Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3900370 A
Publication typeGrant
Publication dateAug 19, 1975
Filing dateFeb 23, 1973
Priority dateMar 10, 1972
Also published asCA1005788A1, DE2211553A1, DE2211553B2, DE2211553C3
Publication numberUS 3900370 A, US 3900370A, US-A-3900370, US3900370 A, US3900370A
InventorsFriedemann Wolfgang, Geisler Roland, Germscheid Hans Gunther
Original AssigneeHenkel & Cie Gmbh
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process for treating aluminum surfaces
US 3900370 A
Abstract  available in
Images(6)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

ite States Germscheid et a1.

atent 1 [451 Aug. 19, 1975 [73] Assignee: Henkel & Cie G.m.b.l*l.,

Dusseldorf-Holthausen, Germany 22 Filed: Feb. 23, 1973 21 Appl. No.: 335,065

[30] Foreign Application Priority Data Mar. 10, 1972 Germany 2211553 [52] US. Cl 204/38 A; 148/627; 148/615; 204/35 [51] Int. Cl. C23c 1/08; B41m 1/18; B44c 3/02 [58] Field of Search 117/69; 148/627, 6.15 R; 204/35 N, 38 A [56] References Cited UNlTED STATES PATENTS 3,012,917 12/1961 Riou 204/35 N UX 3,220,832 11/1965 Uhlig 117/75 X 3,272,662 9/1966 Herbst et a1. 148/6115 R 3,630,790 12/1971 Schmidt 148/6115 R 3,634,146 l/1972 Wystrach et al 148/615 R 3 657,077 4/1972 Gernscheid et a1 1 1 204/35 N 3,749,596 7/1973 Yoshimura 204/35 N X Primary Examiner.l0hn D. Welsh Attorney, Agent, or FirmHammond & Littell 5 7 ABSTRACT In the process for treating the surface of aluminum or an aluminum alloy which comprises subjecting said surface to an anodic oxidation and subsequently sealing with hot water or steam, the improvement which consists essentially of sealing said surface by applying an aqueous solution containing calcium ions and from 0.001 to 0.05 gm per liter of at least one acid selected from the group consisting of (A) a water-soluble phosphonic acid which forms a complex with a divalent metal, (B) a water soluble salt of said acid of (A), and (C) the mixtures thereof at a temperature ranging from 90C to the solution boiling point temperature and at a pH of from 5 to 6.5, to the anodic oxidized surface, the molar ratio of calcium ions to phosphonic acid being at least 2: 1.

5 Claims, No Drawings PROCESS FOR TREATING ALUMINUM SURFACES PRIORART To protect aluminum or aluminum alloys against corrosion, anodically produced oxide layers are frequently applied to aluminum surfaces. These oxide layers pro tect the aluminum surfaces from the effects of the weather and other corroding media. Further, the anodic oxide layers are also applied in order to obtain a harder surface and therewith to give the aluminum an increased resistance to wear. In particular, decorative effects can be attained by the self coloring of the oxide layers or can be attained in part by their easy colorability.

A number of processes are known for the application of anodic oxide layers to aluminum. For example, the production of the oxide layers takes place using direct current in solutions of sulfuric acid (the direct currentsulfuric acid process). However, solutions of organic acids, such as in particular sulfophthalic acid or sulfanilic acid or mixtures of these organic acids with sulfuric acid, are also frequently used. The last named processes are particularly known as the autocolor processes.

These anodically applied oxide layers, however, do not fulfill all requirements with respect to protection against corrosion, since they have a porous structure. For this reason it is subsequently necesary to seal the oxide layers by after-sealing which is often effected with hot or boiling water or steam and is known as sealing. This closes the pores and therefore considerably increases the corrosion protection.

