Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3898986 A
Publication typeGrant
Publication dateAug 12, 1975
Filing dateDec 27, 1972
Priority dateDec 27, 1972
Publication numberUS 3898986 A, US 3898986A, US-A-3898986, US3898986 A, US3898986A
InventorsZaffaroni Alejandro
Original AssigneeAlza Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Biotransformable intrauterine device
US 3898986 A
Abstract
An improved intrauterine device which delivers a predetermined therapeutically effective dosage of drug locally to the uterus over a defined period of time is disclosed. The device is initially of a uterine-retentive shape. The device is characterized by undergoing a structural biotransformation in the uterus such that at the completion of the defined period of drug delivery it has achieved a non-uterine-retentive configuration.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Zaffaroni 1 BIOTRANS FORMABLE INTRAUTERINE DEVICE [75] Inventor: Alejandro Zaffaroni, Atherton,

Calif.

[73] Assignee: Alza Corporation, Palo Alto, Calif.

[22] Filed: Dec. 27, 1972 [21] Appl. No.: 319,014

52 vs. C! 128/130; 128/260 51 1m.c1 A6lf 5/46; A61m 31/00 [58] Field of Search 128/127, 128, 129, 130, 128/131, 333.5, 260-, 424/19, 21, 22, 33, 37,

[56] References Cited UNITED STATES PATENTS 3,143,472 8/1964 Lappes 424/33 3,533,406 10/1970 Tatum..... 3,625,214 12/1971 Higuchi 128/260 14 1 Aug. 12, 1975 3,636,956 1/1972 Schneider 128/335.5

3,640,741 2/1972 Etes 434/32 3,659,596 5/1972 Robinson.... 128/130 3,699,951 10/1972 Zaffaroni.... 128/130 3,710,795 1/1973 Higuchi 128/130 Primary Examiner-Richard A. Gaudet Assistant Examiner-J. C. McGowan Attorney, Agent, or Firm-Paul L. Sabatine; Edward L. Mandell; William H. Benz 5 7] ABSTRACT 16 Claims, 7 Drawing Figures PATENTEDAUBIZIBYS 3 898 986 FIG.|

FIG.2

' 'PATEm nAumms SHEET FIG.6

BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an improved drug dispensing intrauterine device. In a preferred embodiment this invention concerns an improved intrauterine device for dispensing locally to the uterus an interceptive agent for terminating pregnancy.

2. The Prior Art Presently, a critical need exists for an acceptable means for the direct continuous delivery of drugs directly (locally) to the uterus. Inthe prior art, it is most common to administer drugs to the uterus systemically, such as by injection, by ingestion or by intravenous infusion. With systemic administration, the amount of drugs needed to achieve the desired uterine purpose is so large that serious undesirable side effects often occur in many body organs.

Vaginal suppositories are another prior art drug form which has been used to administer drugs to the uterus, since some of the vaginally-administered drug which is absorbed through the vaginal walls passes via the circulatory system to the uterus. This method of delivery is essentially systemic and thus leads to the same serious side effects.

In my earlier US. Pat. applications Nos. 185,208 and 281,455, now US. Pat. 3,845,76l,filed on Sept. 30, 1971 and Aug. 17, I972, respectively, and entitled Novel Drug Delivery Device and Intrauterine Contraceptive AntiFertility Delivery Device, I disclose intrauterine devices which contain drugs and which administer a controlled flow of these drugs locally to the uterus. Such devices deliver drugs locally to the uterus only for a finite period of time and then must be removed either because the need for medication has passed or because the supply of drug in the device is exhausted and a new device is required. With conventional devices this removal is a major problem. The

uterus is lined with an extremely delicate vessel-and glandrich tissue, the endometrium, which surrounds and intimately contacts any object placed within it. Any probing for or the twisting and manipulating of an intrauterine device to effect its removal will almost certainly gouge and disrupt (or very likely damage) the endometrium and the vessels and glands it contains. Also, the geometry of the uterine cavity and cervix poses further complications as the cervix, through which any device must be removed, is relatively inaccessible and substantially smaller in diameter than the uterus. For these reasons, the removal of intrauterine devices is now almost always carried out by skilled medical personnel.

Attempts to make intrauterine devices in a shape or size which is easier to remove often introduces further complications since easy removal is, almost by definition, antagonistic to an acceptable degree of uterine re tention. A high degree of uterine retention is critical to the success of a drug dispensing intrauterine device. Premature expulsion of the device by the uterus is highly undesirable as it results in the premature termination of drug administration. To give the desired ther apy, the device must be retained in the uterus for the entire period planned. A device which is easily inserted and removed is also easily expelled. Conversely, a device having good retention characteristics is difficult to insert or remove without damage.

Insertion has-been facilitated in the prior art by forming a uterine-retentive shaped device from metal or plastic having an elastic memory, deforming the device by placing it in a narrow straight flexible insertion tube, guiding one end of the tube to and through the cervix, and extruding the device out of the insertion tube into the uterus where, as a result of its elastic memory, it assumes its uterine retentive shape. While this method promotes an otherwise difficult insertion, it is not effective to effect removal, as the manipulation needed to introduce an intrauterine device into an insertion" tube for removal is at least as harmful to the uterine tissues as the removal itself would be.

OBJECTS or THE INVENTION Accordingly, it is a primary object of this invention to provide an improved drug dispensing intrauterine device.

A more particular object of this invention is to provide an improved drug dispensing intrauterine device which does not pose the problems associated with removal from the uterus after completion of the therapeutic program.

Yet another object of this invention is to provide a drug-dispensing intrauterine device which delivers drugs to the uterus with increased therapeutic efficiency.

STATEMENT OF THE INVENTION To accomplish these and other objectives, the present invention provides an intrauterine device which releases a therapeutically effective flow of drug to the uterus over a defined dosage period. The device of this invention is fabricated to undergo a structural biotransformation during its period in the uterus, from an initial uterine-retentive configuration to a configuration at the completion of the defined dosage period which is not uterine-retentive and which permits the device to be facilely manually removed or to be spontaneously eliminated from the uterus.

While the invention encompasses delivery of drugs, broadly, over a wide range of time period, in a preferred embodiment, the devices of this invention are employed to release an interceptive agent for pregnancy termination locally to the uterus over a therapeutically effective defined period of time on the order of from about 8 hours to about 72 hours. At the completion of this period of time, the device has undergone biotransformation and is easily removed or spontaneously eliminated from the uterus.

DETAILED DESCRIPTION OF THE INVENTION BRIEF DESCRIPTION OF THE DRAWINGS The invention will be described with reference to the drawings wherein:

FIG. I is a cross-sectional elevational view of a uterus containing a drug-dispensing intrauterine device of this invention;

FIG. 2 is an enlarged cutaway section of the device shown in FIG. 1;

FIG. 3 is a cross-sectional elevational view of a uterus containing another embodiment of the device of this invention;

FIG. 4 is an enlarged cutaway section of the device depicted in FIG. 3;

FIG. 5 is an enlarged partially cut away elevational view of an embodiment of the device of this invention;

DEFINITION OF TERMS Devices of this invention initially upon insertion in the uterus are of a uterine-retentive configuration. The term uterine-retentive" as used in the specification and claims is defined as the property or characteristic of a-shape to not be susceptible to expulsion by the uterus, even when the uterus is undergoing uterine contraction and the like.

Devices of this invention undergo a structural biotransformation. The term structural biotransformation" as used herein is defined as a change which takes place in the structural solid frame'of an intrauterine device in response to the environment of the uterus wherein the frame innocuously disintegrates, breaks down. or collapses from an initial unit structure or entity to asecond structure, or structures, or particles, having a different form than the initial unit structure. Structural biotransformation can proceed through physical or chemical degradative processes, for example, deflation; a loss of rigor of a structual member; or dissolution or erosion of a structural member by solubilization, oxidation or reduction. enzymatic action, hydrolysis, ionization or ion exchange. Devices of this invention release drugs to the uterus. In a preferred em bodiment, they release interceptive agents. The term interceptive agents" as used herein refers to those agents or drugs which treat the tissue components of the uterus itself and/or the fertilized egg or embryo at various stages of its development to bring about or facilitate a termination of pregnancy such as by promoting expulsion or absorption of the embryo.

