueous precipitation medium. As will be seen, this method of precipitation may be employed for solutions of alkali salts of sulfated cellulose esters in substantially non-aqueous systems regardless of the method by which the cellulose was sulfated and- /or acylated.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a perspective view of a sanitary napkin embodying this invention with parts broken away to show the interior construction thereof;

FIG. 2 is a cross-sectional view taken approximately along lines 2-2 of FIG. 1;

FIG. 3 is a perspective view of a second sanitary napkin embodying this invention with parts broken away to show the interior construction thereof;

FIG. 4 is a cross-sectional view taken approximately along lines 44 of FIG. 3;

FIG. 5 is a perspective view of an absorbent pad or undergarment liner embodying this invention with parts broken away to show the interior construction thereof; and

FIG. 6 is a cross-sectional view taken approximately along lines 66 of FIG. 5.

DETAILED DESCRIPTION OF THE INVENTION The sulfated cellulose esters used to form the barrier films of this invention may be produced by first forming the sulfate derivative of cellulose and then esterifying with a suitable acylating agent.

The sulfated cellulose is prepared by slurrying cellulose, for example in the form of wood pulp, in an inert liquid reaction medium such as glacial acetic acid and reacting the cellulose slurry with a sulfating mixture prepared from reactants comprising acetic anhydride, an alkali sulfate, glacial acetic acid and sulfuric acid. The sulfated cellulose so obtained is then acylated with an acylating agent such as acetic anhydride to form a solution of the desired alkali cellulose acylate sulfate in the reaction mixture. The cellulose ester sulfate is then precipitated from solution by adding the reaction mixture in which it is dissolved to an aqueous precipitation medium maintained at a pH of from about 3 to 8. The pH of the aqueous precipitation medium is maintained within the specified range by the addition, as necessary, of suitable amounts of an aqueous base. Examples of suitable bases are the alkali metal hydroxides such as sodium, potassium or lithium hydroxide; the salts of alkali metal hydroxides with weak acids, such as sodium carbonate, potassium carbonate, and lithium acetate; and ammonium hydroxide.

Alternatively, solutions of alkali salts of sulfated cellulose esters may be prepared by dissolving a commercially available cellulose ester in an inert liquid reaction medium and then sulfating the cellulose ester with alkali acetyl sulfate or with other well known procedures. The alkali cellulose esters sulfate may then be recovered by precipitation in an aqueous precipitating me dium in the manner described above.

Films may be cast by dissolving the resins in a suitable solvent, applying the solution onto a release surface and allowing the solvent to evaporate. The film is then peeled from the release surface. A wide variety of solvents may be used including water; mixtures of water with acetone, methyl ethyl ketone r methylene chloride; or mixtures of methanol with acetone, methyl ethyl ketone or methylene chloride. The resin concentrations are limited, on the one hand, by the necessity for maintaining the solution sufficiently dilute so as to exhibit good fluidity and, on the other hand, by the necessity for maintaining the solution sufficiently concentrated so as to limit the volume to be handled to a conventional quantity. In general, it has been discovered that films having thicknesses varying from 0.l to 5.0 mils can conveniently be prepared from solutions containing about one to about ten percent by weight of the alkali salt of the sulfated cellulose ester and preferably from solutions containing about 2 to 5 percent by weight of the cellulose resin. Suitable release surfaces for casting film include glass and Tefion* coated surfaces. For example, excellent translucent, peelable films are obtained from an alkali salt of a sulfated cellulose ester resin dissolved in a 3:l (by weight) mixture of acetone and water and cast, at room temperature, onto a Teflon* coated pan.

Films cast from the alkali salts of sulfated cellulose ester are suited for use as flushable barrier films in a product used in contact with such body fluids as blood. menstrual fluid, urine, and similar body exudatcs. These fluids, in general, exhibit properties which. with respect to the films, are analogous to aqueous salt solutions having a salt content which varies from about 0.8

to about 1 .5 percent by weight of sodium chloride. On the other hand, tap water normally supplied to water closets and the like generally has an extremely low salt concentration of less than about 250 parts per million of chloride ion. It has been discovered that the alkali salts of sulfated cellulose esters of this invention maintain their integrity for a substantial period of time in solutions having a salt concentration exhibiting the properties of body fluids, whereas, surprisingly, they display a far lower resistance to dispersion in tap water. It has further been discovered that by modifying the D.S. of these resins, the salt resistances and water dispersibility of the films can be modified to suit the particular purposes of this invention, i.e., films may be made which will adequately provide a barrier for body fluids for a suitable length of time and which may be flushed away in a water closet.