During the subsequent consolidation of anodically applied oxide layers, however, not only are the pores closed, but a substantially thick and velvety film may also be formed over the whole surface. This velvety film is the so-called sealing coating and consists of amorphous aluminum hydroxide which is not resistant to handling, so that the decorative effect of the layer is thereby impaired. Furthermore, it reduces the adhesive strength during the bonding of such aluminum parts and, due to the increased effective surface, this sealing film promotes later soiling and corrosion. For these reasons it has previously been necessary to remove the coating by hand, mechanically or chemically.

It is already known to detach the film from sealed surfaces covered with a sealing film by a further mineral acid treatment. With this process, therefore, a further treatment step is needed, and moreover it necessitates a very careful treatment with the mineral acid in order to avoid damage to the oxide layer. Further, it is also known to prevent formation of sealing films by carr in g out a sealing with solutions which contain nickel acetate and lignin sulfate. This method has the disadvantage that the oxide layers may become yellowed under the influence of light. Finally it is known from U.S. Pat. Nos. 3,672,966 and 3,657,077 to prevent the formation of sealing films without impairing the anodic oxide coating or the quality of the after-sealing by applying a solution of polyacrylates or specified dextrins to the surface. These processes have proved satisfactory. In some cases, however, especially if not carefully carried out, it is possible that residues may remain upon drying. These are undesirable, but they can be removed by a further rinsing.

OBJECTS OF THE INVENTION It is an object of the present invention to provide a development in the process for treating the surface of aluminum or an aluminum alloy which comprises subjecting said surface to an anodic oxidation and subsequently sealing with hot water or steam, the improvement which consists essentially of sealing said surface by applying an aqueous solution containing calcium ions and from 0.001 to 0.05 gm per liter of at least one acid selected from the group consisting of (A) a watersoluble phosphonic acid which forms a complex with a divalent metal, (B) a water soluble salt of said acid of (A), and (C) the mixtures thereof at a temperature ranging from C to the solution boiling point temperature and at a pH of from 5 to 6.5, to the anodic oxidized surface, the molar ratio of calcium ions to phosphonic acid being at least 2:1.

Other and further objects of the invention will become apparent as the description thereof proceeds.

DESCRIPTION OF THE INVENTION The invention relates to a process for the treatment of surfaces of aluminum or aluminum alloys by anodic oxidation with a subsequent sealing step in aqueous solutions at elevated temperatures. In this manner, the formation of troublesome aluminum hydroxide coat ings (sealing films) on the surfaces are prevented and difficulties caused by the salts producing hardness in the water are avoided by the addition of certain phosphonic acids.

The present invention is further directed to a development in the process for treating the surface of aluminum or an aluminum alloy which comprises subjecting said surface to an anodic oxidation and subsequently sealing with hot water or steam, the improvement which consists essentially of sealing said surface by applying an aqueous solution containing calcium ions and from 0.001 to 0.05 gm per liter of at least one acid selected from the group consisting of (A) a water-soluble phosphonic acid which forms a complex with a divalent metal, (B) a water soluble salt of said acid of (A), and (C) the mixtures thereof at a temperature ranging from 90C to the solution boiling point temperature and at a pH of from 5 to 6.5, to the anodic oxidized surface, the molar ratio of calcium ions to phosphonic acid being at least 2:1.

A relatively large number of phosphonic acids is known which form complexes with divalent metals; and suitable examples of compounds to be utilized according to the present invention include those having the following formulae:

in which R represents phenyl or alkyl of l to 5 carbon atoms;

in which R and R each represent hydrogen or alkyl of 1 to 4 carbon atoms, R represents hydrogen, alkyl of l to 4 carbon atoms, or phenyl;

in which X and Y each represent hydrogen or an alkyl or 1 to 4 carbon atoms, R represents -I O I'I or a group of the formula:

CXY-PO H in which X and Y each have the above-defined meaning; and

CH2COOH in which R represents hydrogen, methyl or -CH- CH COOI-I.