DETAILED DESCRIPTION OF THE DRAWINGS Referring to the drawings and particularly to FIGS. 1 and 2, in FIG. 1 a drug-releasing intrauterine device 10 is depictedlodged in uterus ll defined by walls 12 and I4 and fundus uteri I5 and terminated at cervix uteri l6. Walls 12 and 14 and fundus uteri are comprised of endometrium. a soft, tender; easily-disturbed tissue. Device comprises cross bar 17 and axial rod 19. As detailed in FIG. 2, drug dispenser 20 is attached byadhesive 21 to axial rod 19 at a position distal to cross bar 17. Drug dispenser 20 comprises a drugpermeable wall 22 surrounding a reservoir of drug carrier 24 and drug 25. Dispenser 20, as shown, passes drug by a diffusion control mechanism, that is, drug diffuses through wall 22 to be released and wall 22 is a rate release controlling material.Drug dispenser 20 is depicted in FIG. 2 with carrier 24 a liquid and with drug present in excess of its solubility limit in the liquid carrier. Such a diffusion drug dispenser is more fully described in my above-referenced copending patent applications Ser. Nos. 185,208 and 281,445, which are incorporated herein by reference. A diffusion dispenser of this type may be used to deliver a controlled flow of drug to the uterus for a prolonged period of time and is characterized by having drug present in an amount greater than its solubility limit in the liquid core and the core and wall materials selected such that the drug has a higher permeability in the core than in the wall. Such a dispenser can, if desired, give a constant (0 order time dependence) rate of drug release. A similar con struction for dispenser 20 which may also be used but is not shown employs a solid carrier as described in my copending application U.S. Ser. No. 42,786 filed June 2, 1970. and entitled Drug Delivery System, which application is also incorporated herein by reference.

Device 10; as initially inserted in the uterus, with its T shape, clearly has a uterine-retentive configuration. Device 10 typically would be inserted by placing axial rod 19 in an inserter, causing cross bar 17 to bend down and nest around the inserter as device 10 is pushed through cervix l6. Difficulty may sometimes be experienced in the removal of device 10 from the uterus in its initial form with the possibility of damage tothe endometrium. In accord with the present inven tion,- however, device 10 undergoes a structural biotransformation in response to the environment of the uterus. Cross barv l7 and center rod 19 of device 10 are fabricated'of a material, as will be set forth hereinafter, which is gradually soluble in uterine fluids and erodes slowly over a defined period of time. When bar 17 and rod 19 erode, they form innocuous products which are absorbed by or, which pass from the uterus. Dispenser 20 does not erode,;but is ofa shape which is not retentive in the uterus so that when structural biotransformation takesplace by bar 17 and rod 19 eroding, dispenser 20 is easily removed or is spontaneously discharged from-the uterus.

The material forconstructing bar 17 and rod 19 is selected to give a period of retention in the uterus prior to biotransformation which is correlated with the period of drug release. optimally, the two time periods should be similar. If biotransformation to a nonretentive shape occurs substantially before the drug in dispenser 20 is' 'exhausted, waste occurs. On the other hand, except in cases where it is desired to have an inert non-drug-releasing body present in the uterus, as isthe case with some intrauterine devices, it is generally most suitable to' discharge the remnants of device 10 from the uterus not substantially later than the end of the period ofdrug delivery so that a new device may be inserted to continue therapy.

Another variation-of the improved intrauterine devices of the presentinvention may be found in FIG. 3 taken in conjunction with FIG. 4. In FIG. 3 an intrauterine device 30 of this'invention is depicted in uterus 11 'havingkwalls 1'2- and-l4 and fundus uteri l5. Walls 12 and-14 define cervix uteri 16 as well. Uterus 11 is illustrated also'containing embryo 31 surrounded by amnion 32. Device 30 is shown in a typical uterineretentive configuration, a T, and comprises a center bar 19 having joined thereto a perpendicularly intersecting cross bar 17. As illustrated in detail in FIG. 4, Device 30 comprises an outer covering 42 surrounding an inner core 43. Covering 41 gradually releases drug to the uterus by=an erosion control mechanism, that is, particles or droplets of drug 42 are dispersed through a polymer which makes up the body of covering 41. This polym'er'is impermeable to the passage of drug and doe'snot permit the drug to escape to any appreciable extentby' diffusion; leaching, or like processes. The polymer is gradually soluble in the fluids of the uterine environme'nt'and gradually erodes, simultaneously uncovering and releasing entrapped drug 42. So long as the surface area of covering'4l remains essentially constant and the rate of erosion does too, the rate of drug release will remain essentially constant as well. A more complete description of controlled drug release through an erosion control mechanism may be found in copending United States patent applications Ser. No. 318.831 of Richard Baker and Jorge Heller filed of even date and entitled Novel Delivery Device. now abandoned. and Ser. No. 248.168 of Alan S. Miehaels. field Apr. 27. l972 and entitled Bioerodible Drug Delivery Device. which applications are incorporated herein by reference. Device 30. initiallynhas a uterineretentive configuration. It undergoes a biotransformation. for example. erosion or a loss of rigidity in the uterus. so as to transform device from an initially re tentive shape to either a non-retentive shape or to a plurality of fragments, which are nonretentive. This transformation occurs at about the time the delivery of drug 42 has been completed. in the. case of device 30, at or about the time that uterine fluid-impermeable covering 41 is eroded and the fluids contact core 43. Core 43 may be a rapidly erodible material such as poly(vinyl alcohol). gelatin or the like or a material which rapidly loses its rigor when hydrated by contact with uterine fluids. Since covering 41 .is liquid impermeable. no transformation of core 43 occurs until it has eroded. As soon as it has eroded. biotransformation rapidly follows. While device 30 of course is not so lim ited. in a preferred. application it can release to the uterus a pregnancy interrupting drug or interceptive agent so as tobring about the expulsionor reabsorption of fertilized egg or embryo 31 by the uterus. This appli cation of the device of the invention, as well as other applications. will be dealt with below.

Turning to FIG. 5, another representative device in accord with this invention, device 50., is illustrated. Device as shown is in a uterine-retentive shield or sca rab-like form. Device 50 comprises a plurality of flexible ribs 51 joined together with a semi-rigid web 52 which gives .thedevice itsform. Attached in the center of device 50 is osmotic drug dispenser 54. Osmotic dispenser 54 is made up ofa wall 55ofa material permea ble to uterine fluids. Wall 55 forms a compartment in which drug SSis contained. Drug 56' either alone or if required by means of admixture with a suitably osmotically effective compound causes uterine fluids to be drawn through wall .55. This flow of liquid causes drug 56 to be carried out of dispenser 54 via opening 57 and thus released to the uterus-Such drug dispensing de vices are described in more detail in copending US. Pat. application Ser. No. 259.469 of Theeuwes and Higuchi. entitled Dispensing Device. filed June 5, 1972, now US. Pat. No. 3.845.770. issued Nov. 5, 1974, which is herein incorporated by reference. When device 50 is placed in a uterus. drug 56 is released at a continuous rate over a defined prolonged period of time. The uterine environment functions to cause a biotransformation of device 50 so that. after a defined period. in accord with this invention, the device takes on a non-retentive form. In the case shown, this transfor mation takes the form of erosion of rigid web 52 so that only a flexible network of ribs 51 remain. This network is not strong enough to avoid collapsing and assuming a non-retentive form which may be easily and unobtrusively removed or expelled from the uterus.