Specifically, by lowering the degree of sulfation, the barrier films of this invention become more resistant to salt solutions in that they retain their integrity after being subjected to these solutions for longer periods of time and that they exhibit tensile strengths when subjected to a given salt concentration for a given period of time. In general, if the D.S. is maintained at below about 0.4, an adequately salt resistant film results. Preferably, the D.S. should be maintained at below about 0.38 and more preferably below about 0.36. While the resistance of the films to salt solutions having a salt concentration exhibiting the properties of body fluids increases greatly with decreasing D.S., the ability to disperse readily in tap water is maintained until extremely low D.S. values are reached. Adequate tap water dispersibility is achieved when the D.S. is maintained at a value of at least about 0.15. Preferably, the D.S. should be at least about 0.27.

The barrier films of this invention are highly compatible with a great variety of plasticizers which may be incorporated therein to improve such characteristics of the film as flexibility and resistance to abrasion, and to reduce noise," i.e., the rattle resulting from the flexing of the film. These properties are particularly important when the barrier films are used in connection with items to be worn such as the aforementioned sanitary napkins, diapers and the like. Water soluble plasticizers such as glycerol and the polyethylene glycols are suitable, as well as such wateninsoluble plasticizers as castor oil.

When the films of this invention are used in connection with such products as liners for bedpans, ostomy bags, and other receptacles for body fluids, they may be cast directly on the inside surface of the receptacle prior to use or may alternatively be precast and then applied to the receptacles. in use, after fluid has been deposited into the lined receptacle, the entire liner, including the deposited fluid may be lifted out of the receptacle and deposited in a water closet. The films of this invention will exhibit sufficient tensile strength when in contact with the deposited fluid to allow the liner to be lifted out of the receptacle and will at the same time be completely dispersible in a water closet so as to be flushable.

Referring now to H65. 1 and 2 of the drawing, illustrated therein is an embodiment of the films of this invention as used with a sanitary napkin 10. The napkin comprises an absorbent core 12 of fibrous material such as comminuted wood pulp fibers, cotton lintcrs,

rayon fibers, cotton staple, bleached sulfite linters, other cellulosic or modified cellulosic fibers and the like. Overlying the bottom surface of the absorbent core (that portion of the napkin worn away from the body) is a thin barrier sheet 14 comprising the films of this invention. A fluid pervious cover 16 surrounds the absorbent core 12 and the barrier sheet 14 with the lateral edges thereof overlapped and secured on the bottom surface of the napkin l0. The cover 16 can be extended beyond the ends of the core 12 to form the usual attachment tabs [8. While FIGS. 1 and 2 illustrate a tabbed napkin, it will be understood by one skilled in the art that the advantages accruing to the use of barrier films of this invention are equally applicable to a tabless product, e.g., one where tabs are not used as attachment means, or where other attachment means such as, for example, adhesive means, are used.

As incorporated into the product described in FIGS. 1 and 2, the barrier sheet, comprising films of this invention, is uniquely suited to preclude the passage of menstrual fluid through the core to the bottom surface of the napkin. Menstrual fluid, as other body fluids, exhibits properties, with respect to the film, which are analogous to an aqueous solution having a salt content of about 0.8 to about 1.5 percent by weight and it is within these concentrations that the films of this invention are resistant and impermeable. Notwithstanding the resistance of the films to menstrual fluid, when the films are introduced into an aqueous low salt concentration solution, they are dispersible. Accordingly, by employing a water dispersible material for the cover 16 (and a water dispersible core 12) the sanitary napkins of FIGS. l and 2 may be completely disposed of in a water closet. Alternatively, the illustrated napkin may be provided with a non-water dispersible cover, in which event the cover would first be removed and the pad and barrier film dropped into a water closet for disposal. In either event, the unique barrier film of this invention will completely disperse in a water closet under the swirling action of the water found therein, and will in no way clog or otherwise impair the operation of the water closet and associate plumbing.

FIGS. 3 and 4 illustrate a second embodiment of this invention in a napkin of alternative construction. A sanitary napkin 20 is provided with first and second absorbent layers 22 and 24. Sandwiched therebetween is a barrier sheet 26 comprising the film of this invention. A fluid pervious cover 28 surrounds the absorbent layers 22 and 24, with the lateral edges thereof overlapped and secured on the bottom surface of the napkin 20. As in the prior described embodiment, the cover is illustrated as extending beyond the absorbent layers to form attachment tabs, although it is equally advantageous to use the teachings of this invention in a tabless product. Again the films of this invention are uniquely suited for use as barrier films and while they will preelude the passage of menstrual fluid to the bottom of the napkin, they are completely dispersible in a water closet. Hence, if the napkin 20 is provided with a water dispersible cover, it may be completely disposed of by flushing or, alternatively, if the napkin is provided with a non-water dispersible cover, the cover may be first removed and then the remainder of the napkin may be disposed of by flushing. A particular advantage of a napkin having the construction illustrated in FIG. 20 is that the barrier film located between absorbent layers is likely to exhibit noise" which could embarrass the wearer and hence the need for the addition of plasticizers to the film is lessened.