Examples of l-hydroxyalkane-l l -diphosphonic acids of formula I which may be used are lhydroxypropanel l -diphosphonic acid, 1- hydroxybutane-l 1 -diphosphonic acid, 1- hydroxypentane-l 1 -diphosphonic acid, 1-

diphosphonic acid, l-dimethylaminoethane-l l diphosphonic acid, 1 -dimethylaminobutanel ,ldiphosphonic acid, 1 -diethylaminomethane- 1 l diphosphonic acid, l-propyl-aminomethanel ,1-

diphosphonic acid, and l-butyl-aminomethane-l ,1- diphosphonic acid.

Suitable examples of aminopolymethylene phosphonic acids of the formula III include aminotrimethylenephosphonic acid, ethylenediaminotetramethylenephosphonic acid, diethylenetriaminopentamethylenephosphonic acid, aminotri(2-propylene-2 phosphonic acid).

Suitable examples of phosphono succinic acids of formula IV include phosphonosuccinic acid, l-phosphonol -methylsuccinic acid and 2- phosphonobutanel ,2,4-tricarboxylic acid.

Instead of the phosphonic acids mentioned above, their water-soluble salts may also be used, such as alkali metal salts especially the sodium salt or potassium salt, as well as the ammonium salts, or the lower alkanola mine salts for example triethanolamine salt. The phos phonic acids or their water-soluble salts are preferably employed in a concentration of 0,001 to 0.05 gm/liter of solution. They may be used singly or in mixtures thereof.

A mixture of l-hydroxyethane-1,1-diphosphonic acid and aminotrimethylenephosphonic acid in the proportion by weight of 4:1 to 1:4 has been found to be preferred.

The solutions containing phosphonic acids or their salts are adjusted, where necessary, to a pH in the range of from 5 to 6.5. This adjustment may be effected with ammonia or acetic acid.

Ordinary water which is neither completely deionized or softened may be used for the solutions. If completely deionized water, distilled water, or very soft water is used for making the solutions, it is necessary to add calcium ions, and, preferably, water-soluble calcium salts such as CaCl or Ca(NO are used. The molar ratio of calcium ions to phosphonic acids should be at least 2:1. Generally it is advantageous to use a higher molar ratio of calcium ions to phosphonic acids of 5:1 to about 500:1.

A preferred form of the process comprises adding from 0.1 to 5 gm/liter, preferably from 0.1 to 2 gm/liter, of a dextrin additionally to the sealing solutions. For this purpose, those dextrins are specially used which have a viscosity of 50 to 400 cP in 50% solution at 20C, the viscosity being measured with a Brookfield rotary viscosimeter.

The advantages of the present invention include preventing the formation of a sealing coating without causing damage to the anodic oxide layer. Difficulties do not occur because of the water hardness components in the aqueous sealing solutions, so that deionized or softened water need not be used. Precipitates of water hardness causing components are usually avoided. However in the case of water with a high degree of hardness, only flocculent heavy precipitates are formed; but these precipitates are not deposited on the sealed portions, instead however, they fall to the bottom of the bath and may be easily rinsed thereout. The appearance of the surface is not affected by the process of the invention; the effect obtained by the pretreatment and anodization remain unchanged. Only very small amounts of additives are necessary for the process according to the invention.

The following examples are merely illustrative of the present invention without being deemed limitative in any manner thereof.

In the examples, the notation of the aluminum alloys is based upon nomenclature according to DIN 1,725. The quality of the oxide layers was determined by the so-called Testal value according to DIN 50,949 and by the loss factor d (Anotest apparatus) according to DIN 50,920 (design). Further, the products of the aftersealing were tested by means of the Green test according to DIN 50,146. DIN is the abbreviation for Deutsche Industrie-Norm representing a series of standard German published test procedures.