Turning to FIG. 6, yet'another representive variation of the invention is set forth device 60. As detailed in the enlarged cross section of device 60 shown in FIG. 7. device 60 comprises a body of erodible impermeable polymer 71 having particles of drug 72 dispersed throughout.

When device 60-is initially inserted into a uterineenvironment. it has a retentive configuration. Polymer,7l. which might well be. the polymers described as suitable for coating 41 in FIGS. 3 and 4. gradually erodes inresponse to the uterine environment. As it does so. drug 72 is released. The products of, erosion are absorbable molecular particles. Eventually the biotransformation is completed and the device has wholly dissolved and been absorbed.

Suitable Shapes The present invention concerns gene'rally'the concept of an intrauterine device which undergoes biotransformation inuse from a uterineretentive shape to a non-retentive shape. The retentive and non-retentive shapes set forth in the figures are only representative and are not intended aslimitations on the invention. Any'retentive configuration may be used. Rather than to attempt to catalog the myriad retentive shapes known in the art. including bows. hearts.loops. comets.

spirals. and the like. the text IntrauterineContraceptive Devices (A Compilation of Devices) written by Shubeck et al and published in l97l by Massachusetts Institute of Technology which. as the title implies. does so. is herein incorporated by reference as illustrated suitable retentive devices. Non-retentive shapes can range from simple rods. shaped products and small fragments. to molecularly-sized particles. all of which are not retained by the uterus. i

Materials of Construction A variety of materials are employed in the devices of the invention. They may be classified as follows. First. the devices all contain at least one material which re' acts with the environment of the uterus to effect structural biotransformation. Second. the devices contain at' least one material which plays a part in releasing drugs from the device at a controlled rate over a defined period of time. Depending upon the mode of drug release. this can be the same material employed to effect the structural biotransformation. Third. in many cases the devices contain non-erodible non release rate control' ling materials as structural members and the like. Fi nally. the devices all contain and release a suitable active agent (drug). l i Turning first to biotran sformable materials: Biotrans formable materials suitable for fabricating the intrauterine devices are the materials that are non toxic and non-irritating to the endometrium of the uterus, and which upon biotransformatiorr produce end products that are also non-toxic. non-irritating and-safely and easily eliminated from the body. As already 'noted. biotransformation can proceed by a number of mecha' nisms. for example:

a. by a physical change such as deflation or a loss of temper; I b. by a loss of structural integrity such as a loss of rigor or rigidity of a component; or I I l c. by bioerosion of a structural member. said bioe'rosion being defined to include all mechanisms by which a unit structure disintegrates or breaks down from a unit structure orentity. to yield products of a molecular size which are thereafter absorbed by or passed from the uterus. Typical mechanisms include enzymatic action. oxidation or reduction. bydrolysis, ion exchange. dissolution by solubilization. and emulsion or micelle formation.

When biotransformation proceeds by deflation, suitable materials of construction include the distendable film-forming elastomers such as the natural and synthetic rubbers, butadiene-styrene block copolymers and the like which can form a deflata'ble structure. The deflation may proceed gradually as the inflating gas passes through the material or stepwise as a seal erodes to release the inflating gas.

When biotransformation proceeds through a loss of rigor or rigidity, a relatively rigid member becomes flexible and non-supportive. Such a biotransformation often proceeds through hydration of the relatively rigid member. Materials suitable for such a biotransformation include oriented poly(vinyl alcohol). dried gelatin, high hydrocarbon content poly(carboxylic acids) and hydrophilic lower alkyl acrylates and methacrylates such as hydroxyethylmethacrylate (Hyrlrun These materials are representative of flexibilizing' materials, that is materials which are initially rigid but which when exposed to the uterine environment gradually absorb uterine fluid, swell and lose their initial rigidity.

Biotransformation most commonly proceeds through bioerosion of a structural member formed of a bioerodible material. Exemplary materials to achieve such a mechanism include both natural and synthetic bioerodible materials such as (a) structural proteins and hydrocolloids of animal origin; (b) polysaccharides and other hydrocolloids of plant origin; and (c) synthetic polymers. Some of these matrix materials are suitable in their native form but others, particularly hydrocolloids, require insolubilization either by chemical modification, or physical modification, such as orientation, radiation cross-linking, etc. Exemplary of the structural proteins are: native and modified collagens, muscle proteins, elastin, keratin, resilin, fibrin, etc. Exemplary of polysaccharides and plant hydrocolloids are: algin, pectin, carrageenin, chitin, chondroitin sulfate, Agaragar, Guar, locust bean gum, gum arabic, gum Karaya, tragacanth, gum Ghatti, starch. oxystarch, starch phosphate, carboxymethyl starch, sulfaethyl starch, amino ethyl starch, amido ethyl starch, starch esters such as starch malcate, succinate, benzoate and acetate, and mixtures of starch and gelatin; cellulose and its derivatives such as modified cellulosics, such as partially by droxyethylated cotton obtained by the treatment of cotton withethylene oxide or partially carboxymethylated cotton obtained by the treatment of cotton with caustic and choroacetic acid. Exemplary of synthetic polymers are: poly(vinyl alcohol), poly(ethylene oxide), poly(acrylamide). poly (vinyl pyrrolidone), poly(ethyleneimine), poly(vinyl imidazole), poly(phosphate), synthetic poly(peptides), poly(vinyl alkyl ether), poly(acryl-and poly-methacrylamides), and copolymers of acrylamide and methacrylamide with up to 40% by weight of N-methylene bisacrylamide or N,N- dimethylol urea; poly(alkyl aldehydes), water soluble hydrophilic polymers of uncross-linked hydroxyalkyl acrylates and metacrylates, poly(alkylene carbonates), and the like. The list is illustrative.

Without intent to limit the scope of the present invention. the following materials are most useful as biotransformable materials in the intrauterine drug delivery devices, when the biotransformation proceeds through the preferred erosion mechanism of this invention.

l. Cross-Linked Gelatin Gelatin is obtained by the selective hydrolysis of collagen by means well known to those skilled in the art and comprises a complex mixture of water soluble proteins of high molecular weight. As used herein, the term cross-linked gelatin means the reaction product of gelatin or a gelatin derivative with a cross-linking agent reactive with either the hydroxyl, carboxyl or amino functional groups of the gelatin molecule and substantially unreactive with the peptide linkage of the gelatin molecule, the product of reaction having an average molecular weight of from 2,000 to 50,000 between cross-links, although higher values can be employed. Such a product is degradable in the environment of the uterus over a prolonged period of time.

Cross-linked gelatin materials are well inown to those skilled in the art and can be prepared by reacting the cross-linking agent with gelatin under suitable reaction conditions. The degree to which the gelatin is crosslinked is dependent upon the processing conditions employed to carry out the reaction and markedly affects its characteristics with regard to the time required in order for the material to biodegrade in the eye. The rate and, therefore, the degree of cross-linking of the gelatin is primarily determined by: (l) the effective concentration of reactive groups present; (2) reaction time; (3) temperature at which the reaction is carried out; and (4) pH of the reaction environment. The choice of the particular conditions will of course depend on the properties desired for the end product as hereinafter discussed.

Exemplary of suitable cross-linking agents are: aldehydes, such as monoaldehydes, e.g., C ,--C, alkanones, e.g., acetaldehyde, formaldehyde, acrolein, crotonaldehyde, Z-hydroxy adipaldehyde; dialdehydes. such as starch dialdehyde. paraldehyde, furfural and aldehyde bisulfite addition compounds such as formaldehyde bisulfite; aldehyde sugars, e.g., glucose, lactose, maltose, and the like; ketones such as acetone; methylolated compounds such as dimethylol urea. trimethylol melamine; blocked" methylolated compounds such as tetra(methoxymethyl) urea, melamine; and other reagents such as C C disubstituted carbodiimides; epoxides such as epichlorohydrin, Eponite lOO (Shell); para-benzene quinone; dicarboxylic acids, e.g., oxalic acid, disulfonic acids, e.g., m-benzene disulfonic acid; ions of polyvalent metals, e.g., chromium, iron, aluminum, zinc, copper; amines such as hexamethylene tetramine; and aqueous peroxydisulfate. See H. L. Needles, J. Polymer Science, Part A-l, 5 (l) l (1967).