In this connection, it will be apparent to one skilled in the art that, while two separate absorbent layers have been illustrated, many alternatives are possible, such as, for example, the use of multiple layers or the forming of the layers by simply folding a single sheet of ab sorbent material.

FIGS. 5 and 6 illustrate still another embodiment of this invention. Illustrated therein is an absorbent pad 30 which is useful as a protective cover for undergarments. The pad is provided with an absorbent core 32. A fluid pervious cover 34 overlies the top (the surface worn against the body) and side portions of the core, the lateral edges also overlying the peripheral portions of the bottom surface of the core. A barrier film 36, in accordance with this invention, it provided to overlie the bottom surface of the core and those portions of the cover 34 overlying the bottom surface. The barrier sheet 36 and the cover 34 are secured together and preferably, are secured to the core. The outer surface of the barrier sheet is provided with adhesive means 38 which may be, for example, a layer of pressure sensitive adhesive or a double-faced adhesive tape. The adhesive means 38 is protected, prior to use by a strippable peel able cover 40. In use, the cover 40 is stripped from the napkin exposing the adhesive means. The napkin is then placed, for example, in the crotch portion of a panty and held in place by adhering the barrier film portion to the panty with the adhesive means. Once again, the unique features of the barrier film allow the pad to be readily disposed of by flushing in a water closet.

In order to better illustrate the invention, the following examples are given:

EXAMPLE I This Example describes the preparation of a water dispersible, salt solution insoluble cellulose ester sulfate resin according to a process which comprises slurrying the cellulose (in the form of wood pulp) in an inert organic liquid, sulfating the cellulose by reacting the cellulosic slurry with a sulfating mixture comprising an alkali acetyl sulfate, esterifying the sulfated cellulose in a reaction mixture comprising the inert organic liquid, sulfated cellulose and an acylating agent and precipitating the desired alkali cellulose acetate from solution in said reaction mixture by combining said reaction mixture with an aqueous precipitation medium maintained at a specified pH range.

400 grams of wood pulp (ITT Rayoniers Placetate-F) was ground and added to 2000 grams of glacial acetic acid to form a slurry whith was tumbled in a closed cylindrical reactor for 20.5 hours at 24C.

A sulfating mixture comprising sodium acetyl sulfate was prepared as follows: I629 grams acetic anhydride and 52.5 grams glacial acetic acid were added to a l liter jacketed resin flask. 30.8 grams of sodium sulfate were added and the contents stirred for 5 minutes. 20.]5 grams of concentrated sulfuric acid (98% by weight) were added dropwise to such a rate that the temperature of the reactor contents did not exceed C. The rate of addition of sulfuric acid may be increased, if desired, if cooling is applied by circulating ice water through the jacket of the reactor. The reactor was stirred for 30 minutes after the addition of the sulfuric acid was completed.