EXAMPLE 1 Aluminum sections (AlMg degreased with an aqueous alkali metal hydroxide solution and pickled in the usual manner, were anodically oxidized in direct current-sulfuric acid process (layer thickness 22p.) and were sealed at 100C for minutes with a solution of 0.003 gm/liter of l-hydroxyethane-l,l-diphosphonic acid and 0.5 gm/liter of dextrin (viscosity I00 cP, measured in 50% solution at 20C) in water of l5dH (Gerammonia prior to the sealing. The sections showed no sealing film. The layer thickness was unchanged after the sealing; and the Testal value of 8.5 and the loss factor d of 041 both indicated a satisfactory sealing. After a relatively prolonged use of the sealing solution, no solid precipitates of the water hardness causing components appeared in the sealing solution. A flocculent heavy coating was formed on the bottom of the bath container, which was not deposited on the sections and could easily be removed from the bath by flushing it out.

The same result was obtained when, instead of lhydroxyethane-l,l-diphosphonic acid, an equivalent amount of its di-, triand tetrasodium, or potassium or ammonium salt or a triethanolamine salt was used. In the case of the alkaline salts the pH adjustment was carried out with acetic acid.

EXAMPLE 2 Aluminum sheets (AlSi degreased in the usual manner, which had been anodically oxidized in the di rect current-sulfuric acid-oxalic acid process (layer thickness 2111.), were sealed at 100C for 60 minutes with a solution of 0.007 gm/liter of l-hydroxyethanel, l -diphosphonic acid in deionized water with the addition of mgm/liter of calcium ions, which was adjusted with ammonia to pH 5.6 prior to the sealing. The sheets showed no sealing film. The Testal value of 12 and the loss factor d of 0.49 both indicated a satisfactory sealing. The same results were obtained with di-, triand tetra-alkali metal salts or ammonium salts.

EXAMPLE 3 Aluminum sections (AlMgSi 0.5) degreased and pickled in the usual manner, which had been anodically oxidized by an autocolor process (layer thickness 18p), were sealed at 100C for 60 minutes in a solution of 0.005 gm/liter of l-hydroxyethane-l,l-diphosphonic acid, 0.005 gm/liter of aminotrimethylenephosphonic acid and l gm/liter of dextrin (viscosity 200 cP, measured in 50% solution at 20C) in water of 35 dH (German hardness), adjusted with ammonia to pH 5.9 prior to sealing. The sections showed no sealing film. A satisfactory sealing was indicated by the Testal value of 10.5 and by the loss factor d of 0.47. The degree of water hardness was not noticeably objectionable, since the water hardness causing components were precipitated in a flocculent, easily removable, settling form.

The same results were obtained when, instead of the above-mentioned phosphonic acids, their alkali metal salts or ammonium salts were used, while the alkaline salts were adjusted with acetic acid to a pH value between 5.8 and 6.0.

EXAMPLE 4 Aluminum sections (AlMgSi 0.5) which had been degreased with an aqueous alkali metal solution and pickled in the usual manner, were anodically oxidized in the direct current sulfuric acid process (layer thickness 20;}. to 22,u.). The sections were then sealed at 98C to 100C for 60 minutes in a solution which contained 0.01 gm/liter of l-hydroxyethane-l, l-diphosphonic acid and 2 gm/liter of dextrin (viscosity 150 cP, measured in 50% solution at 20C), in water of 20 dH (German hardness) which was adjusted with ammonia to a pH of 5.8 prior to the sealing. The sections showed no sealing film; and the Testal value of 9.0 and the loss factor d of 0.40 indicated a very satisfactory sealing. No difficulty resulted from the water hardness causing components of the sealing solution.

EXAMPLE 5 In a manner analogous to that described in Example 4, aluminum sections were sealed with solutions which contained,

a. of the l-hydroxyethane-1,1-diphosphonic acid, the

equivalent amount of one of the following phosphonic acids:

2. lhydroxypropanel l diphosphonic acid,

b. l-hydroxyhexane-l l-diphosphonic acid,

c. l-aminoethane-l,l-diphosphonic acid,

d. l, l -diphosphonic acid,

e. ethylenediaminotetramethylenephosphonic acid,

f. 2-phosphonobutane-l,2,4-tricarboxylic acid, or

g. l-phosphono l -methylsuccinic acid.