Still another suitable method for cross-linking gelatin is that using irradiation; see for example Y. Tomoda and M. Tsuda, J. Poly. Sci., 54, 321 (l96l The reactive groups present in gelatin, i.e., hydroxyl, carboxyl and amino functions are present per 100 grams of high quality gelatin in the following approximate amounts: 100, and 50 meq of each of these groups, respectively. The number of reactive sites do not vary appreciably from one gelatin to another, i.e., Type A or B gelatins, unless major hydrolytic breakdown has occurred. These quantities may serve as a general guide in determining the amount of crosslinking agent to be used. For example, using formaldehyde as the cross-linking agent, concentrations thereof from 0.0l7o to 50% by weight, based on the weight of the gelatin in combination with reaction times of 0.l

hours to days and at temperatures of from 40C to C will yield suitable products, the exact combination of concentration, temperature and time depending on the desired dissolution rate. General information on cross-linked gelatin can be found in Advances in Protein Chemistry, Vol. V], Academic Press, 1951, Cross Linkages in Protein Chemistry. John Bjorksten.

2. Polyesters Polyesters of the general formula:

and mixtures thereof. wherein:

W is a radical of the formula CH or and;

Y has a value such that the molecular weight of the polymer is from about 4.000 to 100,000 may also be used.

These polymers are polymerization condensation products of monobasic hydroxy acids of the formula:

"(OH)COOH wherein n has a value of 1 or 2, especially lactic acid and glycolic acid. Also included are copolymers derived from mixtures of these acids. The preparation of polymers of formula 1 per se, forms no part of the present invention. Several procedures are available and reportedby Filachione. et a1, Industrial and Engineering C/IUHIISII'), Vol. 36, No. 3, pp. 223-228, (Mar. 1944) Tsuruta, et al., Macromol. Chem., Vol. 75, pp. 211-214 (1964), and in US. Pat. Nos. 2.703.316; 2,668,162; 3,297,033; and 2,676,945.

3. Cross-Linked Anionic Polyelectrolytes in his copending application Ser. No. 248,168 filed on Apr. 27, 1972, entitled Bioerodible Drug Delivery De vice, which application is herein expressly incorporated by reference.

4. Polyacids Polyacids characterized as being hydrophobic when unionized and as having a specified proportion of carboxylic hydrogens may also be employed as erodible biotransformable materials.

6. Suitable poly(carboxylic acids) are the hydrophobic polyacids which are represented by the general formula:

wherein: the R's are organic radicals independently selected to provide, on average, from 8 to 22 total carbon atoms for each carboxylic hydrogen. Variations of this ratio within this range can vary the erosion rates of these polymeric acids. Organic radicals represented by R, R R" may be selected from hydrocarbon radicals and hetero-atom containing radicals.

A preferred group of materials from which the bio transformable materials may be selected comprise hydrophobic polymers of an acid selected from acrylic acid, lower alkyl acrylic acids of from 4 to 6 carbon atoms per monomeric unit, and maleie acid either alone or copolymerized with up to about 2 moles per mole of acid of a copolymerizable olefinically unsatu rated group such as ethylene or lower 1 to 4 carbon) alkyl vinyl ethers wherein from about 20 to 90% of the acid groups have been esterified with an alkanol of from 1 to about 10 carbon atoms and wherein the ratio of total carbon atoms to acidic carboxylic hydrogens is in the range of from about 9:1 to about 20:1.

More specifically, good results are obtained with poly(carboxylic acids) which comprise the hydrophobic partially esterified copolymers of acrylic acid. methacrylic acid or maleic acid with from 0.2 to 1.5 moles, per mole of acid of ethylene or lower 1-4 carbon) alkyl vinyl ether having from about 35 to about of their total carboxylic groups esterified with lower alkanolof from about 3 to about 10 carbon atoms, said copolymers having a carbon to acidic carboxylic hydrogen ratio of from about 10:1 to about 15:1. These polyacids. their preparation and application to drug delivery devices are disclosed in substantial detail in commonly assigned copending application Ser. No. 318.831 of Jorge Heller and Richard Baker, entitled Novel Delivery Device, filed of even date with this present application and having Docket No. ARC 367. This application is expressly incorporated herein by reference. The foregoing materials are intended to be illustrative, others may be employed as biotransformable materials if desired.

Turning now to the materials which effect a controlled release of drugs from the devices of the invention, first the mechanisms of drug release should be considered. Any mechanism which will bring about a controlled release of drug and which may be adapted to a uterine-insertive size may be used. Three drug release mechanisms, described with reference to the Drawings, are eminently suited for employment in the present invention. These drug release mechanisms are:

1. Diffusion control release wherein drug is released by passing at a controlled rate through a membrane having a limited permeability to the drug;

2. Erosion control release wherein drug is released by gradual erosion of an entrapping encompassing matrix; and

3. Osmotic pumping release wherein drug is released by being gradually forced under osmotic pressure from a container.

When diffusion control release is employed. the device of the invention will include a release-ratecontrolling membrane through which the drug will pass by diffusion and optionally a liquid or solid core through which the drug is permeable at a higher rate than the rate of release through the rate-controlling membrane.

The materials suitable for fabricating the rate controlling membranes are generally those materials capable of forming walls, with or without pores. through which the drug can pass at a controlled rate by the process of diffusion. 9

Exemplary naturally occurring or synthetic materials suitable for fabricating a permeationcontrol wall are drug rate release controlling materials such as poly(methylmethracrylate), poly(butylmethacrylate), plasticized or unplasticizcd poly(vinylchloride), plasticized nylon, plasticized soft nylon, plasticized poly- (ethylene terephthalate), natural rubber, poly(isoprene), poly(isobutylene poly(butadiene poly(ethylene), poly(tetrafluoroethylene), poly(vinylidene chloride), poly(acrylonitrile), cross-linked poly (vinylpyrrolidone); poly(trifluorochlorethylene), poly (4 -isopropylidene diphenylene carbonate), and the like. Also, by way of non-limiting example, copolymers such as'ethylenevinylacetate, vinylidene chloride acrylonitrile, vinyl chloride diethyl fumarate and the like. Examples of other materials include silicone rubbers, especially the medical grade poly(dimethylsiloxanes), andsiliconecarbonate copolymers; hydrophilic polymers such as the hydrophilic hydrogels of esters of acrylic and methacrylic acid as described in US. Pat. Nos. 2,976,576 and 3,220,960 and Belgian Pat. No. 701,8l3, modified insoluble collagen, cross-linked poly(vinylalcohol), cross-linked partially hydrolyzed poly( vinylacetate), and surface treated silicone rubbers as described in US. Pat. No. 3,350,216. Other polymeric membranes that are biologically compatible and do not adversely affect the drugs can be used. 2

Materials suitable for use as the optional carriers in diffusion control systems include liquid or solid materials of natural or synthetic origin having a permeability to drug which is higher than the permeability of the rate controlling membranes.

Representative drug permeable liquid carriers include ethylene glycol, diethylene glycol, ethylene glycol monomethyl ether, mixed binary liquid systems such as ethyl alcoholzwater, fats and oils of plant, animal and marine origin, liquid fatty acids such as caproic acid, silicone oil, medical oil, and sterile water or saline.

Suitable drug-permeable solid carriers include solids having a higher drug permeability than the release rate controlling membranes, for example, the dimethylsilicon es, silicone carbonate polymers, 'hydrophilic hydrogels of esters of acrylic and methacrylic acid, and the like.