The slurry of wood pulp in glacial acetic acid was transferred to a jacketed, double planetary mixer (Ross reactor) equipped with a thermometer and a stirrer and was cooled to l8C. The sulfating mixture was added crut i 1 corresponding to a degree of acetyl substitution of to the Ross reactor at a rate such that the temperature 5 240 625 grams of the final product were disso'vcd in of the contents did not exceed 32C. The use of exter- 9375 g. of a 3:] weight mixture of acetone and water nal cooling permits faster addition of the sulfating mixto form a Clear Solution The solution was Cast on a f Stirfing was m for mmutes after the piece of silicone release paper and the solvents evapoof the Sulfatmg mlxmre n Completed rated. The resulting film was translucent and had good ll2.0 grams of concentrated sulfuric acid were then IO flexibility added to the Ross reactor at a rate such that the temperature of the contents did not exceed 32C. EXAMPLE 2 The Sulfatcd celhjflose wus then acylated by addlgg A series of sodium cellulose acetate sulfates. desig- 1080 grams of acetic anhydnde. pre-cooled to l0 C nated 2A 2B 2C and 2D were prepared by the to the contents of the Ross reactor, the temperature in l5 method descried i E le l by varying the amounts o the ff bemg f below 32 durmg of the sulfating mixture used and by varying the quantiaddltion. When theaddltlon of the acetic anhydrlde ties of acetic anhydridg and sulfuric acid comprising was Completed Surfing was commued and the the acetylation mixture. The pH maintained during the ahlre of theacomehts of the Ross F was f 2 precipitation step is indicated in Table l. The resulting tamed at 32 C, until 2 hours, countlng from the time 0 sodium cellulose acetate sulfate resins had the degrees the acetic anhydride addition was begun, had elapsed. of substitution of sulfate (50'?) and aCeIyI In order to precipitate the sodium cellulose acetate sulfate from solution in the reaction mixture, the reaction mixture was added to an aqueous precipitation medium comprising 6,000 mls. of water, cooled to 50C. The pH of the aqueous precipitation medium was maintained at a pH of 5.3 during the precipitation procedure by simultaneously adding a 50% by weight solution of groups as Shown in Table 1. aqueous sodium hydroxide- The aqueous Precipitation A series of films were cast from the resins of Exammedium was Stil'l'fid and cooled during th addition Of 135 1 and 2 and tested in water weigh aquethe sodium hydroxide solution and the reaction mixture Qus N CL and 23% by weight NaCL to determine their th and the p precipitated in the form of a ability to maintain their structural integrity. Two tests fine powder. The precipitated resin was recovered from were employed I h first, n d h F B ku the aqueous Precipitation medlum y filtering in a Test, a 3 cm. X 3 cm. X 2 mil film of each of the resins Buchner funnel and as rie at Taking advflh- 35 to be tested was placed in a 250 ml. beaker containing tage of the fact that the desired cellulose ester sulfate 150 f h d i test|iqui1-hetcst|iquids were is substantially less soluble in cold water than hot, the ti d i h a 1% i h T fl p coated b magnet precipitated product. a te g ind ng in a Wil y mill. was driven by a Precision Scientific Mag-Mix magnetic stirwashc l 5,000 Of Water 10 after rer operating at US volts. The samples to be tested which f- P f lsolatfid by filtration: The Wash were put into the stirred test solution and the time in g and Isolaho" Steps were repeated 4 tlmes- P seconds (break-up time") required for the sample to completion of the wash steps. th pr was filtered disintegrate was measured. The second test. called the and dried at 53C. Slow Break-Up Test. was the same as the first test ex- 5289 grams of sodium cellulose acetate sulfate were h T fl coated magnct was rotated at recovered. Analysis gave the following results: 3.82% m by adjusting the operating voltage of the magnetic by weight sulfur. corr p g 10 8 of Subshmstirrer. The break-up times of films prepared from the tion of SO,=of0.36; l.8l% by weight sodium; 34.5 various resins of Examples l and 2 are recorded in by weight acetyl Table II.

TABLE I SULFATING MIXTURE ACEIYLATING MIXTURE- GRAMS USED GRAMS USED DEGREES OF SUBSTITUTION pH of AQUEOUS O SAMPLE (Ac).,0 HAc M 90. H soxusvr (A020 H SOJ 9m PRECIPITATION SO,- CH1C 0 MEDIUM 2A 2x7 70 41.! 26.) I080 5,: 2B 162.9 52.5 30.8 20.15 [080 112 5.: 8 3 2C 162.9 52.5 30.8 2015 loan H: 5.45 057 61 2D 12: 39.4 23.1 l5.l man so 5 All puns are parts by weight per 400 parts of \umdpulp (A0 0 acetic l|llll)dl'ldl,, HAQ acetic acid.

TABLE II DEGREE OF SLOW BREAK-UP TIMES BREAK UP TEST FAST BREAK-UP TE T SUBSTITUTION S DlSTlLLED DlSTlLLED SAMPLE S CH;,C WATER 0.971 Aq.NaCl 2.0% AqNaCl WATER 0.9% AqNaCl 2.0% Aq.NaCl

Example I 0.36 2.40 328 secs. 3 hrs. 50 hrs. 39 sees. 92 secs. 175 secs. Example 2A 0.42 1.87 58 secs. 75 secs. 7 secs. 10 sees. 13 secs. Example 28 0.34 2.57 l620 secs. 24 hrs. 24 hrs. 23 secs. I secs 54) secs. Example 2C 0.27 2.62 h 23 secs. lllt) secs. 215 secs. Example 2D 0.15 1.97 64 secs. 302 secs. 498 secs.

' over 24 hours did not tcst The films are further tested to determine their re- TABLE Ill-Continued spective tensile strength when subjected to various liq- 5 uids for various periods of time. Film samples measuring three inches by one inch were immersed in the desired test liquid for the specified period of time and then immediately tested in an Instron machine, at ajaw separation of 2 inches and a crosshead speed of 2 inches per minute. The results of these tests, as well as dry tensile strengths. are reported in Table [I]. Test results are reported in pounds per square inch.