When an erosion control release mechanism is employed, particles, including grains or droplets, of drug are dispersed through a body of drugimpermeable erodible polymer. Suitable polymers for this purpose include essentially hydrophobic impermeable filmforming polymers. Two classes of polymers which are quite effective are the polyesters and hydrophobic polyacids described above as suitable for use as biotransformable materials. The polyacids are preferred materials for effecting erosion control of drug release.

When osmotic delivery is the mode of drugrelease, a wall of material selectively permeable to uterine fluids is employed; Typical materials for forming an osmotic wall include cellulose acetate, agar acetate, and cellulose acetate derivatives. hydroxylated ethylenevinyl acetate and derivatives of poly(styrene). With osmotic delivery, itis often required to employ an osmotically effective solute to draw uterine fluid through the wallinto the device. Typical solutes are sodium chloride. magnesium chloride and sulfate, potassium sulfate and the like. A fuller description of materials for and the operation of an osmotic delivery device are given in incorporated application Ser. No. 259,469 of Theeuwes and Higuchi.

The third major group of materials for use in the devices of this invention comprise inert structural materials. These components are optionally employed. These materials include any biocompatible material and may range from gold and stainless steel to poly(ethylene), poly(urathane), fiber glass, nylon, poly(isoprene) and cardboard.

The final materials of construction are drugs, which are incorporated in and released from the biotransformable intrauterine devices. The term drug broadly includes physiologically or pharmacologically active substances for producing effects in mammals, including humans and primates; avians, sport or farm animals such as horses, dogs, cats, cattle, sheep and the like; or laboratory animals such as mice, monkeys, rats, guinea pigs and the like.

While the devices of this invention operate with special effectiveness with drugs which have a localized effeet in or upon the uterus, systemically active drugs which act at a point remote from the uterus may be administered as well and are included within the term drugs. Thus, drugs that can be administered by the intrauterine device of the invention include, without limitation: drugs acting .on the central nervous system such as, hypnotics and sedatives such as pentobarbital sodium, phenobarbital, secobarbital, thiopental, etc.; heteroc'yclic hypnotics such as dioxopiperidines, and glutarimides; hypnotics and sedatives such as amides and ureas exemplified by diethylisovaleramide and a-bromoisovaleryl urea and the like; hypnotics and sedative alcohols such as carbomal, naphthoxyethanol, methylparaphenol and the like; and hypnotic and sedative urethans, disulfanes and the like; psychic energizers such as isocarboxazid, nialamide, phenelzine, imipramine, tranylcypromine, pargylene and the like; tranquilizers such as chloropromazine, promazine, fluphenazine .reserpine, 'deserpidine, meprobamate, benzodiazepines such as chlordiazepoxide and the like; anticonvulsants such as primidone, diphenylhydantoin, ethotoin, pheneturide, ethosuximide and the like; muscle relaxants' and' anti-parkinson agents such as mephenesin, methocarbo'mal, trihexylphenidyl, biperiden, lcvo-dopa, also known as L-dopa and L-B-3-4-dihydroxyphcnylalanine, and the like; analgesics such as morphine, codeine, 'meperidine, nalorphine and the like; anti-pyretics and anti-inflammatory'agents such as aspirin, salicylamide, sodium salicylamide and the like; local anesthetics suchas procaine, lidocaine, naepaine, piperocaine, tetracainc, di bucaine and the like; antispasmodics and anti-ulcer agents such as atropine, scopolamine, methscopolamine oxyphenonium, papaverine; anti-microbialssuch as penicillin, tetracycline, oxytetracycline, chlorotetracycline, chloramphenicol, sulfonarnides and the like; anti-malarials such as 4- aminoq'u'inolines," -8-aminoquinolines and pyrimethamine; hormonal agents such as prednisolone, cortisone. cortisol and triamcinolone'. sympathomimetic drugssueh as epinephrine. amphetamine. ephedrine. norephineprine and the like; cardiovascular drugs. for example. procainamide. amyl nitrate. nitroglycerin. dipyridamole. sodium nitrate. mannitol nitrate and the like; diuretics, for example. ehlorothiazide. flumethiazide and the like; antiparasitic agents such as bephenium hydroxynaphthoate and dichlorophen. dapsone and the like; neoplastic agents such as mechlorethamine. uracil mustard. S-fluorouracil. (1- thioguanine. procarbazine and the like; hypoglycemic drugs such as insulins. protamine zinc insulin suspen sion. globin zine insulin. isophane insulin suspension. and other art known extended insulin suspensions. sulfonylureas such as tolbutamide. acetohexamide. tolazamide. and chlorpropamide. the biguanides and the like; nutritional agents such as vitamins. essential amino acids. essential fats and the like; and other physiologically or pharmacologically active agents.

The devices of this invention deliver with special effeciency drugs for locally treating uterine or vaginal disorders. such as endometritus, vaginitis and irregular vaginal bleeding. Such drugs include.for example. antibiotics. hormones and the like. The devices also function with special efficiency delivering progestational substances that have anti-fertility properties and estrogenic substances that have anti-fertility properties. These substances can be of natural or synthetic origin. They generally possess a cyclopentanophenanthrene nucleus. The term progestational substance as used herein embraces progestogen which term is used in pharmaceutically acceptable steriod art to generically describe steroids possessing progestational activity. and the former also includes progestins, a term widely used for synthetic steroids that have progestational effects. The active anti-fertility progestational agents that can be used to produce the desired effects in mammals. including humans, and primates include without limitations: pregn-4ene3.20-dione. also known as progesterone; l9-nor-pregn-4-ene-3.ZO-dione; l7-hydroxyl9-nor-l 7oz-pregn-5( l )-3n3-20-yn-3-one;

dl-l lB-ethyll 7-ethinyl l 7- -ethinyl-l 7-B-hydroxygon- 4-ene-3-one; l7a-ethinyl-l 7-hydroxy-5( l0)-estren- 3-one; l7a-ethinyll 9norestosterone; 6-chlorol 7- hydroxypregna-4.o-diene 3.ZO-dione; l.7,B-hydroxy-6ozmethyl-1 7-( l-propynyl )androst-4 ene-3one; 9,8. l O- -pregna-4.6-diene-3.20-dione; l 7-hydroxy- 1 7ozpregn-4-en-20-yne3-one; 19-nor- 1 7a-pregn-4-3n-20- yen-33.1 7-dial; l7-hydroxy-pregn-4-ene-3.20-dione; l7a-hydroxy-progesterone; l7-hydroxy-6a-methylpregn-4-ene-3.20-dione; mixtures thereof. and the like.

The estrogenic anti-fertility agents useful herein also include the compounds known as estrogens and the metabolic products thereof that possess anti-fertility properties or that are converted to active anti-fertility. agents in the uterine environment. Exemplary estrogenic compounds include B-estradiol. B-estradiol 3- benzoate. l7-fl-cyclopentanepropionate estradiol. 1.3,- 4( lO)-estratriene-3.l7fi-diol dipropionate; estral.3.5( l0)-triene-3.l7-B-diol valerate, estrone. ethinyl estradiol. l7 -ethinyl estradiol-3 methyl ether. 17- ethinyl estradiol3-cyclopentoether. estriol. mixtures thereof, and the like. Y

In a most preferred application. devices of this inven tion contain and deliver intereeptive agents for pregnancy termination. Included within the group entitled intereeptive agents are all drugs which cause=the premature expulsion or absorption of a fetus by the uterus. lnterceptive agents include materials like sodium chloride and fattyacids which induce expulsion of a fetus by causing uterine tonicity and pH imbalance respectively. Other intereeptive agents include drugs for inducing uterine contractions such as the oxytocie agents. for example. oxytocin. ergot alkaloids such as ergonovine and methylergonomine. quinine. quinidine. histamine. sparteine. and the prostaglandins. The E and F series prostaglandins. especially prostaglandins E E and F are very suitably delivered by devices of this invention to interrupt pregnancy. A full description of useful prostaglandins and their application in intrauterine devices is given in the eopending U.S. patent application Ser. No. 318.890 filed of even date with this application by Peter Ramwell. entitled Intrauterine Drug Delivery Device. which application is herein incorporated by reference.