The results of the break-up time tests (Table ll) and the tensile strength tests (Table III) show that the resinous films prepared from sulfated cellulose esters having the indicated degrees of sulfate and acetyl substitution have a greater resistance to aqueous salt solutions than to distilled water. The data show that the optimum combination of water dispersibility and salt solution insolubility occurs at degrees of sulfate substitution ranging from about 0.27 to about 0.36. At degrees of sulfate substitution above about 0.36. water dispersibility is excellent but tensile strength is somewhat reduced. At degrees of sulfate substitution below about (1.27, water dispersibility is somewhat reduced while tensile strength in aqueous salt solutions is improved.

EXAMPLE 3 This example illustrates that films can be prepared from mixed esters of alkali cellulose sulfates which have good tensile strength and structural integrity in sodium chloride solutions and yet are dispersible in plain water. Sodium cellulose acetate butyrate sulfate is prepared as follows:

I l3.5 grams of alcohol soluble cellulose acetate butyrate (available from Eastman Kodak) was dissolved in 463 grams of glacial acetic acid. A sulfating mixture comprising 34.5 grams of glacial acetic acid. 107.0 grams of acetic anhydride, 21.25 grams of sodium sulfate. and I322 grams of sulfuric acid was prepared using the method described for preparing the sulfating mixture of Example 1.

TABLE III TliNSlLF. STRENGTH (lbs. per square in.)

DIS'llLLEl) WATER TENSlLE STRENGTH (lbs. per square in.)

0.9% AQUEOUS NaCl (Minutes) SAMPLE 3 5 It) 2t) 3t) l2(l Example l 506 44! 2st 4l4 336 373 29] 27l Example 2A 20 Example 2B 804 R07 55) 62| 626 553 Sl] 526 Example 2C 923 674 668 fill-1 544 Example 2D l l 13 1136 2.0% AQUEOUS NaCl (Minutes) SAMPLE f: l 3 S It) 20 3t) I 21) Example 1 953 693 R22 732 687 773 658 815 Example 2A 40 23 Example 28 9X2 949 906 l 114 1093 Example 2C lU'YX l I93 lilo} UB4 lllbb 710 Example 2D l5 I4 1608 Sample broke-up prior to testing Did not test The solution of cellulose acetate butyrate in glacial acetic acid was transferred to a Ross reactor and reacted with the above described sulfating mixture according to the procedure for sulfation given in Example I. When the sulfation step was completed. the sulfated cellulose mixed ester was dissolved in the reaction mixture in the Ross reactor. The product was precipitated by adding the reaction mixture to an aqueous precipitation medium maintained at pH=6.4 with aqueous sodium hydroxide. The cellulose ester sulfate was then washed and dried according to the procedure given in Example l.

The final product comprised sodium cellulose acetate butyrate sulfate and had the following composition: 4.89% sulfur by weight; 24.63'71 by weight (acetyl butyryl) determined as acetyl; and 40.67% by weight (acetyl butyryl) determined as hutyryl.

A film was cast from a 6.257r by weight solution of the final product in a 3: l weight mixture of acetone and water. The film so cast completely dissolved in water within 30 minutes but did not dissolve in 2% by weight aqueous NaCl even after 6 days.

EXAMPLE 4 To illustrate the effect of the pH maintained in the aqueous precipitation medium during the precipitation step. the synthesis of Example l was repeated. After the sulfation and acylation steps had been completed. at which point the sulfated cellulose acetate was dissolved in the reaction mixture. the reaction mixture was dividcd into seven equal portions designated 4A4G respectively. Cellulose acetate sulfate resin was precipitated from each portion by adding that particular portion to an aqueous precipitation medium which was maintained at a specified pH by adding thereto. in amounts and at times needed. a solution of 50% aque ous sodium hydroxide. The precipitated products were washed and dried as before and analyzed. The pH during precipitation and results of the analysis are given in Table IV.

The procedure of Example I was repeated except that the sulfating mixture comprised 542.92 grns. of acetic anhydride, 87.55 grams of acetic acid. l02.66 grams of Na SO and 67.l2 grams of 98% by weight sulfuric acid. After recovery and purification, the product was analyzed and found to contain 5.40% by weight sulfur (corresponding to a degree of sulfate substitution of 0.49); 3.87% by weight sodium; and 27.3% by weight acetyl (corresponding to a degree of acetyl substitution of L84). Thus, it is seen that resins having higher de grees of sulfate substitution may be obtained by increasing the amount of sulfating mixture used for a constant amount of cellulose.

EXAMPLE 6 In order to demonstrate the effect of varying the amounts of acetic anhydride and sulfuric acid used in the acetylation step. two samples (designated 6A and 6B) of sodium cellulose acetate sulfate was prepared using the procedure of Example I but varying the amounts of sulfuric acid and acetic anhydride used during acetylation. The reagents, and their amounts, used in the sulfating mixture were the same for Example I and the present example. Table V shows the variations made in the amounts of the reagents in the sulfating mixture along with the analysis of the resulting products.

lesser degree. by variations in the amounts of acetic anhydride and sulfuric acid.

EXAMPLE 7 This example shows that alkali salts of sulfated cellulose esters can be prepared in a one-step procedure by reacting a slurry of wood pulp in an inert organic liquid with a reactant mixture comprising a sulfating agent and an acylating agent. Thus, in this process. the sulfation and acylation reactions take place together and the inconvenience and need for additional equipment associated with the two step sulfation and acylation procedure of Example I are eliminated. Once the cellulose ester sulfate is formed, it is recovered by precipitation in an aqueous precipitation medium maintained within the specified pH range, that is, at a pH of from about 3 to about 8.

400 grams of wood pulp (same as used in Example 1 and 2000 grams of glacial acetic acid were tumbled in a closed cylindrical reactor for 20.5 hours at 24C. The resulting slurry was transferred to a jacketed Ross reactor equipped with suitable stirrer means. The following reagents were then added. with stirring. to the reactor in the following order: 1242.9 grams of acetic anhydride; 52.5 grams glacial acetic acid; 30.8 grams Na S0 and 52. l5 grams of sulfuric acid (98% by weight). Cooling was applied during the above additions so that the temperature in the reactor did not exceed 32C. Stirring was continued at 32C for 2 hours. counting from the time the acetic anhydride was added to the reactor. The resulting product was precipitated at pH 5.2 using the precipitation method of Example l. The resin was then purified and dried as in Example 1.

The resulting resin had the following analysis:

3.05% sulfur; 2.19% sodium; 31.4% acetyl; degree of sulfate substitution 0.26; degree of acetyl substitution L99; degree of hydroxyl substitution 0.75. This example shows that sodium cellulose acetate sulfate can be synthesized by a modified procedure in which the preparation of sodium acetyl sulfate in a separate reactor has been eliminated. and that the cellulose acetate sulfate can be successfully recovered from solution in the reaction mixture in which it was prepared by combining the reaction mixture with an aqueous base maintained at a specified pH.

The resins of this invention may be combined with other materials and will still exhibit their characteristic properties of water solubility and insolubility in aqueous salt solutions when cast into film form. For example. films have been made from combinations of alkali salts of sulfated cellulose esters with various plasticizers and with inexpensive fillers or extenders such as tita- An examination of the data in Table V shows that the amounts of acetic anhydride and sulfuric acid used during the acetylation reaction determine the amount of M the acetyl substitution on the final product. The amount of sulfate substitution. which is directly propor tional to the 7r sulfur. is also influenced. but to a much nium dioxide. kaolin and acrylic resin. Such films. which may be cast from solutions of such mixtures in acetone/water or other suitable solvents. are less costly due to the presence therein of the inexpensive extenders. The films of this invention may be suitably plasticized with water soluble plasticizers such as the poly ethylene glycols or with water insoluble plasticizers such as castor oil.

It will be apparent to one skilled in the art that many modifications to the invention are possible without departing from the scope and spirit thereof.

What is claimed is:

1. in a product for contacting body fluids, a barrier film comprising an alkali salt of a sulfated cellulose ester resin, said resin having a degree of sulfate substitution satisfactory to render said film resistant to said body fluids and dispersible in a water closet.

2. The product of claim 1 wherein the cellulose ester sulfate has a degree of sulfate substitution of from about ().l5 to about 0.4.

3. The product of claim 1 wherein the cellulose ester sulfate has a degree of sulfate substitution of from about 0.27 to about 0.36.

4. The product of claim 2 wherein the acyl group of said cellulose ester sulfate has from one to four carbon atoms.

S. The product of claim 2 wherein the cellulose ester sulfate is sodium cellulose acetate sulfate.

6. The product of claim 2 wherein the cellulose ester sulfate is sodium cellulose acetate-butyrate sulfate.

7. The barrier film of claim 1 wherein said body fluid contacting product is a sanitary napkin.

8. The barrier film of claim 1 wherein said body fluid contacting product is a bedpan.

9. The barrier film of claim 1 wherein said body fluid contacting product is an ostomy bag.

[0. The barrier film of claim 1 wherein said film further comprises a plasticizer.

ll. The barrier film of claim 1 wherein said film further comprises an inexpensive extender.

12. The barrier film of claim 1 wherein said body fluid contacting product is a diaper.

13. The barrier film of claim 1 wherein said body fluid contacting product is a nursing pad.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENT N0. 3,897,782 DATED August 1975 INVENTOR(S) u e, Deger c.

it is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

In Column 3, Lines 18 and #9, the word "conventional" should read "convenient"--.