The amount of drug present in the device is depen dent upon dosage requirements and the length of time the device is to be in place in the uterus and may vary from a single dose of a very potent drug. which may be as little as a few micrograms. to an amount sufficient for several hundred or even a thousand doses of a less potent drug. such as up to several grams (for example. 5 grams). The devices of-this invention are intended to release drugs locally to the uterus over defined prolonged periods of time. that is. for periods of from about 3 hours to 30 days or longer. With the progesta tional and estrogenic substances. delivery times of from about 1 day to 30 days or a year or more are preferred. with dosage rates of from about 10 to 200mg per day being preferred. thus making it desirable to incorporate at least from about 10 mg to about 6 grams of these substances in a delivery device. When intereeptive agents are administered for pregnancy terminating purposes. it is preferred to administer the agents over a pe riod of from about 4 hours to about 24 hours. When prostaglandins are the intereeptive agents. they delivered at a rate of about ll microgram/minute to about 25 micrograms/minute. Thus. considering thedosage rate and period. the loading of prostaglandins as interceptive agents in the present devices may suitably vary from about 250 micrograms up to as much as about milligrams. Preferablythe loading of prostag ndin would be between about 1 milligram and abol 100 milligrams. Similar drug loadings could be determined for the many other drugs suitably delivered by these devices based on the dosage period and rate desired.

The intrauterine devices gradually undergo biotransformation in the uterus and release their drug. The rate of biotransformation will depend in part on the recipients temperature (generally from about 35to 43C). uterine pH (generally pH 7-8) and the amount of uterine fluids presently available to Contact the device.

The rate of biotransformation and drug release of materials employed in the invention can be determined experimentally in vitro by testing them under simulated environmental conditions. For example. the rate of biotransformation of a material in uterine fluids may be measured by placing a small weighed sample of the material in physiological saline solution a solution of pH about 7.4 (simulated uterine fluids) at body temperature (37C), agitating for a timed interval. and periodically measuring the amount of material eroded into the solution. Similarly. a rate of biotransformation through softening of a material may be derived in vitro by placing the material in simulated uterine fluid and measuring its flexibility. To accurately predict in vivo results. it is necessary to multiply the in vitro rates by an experimentally determined constant which takes into account differences in stirring rate and fluid volumes between the living body and the in vitro test apparatus. This constant may be derived in the cases just set forth by placing a plurality of small weighted samples of material in a plurality of uteri and sequentially. over a period of time, removing and weighing or flex-testing the samples. The rates thus determined, divided by the rates observed in vitro with the same material. equal the necessary constant.

For a more complete understanding of the nature of this invention. reference should be made to the following examples which are given merely as further illustrations of the invention, and are not to be construed in a limiting sense.

EXAMPLE I A biotransformable intrauterine device which achieves biotransformation through erosion is prepared.

I. An erodible hydrophobic polycarboxylic acid is prepared as follows:

l2.6 grams (0.10 equivalents) of ethylene-maleic anhydride copolymer (Monsanto EMA. Grade 31 is stirred with 0.04 moles of n-pentyl alcohol at l()l C for 7 hours. The solution is cooled to room temperature and methylene chloride is gradually added to the cloud point. Then more methylene chloride is added to precipitate the product (total vol. 3!). The precipitate is thoroughly leached with the methylene chloride. The solvent is decanted and the product dissolved in 75 ml warm acetone. Methylene chloride is added to the cloud point. Then more methylene chloride is added to precipitate the product (total vol. 2!). The precipitate is then thoroughly leached with the methylene chloride. The solvent is decanted and the product dissolved in 75 ml acetone. The solution is transferred to a poly(propylene) container and the solvent is removed under vacuum at 50C to yield the polymer product. The infrared spectrum of the polymer shows broad bands at 1,680 and 1,780cm. indicative of ester carboxyl. Titration with base shows that the pentyl half ester of the maleic acid copolymer has been formed, and thus the ratio of total carbons to ionizable hydrogens on average is 1 1:1.

2 A B-estradiol-containing material is prepared as follows: 4

5.4 grams of the half esterpolymer of part A is dissolved in IS ml of acetone. with stirring at C. 0.6 grams of crystalline B-estradiol are dispersed in the solution with stirring. The resulting viscous dis persion is cast in a polyethylene mold into a rod of wet diameter of about 2.0 mm. The cast rod is allowed to dry thoroughly to yield a l mm diameter dry rod. The resulting rod is removed ,from the die. It weighs about mg percm and'contains about 3 mg of B-estradiol per cm.v 1

3. An intrauterine device is prepared and used as follows: v

A 2 cm long portion of the rod of part B is affixed with epoxy glue to a 2 cm long piece of nonerodible poly(ethylene) to form a T shaped device.

The cross bar is erodible. the center bar is nonerodible. The center bar of this device is inserted in a straight flexible plastic inserter. The cross bar arms are flexible and bend down so that the device is easily inserted into a humana uterus. The T shape is a uterineretentive configuration.

The bar of poly(carboxylic acid) is hydrophobic and impermeable to the absorption of uterine fluids or to the passage of drug. The bar of poly(carboxylic acid) gradually erodes and as it does so releases an average of about 30 micrograms of B-estradiol per hour for about 200 hours. After about [-200 hours. the erosion of the cross bar has progressed to a point that the cross bar breaks loose from the center bar. The center bar alone is not a uterine retentive form and is expelled from the uterus during or before the users next menstrual period.

EXAMPLES ll AND lll Example Alkanol 2 n-hutanol 3 n-hexanol The ratio of total ca'rbon atoms to ionizable carboxylic hydrogens in each of the resulting half esters is as follows:

Example Ratio:

Carbons lonizahle Hydrogens The material of Example ll erodes about twice as fast asthe material of Example I, while the material of Example lll erodes about one-half as fast as the material of Example l. A 4 cm piece of the material of Example ll is shaped into a 7' configuration which an 8 cm piece of the material of Example III is bent into an S shaped loop. Both shapes prove retentive when inserted into a human uterus. The first erodes to a series of small fragments over a period of about hours, releasing drug at an average rate of about micrograms/hour. The latter requires about 400 hours to erode. At the end of the erosion, the deviceshavebiotransformed to a nonretentive configuration.

EXAMPLE IV A biotransformable drug delivering intrauterine device having a drug release rate controlling wall permeable to the passage of drug and surrounding a reservoir comprised of a drug and a liquid core for releasing progesterone is manufactured as follows: a liquid dispersion drug carrier is prepared by intimately contacting and blending in a rotating mill 25% by weight of progesterone and l07z by weight of barium sulfate with a 'mixture comprising 3 partsby weight of Dow-Corning 382 elastomer resin. low molecular weight prepolymer liquid silicone and 1 part by weight of Dow-Corning 360 medical fluid silicone oil. The liquid dispersion is permeable to the drug and the drug is sparingly soluble therein. Next. the liquid dispersion is injected into a 2 cm length of ethylene vinyl acetate copolymcr tubing comprised of 9% by weight of vinyl acetate and having an inside diameter of 0.075 inches and an outside diameter of 0.1 10 inches. The ends of the tubing are heat sealed.