In Column i, Line 23, the word "exhibit tensile" should read "exhibit higher tensile" In Column 5, Last Line, the word "is likely" should read "is less likely" In Column 6, Line 17, the word "it" should read "is" In Column 6, Line 53, the word "whith" should read "which" In Column 6, Line 62, the word "to" should read "at" In Column ll, Line M, the word "was" should read "were" Signed and Scaled this eighth Day of unel976 [SEAL] Arrest:

RU'I'H C. MASON C. MARSHALL DANN Arresting Officer Commissioner 01' Parents and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3335128 *Sep 11, 1961Aug 8, 1967Eastman Kodak CoPreparation of mixed salts of watersoluble cellulose derivatives
US3624069 *Jun 28, 1965Nov 30, 1971Kelco CoProcess of preparing a gellable colloidal cellulose sulfate and product
US3702845 *Feb 11, 1970Nov 14, 1972Basf AgContinuous production of ethylene homopolymers
US3800797 *Jan 15, 1973Apr 2, 1974Johnson & JohnsonBody fluid barrier films
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4250192 *Apr 25, 1979Feb 10, 1981Ciba-Geigy CorporationNovel substituted phenylacetic acid amide compounds
US4322436 *Dec 17, 1980Mar 30, 1982Ciba-Geigy CorporationNovel substituted phenylacetic acid amide compounds
US4346104 *Dec 17, 1980Aug 24, 1982Ciba-Geigy CorporationNovel substituted phenylacetic acid amide compounds
US4346105 *Dec 17, 1980Aug 24, 1982Ciba-Geigy CorporationNovel substituted phenylacetic acid amide compounds
US4420490 *Dec 17, 1980Dec 13, 1983Ciba-Geigy CorporationSubstituted phenylacetic acid amide compounds
US4421765 *Oct 3, 1980Dec 20, 1983Ciba-Geigy CorporationAntiinflammatory agents
US4880417 *Oct 16, 1987Nov 14, 1989Biological Resistance, Inc.Deodorizing and sound muffling anal pad
US5346485 *Apr 30, 1993Sep 13, 1994Kimberly-Clark CorporationPolymeric composition for the absorption of proteinaceous fluids
US5509913 *Aug 18, 1995Apr 23, 1996Kimberly-Clark CorporationFlushable compositions
US5766159 *Jul 6, 1995Jun 16, 1998International Paper CompanyPersonal hygiene articles for absorbing fluids
US5947945 *Nov 4, 1996Sep 7, 1999The Procter & Gamble CompanyDisposable absorbent article with fit and fluid handling capabilities
US5972805 *Apr 7, 1998Oct 26, 1999Kimberly-Clark Worldwide, Inc.Ion sensitive polymeric materials
US5986004 *Mar 17, 1997Nov 16, 1999Kimberly-Clark Worldwide, Inc.Binders for fibers forming fabrics and acrylate copolymers
US6063982 *Sep 5, 1997May 16, 2000International Paper Company (From Thomas L. Wiesemann And John J. Shoemaker Jr.)Personal hygiene articles for absorbing fluids
US6194517Oct 5, 1999Feb 27, 2001Kimberly-Clark Worldwide, Inc.Ion sensitive polymeric materials
US6277768Aug 31, 1999Aug 21, 2001Kimberly Clark WorldwideTemperature sensitive polymers and water-dispersible products containing the polymers
US6291372Jan 11, 2000Sep 18, 2001Kimberly Clark Worldwide, Inc.Ion sensitive binder for fibrous materials
US6384297Apr 3, 1999May 7, 2002Kimberly-Clark Worldwide, Inc.Peel strip paper, coated with polyvinyl alcohol binder and silicaone release agent; adhesive; baffle blend of polyethylene glycol and acrylic acid-ethylene copolymer; disposable; biodegradable
US6423804Dec 31, 1998Jul 23, 2002Kimberly-Clark Worldwide, Inc.Ion-sensitive hard water dispersible polymers and applications therefor
US6429261May 4, 2000Aug 6, 2002Kimberly-Clark Worldwide, Inc.Copolymer of acrylic acid, acrylates, and sodium 2-acyryl-amido-2-methyl propanesulfonate with ethylene-vinyl acetate copolymer; water solubility changes with ion type and concentration
US6433245Jun 12, 2000Aug 13, 2002The Procter & Gamble CompanyFlushable fibrous structures
US6444214May 4, 2000Sep 3, 2002Kimberly-Clark Worldwide, Inc.Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6451429May 18, 2001Sep 17, 2002Kimberly-Clark Worldwide, Inc.Temperature sensitive polymers and water-dispersible products containing the polymers
US6495080Jun 28, 2000Dec 17, 2002Kimberly-Clark Worldwide, Inc.Methods for making water-sensitive compositions for improved processability and fibers including same