This 2 cm long tube is not a uterus-retentive configuration. The tube is fabricated into a retentive T shape in the following manner:

First, an erodible polyvalent metal ion cross-linked polyelectrolyte is prepared. Seventy grams of sodium alginate (Keltone, Kelco Co., KT-9529-2l is dissolved in 3.000 ml of distilled water to yield a slightly viscous solution. in a separate preparation, 100 grams of zinc chloride is dissolved in 4,000 ml of distilled water and the pH is adjusted to 3 with concentrated hydrochloric acid. The zinc chloride solution is transferred into a high speed blender. To this solution is added the sodium alginate solution. The mixture is stirred and allowed to stand overnight. The precipitate is then washed continuously with distilled water to a negative silver chloride test. The aqueous suspension of the sodium chloride-free zine alginate is isolated by lyophilization and vacuum-dried at 40C overnight. Into a blender containing 1.000 ml of 1.2% ammonium hydroxide solution is added 50 grams of zinc alginate previously prepared. Agitation is continued until the complete dissolution of the zinc alginate results. The resulting viscous dispersion is drawn on a glass plate with a wet thickness of ca. 200 mils. The cast plate is allowed to dry thoroughly. The resulting film is about 60 mils thick. It is removed from the plate and is cut into 0.5 cm wide strips. A 2 cm long strip of the alginate material is attached to the heat sealed tube previously pre pared with adhesive to yield a uterine-retentive T configuration. When the device is placed in a uterus, progesterone is released through the ethylene vinyl acetate tube by diffusion at a rate of about -30 micrograms per day. This release continues at this rate for a pro longed period of time. The metal ion cross-linked polyelectrolyte cross bar is gradually eroding in the uterus by a process of metal ion exchange. Monovalent metal ions from uterine fluids gradually displace the cross linking polyvalent ions resulting in solubilization of the polyelectrolyte. After about -40 days enough of the polyelectrolyte has solubilized to render the cross bar so flexible that it no longer functions to retain the device in the uterus. The device is then non-retentive and is expelled by the uterus.

EXAMPLES v vn Three biotransformable intrauterine devices adapted to release interceptive agents to terminate pregnancy.

are prepared as follows:

To three 10 gram portions of the nbutanol half ester material of Example II are added respectively: 1.0 gram of the prostaglandin known as PGF and 0.2 and 0.4 grams of PGE Each of these mixtures is dissolved in acetone. A multi-armed, T shaped intrauterine device, made with a nonbioerodible flexible polyethylene center bar and cross arms of the erodible pentyl half ester of Example I has the lower end of its center bar repeatedly dipped into the first of these solutions and dried. 100 mg of ester and prostaglandin is deposited. Second and third multi-armed T debices are dipped into the second and third solution. mg of each of these polymer and prostaglandin mixtures are deposited. It would be pos sible. of course, to deposit more, said 500 mg. or less, say 60 mg, of the mixtures.

The three devices are gently inserted into uteri of three first trimester pregnant women. The devices release respectively:

10 micrograms/minute of PGE 2 micrograms/minute of PGE and 4 micrograms/minute of PGE all for periods of about 24 hours. After another 24 48 hours. the erodible cross arms begin to drop off and the devices are expelled.

These releases of prostaglandins are sufficient to cause uterine contractions and are suitable for effect ing therapeutic pregnancy termination. Varying the concentration of prostaglandin from about 1 to about 20% basis polymer would give delivery rates of from about 1 microgram/minute to about 20 microgram/minute.

EXAMPLE IX An aqueous solution 20% of polyvinyl alcohol is prepared. This solution is formed into an oriented 30 gauge fiber suitable spinnerette and dried and drawn. A large number of these fibers are bundled together and placed in a heated die. There they are presented at 800 psi and 250C for 4 minutes to yield a 0.15 inch diameter rod of oriented polyvinyl alcohol. This rod, while deformable and shapable. is relatively rigid. A 7V2 inch length of this material is bent into a mold loopshaped in accordance with FIG. 7. Heat is applied and the rod assumes the molds uterine -retentive shape.

To the small end of this loop device is attached an osmotic drug dispenser. This dispenser consists of a 1 cc container constructed of the semi-permeable material, cellulose acetate. Located within the container is a solution of oxytocin and 0.5 gram of magnesium chloride. There is a single opening in the container. a 0.0l cm diameter hole. When such a dispenser is placed in an aqueous environment, it absorbs water and forces oxytocincontaining solution out of the 0.01 cm hole. The rate of pumping is substantially constant. The rate of oxytocin delivery tends to decrease with time as the inflowing water causes dilution. When such a dispenser is placed in a human uterus, an amount of oxytocin sufficient to induce uterin contractions is delivered for about 18-24 hours. The dispenser is retained in the uterus by the uterineretentive loop of polyvinyl alcohol to which it is affixed. At about the end of this defined period of drug administration, or within about 6 hours after the end of the drug administration, the oriented polyvinyl alcohol loop has absorbed enough water to loose its rigidity and, hence, its uterine retentive characteristics. The device may then be easily removed or may be spontaneously expelled from the uterus.

I claim as my invention:

1. A drug dispensing intrauterine device, shaped and adapted for insertion into the uterine cavity, with the device comprising in combination:

a. a drug b. a delivery means adapted for insertion into the uterine cavity and for dispensing a therapeutically effective amount of drug to the uterine cavity over adefined period of time, and

c. retention means for retaining the delivery means within the uterine cavity throughout the defined period of drug dispensing time. said retention means having an initial unit structural configuration shaped and adapted for insertion-and positioning in the uterine cavity including means for undergoing biotranformation in the uterine cavity to a different and non-uterine retentive configuration and shaped whereby at the completion of said defined period of drug dispensing time. said drug dispensing device is facilely removed or spontaneously eliminated from the uterine cavity.

-2. The device in accordance with claim 1 wherein said biotransformation comprises erosion.

. 3. A T-shaped drug dispensing intrauterine device comprising-in combination:

1a. A crossbar comprising the ,pentanol half ester of a ethylene maleic anhydride copolymer having B-estradiol dispersed therethrough, and b..depending from and affixed to the central portion of said crossbar a center bar of non-erodible polyethylene, said device initially beingof size suitable for insertion into the uterus and of a uterine retentive shape, said crossbar eroding in response to the environment of the uterus to gradually release drug at a controlled rate over a prolonged period of time and to vbiotransform the device into a non-uterineretentive shape.

4. An intrauterine device for dispensing an interceptive agent, said device shaped and adapted for insertion into'the uterine cavity comprising in combination:

an interceptive agent,

b.:delivery means containing interceptive agent for supplying a therapeutically effective amount of said interceptive agent to said uterine cavity over a defined period of time,

c. retention means for retaining said delivery means within said uterine cavity throughout said defined period of time, said retention means comprised of an initial uterine retentive configuration and shape and having means for undergoing biotransformation in said uterine cavity to a non-uterine retentive configuration and shaped whereby at the completion of said delivery means defined period of time for supplying interceptive agent at a controlled ratepsaid intrauterine device is facilely removed or spontaneously eliminated from said uterine cavity.

-5. The intrauterine device in accordance with claim 4 wherein said retention means biotransformation comprises erosion of said means.

6. The device in accordance with. claim 5 wherein said delivery means comprises a body or erodible material which upon erosion of said erodible material disperses drug having interceptive agent dispersed therethrough. I

7. The intrauterine device in accordance with claim 5 wherein saiddelivery means comprises an osmotic dispenser shaped and adapted for insertion into the uterine cavity, said osmotic dispenser having a wall permeable to the passage of uterine fluids and impermeable to an interceptive agent-containing composition, enclosed by said wall which interceptive agentcontaining-composition exhibits an osmotic pressure gradient against fluids wherebyuterine fluid permeates through'said wall and produces a solution of said interceptive agent-containing composition that is released from said dispenser through an opening at a controlled rate.

8. The device in accordance with claim 5 wherein said delivery means comprises a wall enclosing said interceptive agent and permeable to the passage of said interceptive agent by diffusion at a controlled rate, this passage of said interceptive agent through said wall controlling the rate of interceptive agent release from said device.

9. The device in accordande with claim 4 wherein said interceptive agent is a labor-inducing agent.

10. A drug dispensing intrauterine device adapted for insertion into the uterine cavity comprising in combination:

a. a drug,

b. a delivery means for supplying a therapeutically effective amount of drug to said uterine cavity over a defined period of time, said delivery means comprising a body of erodible material having drug dispersed therethrough which upon erosion of said erodible. material. releases dispersed drug at a controlled rate, and

c. retention means for retaining said delivery means within said uterine cavity throughout said defined period of time, said retention means undergoing biotransformation by erosion in said uterine cavity from auterine retentive shaped configuration to a non-uterine retentive configuration and shaped whereby at the completion of said defined period of time said drug dispensing device is facilely removed or spontaneously eliminated from said uterine cavity.

11. A drug dispensing intrauterine device for insertion into a uterine cavity with the device comprising in combination:

' a. a drug,

b. a drug delivery means adapted for insertion into the uterine cavityv and for dispensing a therapeutically effective amount of drug to the uterine cavity over a prolonged. period of time, said delivery means comprising an osmotic dispenser having a wall permeable to the passage of uterine fluids and a drug-containing composition enclosed by the wall which composition exhibits an. osmotic pressure gradient against said fluid whereby uterine fluid permeates through the wall and produces a solu tion of the drug-containing composition that is released from the drug delivery means through an opening at a controlled rate, and

c. retention means for retaining the delivery means within the uterine cavity throughout the prolonged period of drug dispensing time by the delivery means, said'retention means having an initial unit structural shape adapted for insertion and positioning in the uterine cavity, said retention means undergoing biotransformation in the uterine cavity to a different non-uterine retentive configuration and shaped whereby at the completion of the prolonged period'of time said drug dispensing device is facilely removed or spontaneously eliminated from the uterine cavity.

12. A drug dispensing intrauterine device for insertion into a uterine cavity with the device comprising in combination: t e

a. a drug,

b. a drug delivery means adapted for insertion into the uterine cavity and for dispensing a therapeutically effective amount of drug to the uterine cavity over a prolonged period of time. said delivery means comprising a wall enclosing said drug and permeable to the passage of said drugby difiusion at a controlled rate, this passage of said drug through said wall controlling the rate of drug rewith the retention means undergoing biotransformation in the cavity by a loss of rigor to a nonuterine retentive configuration whereby at the completion of the period of time. the device is facilely removed or spontaneously eliminated from said uterine cavity.

15. A drug dispensing intrauterine device adapted for insertion into a uterine cavity with the device comprising in combination:

a. a drug,

b. a drug delivery means comprising an osmotic dispenser having a wall permeable to the passage of uterine fluids and a drugcontaining composition enclosed by the wall which exhibits an osmotic pressure gradient against said fluids whereby fluid shaped whereby at the completion of the prolonged period of time said drug dispensing device is facilely removed or spontaneously eliminated from the uterine cavity.

permeates through the wall and produces a solu tion of the drug-containing composition that is re leased from the device through an opening at a controlled rate, and

retention means for retaining the delivery means within the cavity throughout the period of time, said retention means having an initial shape adapted for insertion and positioning in the cavity, with the retention means undergoing biotransformation in the cavity by a loss of rigor to a nonuterine retentive configuration whereby at the completion of the defined period of time the device is facilely removed or spontaneously eliminated from said uterine cavity.

16. A drug dispensing intrauterine deviceadapted for insertion into the uterine cavity comprising in combination:

a. a drug,

b. a drug delivery means for supplying a therapeutically effective amount of drug to said uterine cavity over a defined period of time, said means comprising a wall enclosing the drug and permeable to the passage of said drug by diffusion with the passage 13. A drug dispensing intrauterine device adapted for c. insertion into the uterine cavity comprising in combination:

a. a drug, b. a delivery means for supplying a therapeutically effective amount of drug to said uterine davity over 2 a defined period of time, and

c. retention means for retaining said delivery means within said uterine cavity throughout the period of time, the retention means having an initial shape adapted for insertion and positioning in the uterine cavity, with the retention means undergoing biotransformation by a loss of rigor of a structural member in the cavity to a non-uterine retentive configuration whereby at the completion of the period of time the device is facilely removed or spon- 3 taneously eliminated from said uterine cavity.

14. A drug dispensing intrauterine device adapted for insertion into a uterine cavity comprising in combination: of drug through the wall controlling the rate of a. a drug, 4() drug release from the device, and b. a drug delivery means adapted for insertion into c. retention means for retaining the delivery means the uterine cavity and for dispensing a therapeutically effective amount of drug to said cavity over a period of time, wherein said delivery means comwithin the cavity throughout the period of time, said retention means having an initial shape adapted for insertion and positioning in the cavity,

prises a body of erodible material having drug diswith the retention means undergoing biotransforpersed therethrough which upon erosion releases mation in the cavity by a loss of rigor to a nondispersed drug, and uterine retentive configuration whereby at the retention means for retaining the delivery means completion of the period of time said device is facwithin the cavity throughout the period of time, ilely removed or spontaneously eliminated from said retention means having an initial shape said cavity. adapted for insertion and positioning in the cavity,

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3143472 *Sep 25, 1961Aug 4, 1964Lilly Co EliEnteric compositions
US3533406 *Sep 18, 1968Oct 13, 1970Population Council IncIntrauterine contraceptive device
US3625214 *May 18, 1970Dec 7, 1971Alza CorpDrug-delivery device
US3636956 *May 13, 1970Jan 25, 1972Ethicon IncPolylactide sutures
US3640741 *Feb 24, 1970Feb 8, 1972Hollister IncComposition containing gel
US3659596 *Nov 6, 1969May 2, 1972Robinson Ralph RIntrauterine element
US3699951 *Jan 19, 1970Oct 24, 1972Alza CorpDevice for suppressing fertility
US3710795 *Sep 29, 1970Jan 16, 1973Alza CorpDrug-delivery device with stretched, rate-controlling membrane
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4054131 *Aug 10, 1976Oct 18, 1977International Pregnancy Advisory ServicesIntrauterine contraceptive device
US4145320 *Nov 1, 1976Mar 20, 1979Paolo FerrutiBound to poly-acrylic or methacrylic units through oxyalkylenic, aminoalkylenic, or oxyaminoalkylenic chains
US4180064 *Dec 15, 1976Dec 25, 1979Alza CorporationSystem for delivering agent to environment of use over prolonged time
US4228152 *Nov 14, 1978Oct 14, 1980Paolo FerrutiBound to a polyacrylic or polymethacrylic backbone through ester or amidic bonds
US4249531 *Jul 5, 1979Feb 10, 1981Alza CorporationBioerodible system for delivering drug manufactured from poly(carboxylic acid)
US4469671 *Feb 22, 1983Sep 4, 1984Eli Lilly And CompanySustained release of acrosin inhibitor
US5146931 *Jun 8, 1990Sep 15, 1992Kurz Karl HeinzDevice to be placed in the uterus
US5495860 *Jul 20, 1993Mar 5, 1996Rhone-Poulenc Rhodia AgStructures formed from cellulose acetate, use thereof for the manufacture of filter tow, use of the filter tow for the manufacture of a tobacco smoke filter element, as well as a filter tow and a tobacco filter element
US7252839Sep 4, 2003Aug 7, 2007Schering OyComprising a body construction and at least one capsule containing a pharmaceutical formulation, capsule having at least a first end and a second end
USRE30312 *Sep 5, 1978Jun 24, 1980 Intrauterine contraceptive device
EP0082894A1 *Dec 30, 1981Jul 6, 1983The Population Council, Inc.Method of making intrauterine devices
EP1400258A1 *Sep 18, 2002Mar 24, 2004Schering OyPharmaceutical composition delivery device and its manufacturing process
Classifications
U.S. Classification128/833, 424/432, 604/57, 604/515
International ClassificationA61F6/00, A61K9/00, A61F6/14
Cooperative ClassificationA61K9/0039, A61F6/144
European ClassificationA61F6/14B2, A61K9/00M8D