US6548592May 4, 2000Apr 15, 2003Kimberly-Clark Worldwide, Inc.Blend of sulfonate ion acrylic acid terpolymer and noncrosslinked ethylene-vinyl acetate copolymer; diapers, sanitary napkins, wipes
US6579570May 4, 2000Jun 17, 2003Kimberly-Clark Worldwide, Inc.Spraying, coating or foaming mixtures of acrylic terpolymers, ethylene-vinyl acetate copolymer binders and wetting agents on natural or synthetic fiber webs to form cleaners or disposable products
US6599848May 4, 2000Jul 29, 2003Kimberly-Clark Worldwide, Inc.Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6602955Feb 21, 2002Aug 5, 2003Kimberly-Clark Worldwide, Inc.Water-dispersible or flushable materials, polymers are insoluble in wetting composition comprising ions ofmonovalent salt solutions at a concentration from about 0.3% to 10%, but can be soluble in water or divalent salt solutions
US6630558Feb 7, 2002Oct 7, 2003Kimberly-Clark Worldwide, Inc.Ion-sensitive hard water dispersible polymers and applications therefor
US6653406May 4, 2000Nov 25, 2003Kimberly Clark Worldwide, Inc.Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6683143May 4, 2000Jan 27, 2004Kimberly Clark Worldwide, Inc.Copolymer comprising acrylamido- 2-methyl-1-propanesulfonic acid or sodium salt, (meth)acrylic acid, and alkyl acrylate monomers; disposable products; diapers
US6713140Dec 21, 2001Mar 30, 2004Kimberly-Clark Worldwide, Inc.Latently dispersible barrier composite material
US6713414May 4, 2000Mar 30, 2004Kimberly-Clark Worldwide, Inc.Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US6783826Dec 21, 2001Aug 31, 2004Kimberly-Clark Worldwide, Inc.Flushable commode liner
US6814974Jan 28, 2002Nov 9, 2004Kimberly-Clark Worldwide, Inc.The ion-sensitive sulfonate anion modified acrylic acid copolymers
US6815502May 4, 2000Nov 9, 2004Kimberly-Clark Worldwide, Inc.Ion-sensitive, water-dispersable polymers, a method of making same and items using same
US6828014Mar 22, 2001Dec 7, 2004Kimberly-Clark Worldwide, Inc.Water-dispersible, cationic polymers, a method of making same and items using same
US6835678Dec 5, 2001Dec 28, 2004Kimberly-Clark Worldwide, Inc.Fibers with a length of 6-10 mm and a water-soluble binder of sulfonate anion modified acrylic acid terpolymer and a non-crosslinking ethylene-vinyl acetate copolymer
US6855790Mar 29, 2002Feb 15, 2005Kimberly-Clark Worldwide, Inc.Ion-sensitive hard water dispersible polymers and applications therefor
US6897168Mar 22, 2001May 24, 2005Kimberly-Clark Worldwide, Inc.Water-dispersible, cationic polymers, a method of making same and items using same
US6908966Mar 22, 2001Jun 21, 2005Kimberly-Clark Worldwide, Inc.A polymer formulation containing a triggerable cationic polymer and a non-crosslinked co-binder polymer dispersed in the triggerable cationic polymer; used as binder for wet wipes
US6951933 *Aug 5, 2002Oct 4, 2005Weyerhaeuser CompanySuperabsorbent biopolymer for use in cosmetics, toiletries and infant diapers
US7070854Mar 22, 2001Jul 4, 2006Kimberly-Clark Worldwide, Inc.Disposable products; containing cationic polymer
US7101612Jul 7, 2001Sep 5, 2006Kimberly Clark Worldwide, Inc.Pre-moistened wipe product
US7276459May 4, 2000Oct 2, 2007Kimberly-Clark Worldwide, Inc.Ion-sensitive, water-dispersible polymers, a method of making same and items using same
US7919667Jun 15, 1999Apr 5, 2011Rayonier Trs Holdings Inc.Absorbent products and methods of preparation thereof
US8247641May 16, 2001Aug 21, 2012Rayonier Trs Holdings Inc.Absorbent products and methods of preparation thereof
US8497410Feb 18, 2011Jul 30, 2013Rayonier Trs Holdings Inc.Method for making absorbent products
US20100055060 *Nov 27, 2007Mar 4, 2010Naoyuki YoshidaCosmetic composition
Classifications
U.S. Classification604/364, 536/59, 604/368, 604/375
International ClassificationC08B7/00, A61L15/28, A61L15/62
Cooperative ClassificationC08B7/00, A61L15/62, A61L15/28
European ClassificationA61L15/28, C08B7/00, A61L15/62