In all cases no sealing film was formed. No difficulty resulted from the hardness of the water. The Testal value ranged from 10 to 12 and the loss factor d ranged from 0.43 to 0.52 both of which indicated a satisfactory consolidation.

The same results were obtained when, instead of the above-mentioned phosphonic acids, their alkali metal salts or ammonium salts were used in equivalent amounts.

Although the present invention has been disclosed in connection with a few preferred embodiments thereof, variations and modifications may be resorted to by those skilled in the art without departing from the principles of the new invention. All of these variations and modifications are considered to be within the true spirit and scope of the present invention as disclosed in the foregoing description and defined by the appended claims.

We claim:

1. In the process for treating the surface of aluminum or an aluminum alloy which comprises subjecting said surface to an anodic oxidation and subsequently sealing with hot water or steam, the improvement which consists essentially of sealing said surface by applying an aqueous solution consisting essentially of water, calcium ions and from 0.001 to 0.05 gm per liter of at least one acid selected from the group consisting of (A) a water-soluble phosphonic acid which forms a complex with a divalent metal, said acid having the formula in which R is selected from the group consisting of phenyl and alkyl of l to 5 carbon atoms, (B) a watersoluble salt of said acid of (A), and (C) the mixtures thereof at a temperature ranging from C to the solution boiling point temperature and at a pH of from 5 to 6.5, to the anodic oxidized surface, the molar ratio of calcium ions to phosphonic acid being at least 2:1.

2. The process as claimed in claim 1 in which the ratio of calcium ions to phosphonic acid is from 5:1 to 500:1.

3. The process as claimed in claim 1 in which said salt of (B) is selected from the group consisting of alkali metal salts, ammonium salts, and lower alkanolamine of dextrin.

salts. 5. The process as claimed in claim 4 in which said so- 4. The process as claimed in claim 1 in which said so lution contains from 0.01 to 2 gm per liter of dextrin.

lution additionally contains from 0.1 to 5 gm per liter UNITED STATES PATENT CFFICE CERTTMCATE OF CCRRECTWN Patent NO. 5,900,570 Dated ugus 19, 1975 Inventor-(s) Hans Gunther Germscheid et al It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

On the cover sheet, second column, at the end of the Abstract, "5 Claims, No Drawings" should read 6 Claims, No Drawings Column 6, line 10, "a," should read instead Column 6, line 15 "2." should read a0 Column 6, line 16, "1,1-diphosphonic acid" should read dimethylaminomethane-l-diphosphonic acid line 19, A hyphen should be between "phosphono" and "l", ie phosphono-l '$figmd and gealed this Third Day of August 1976 [SEAL] A ttest:

RUTH C. MASON C. MARSHALL DANN Arresting Officer Commissioner ofParents and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3012917 *Mar 21, 1958Dec 12, 1961Pechiney Prod Chimiques SaMethod of protecting metal surfaces
US3220832 *Jul 18, 1961Nov 30, 1965Azoplate CorpPresensitised planographic printing plates and methods of preparing and using such
US3272662 *Jan 23, 1962Sep 13, 1966Hoechst AgProcess for after-treating metal surfaces coated with crystalline anticorrosion layers
US3630790 *May 13, 1969Dec 28, 1971Dow Chemical CoMethod of protection of metal surfaces from corrosion
US3634146 *Sep 4, 1969Jan 11, 1972American Cyanamid CoChemical treatment of metal
US3657077 *Jul 8, 1970Apr 18, 1972Henkel & Cie GmbhProcess for the treatment of anodic oxidized aluminum surfaces
US3749596 *May 11, 1971Jul 31, 1973Okuno Chem Ind CoMethod for sealing anodized aluminum
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4116695 *Apr 13, 1977Sep 26, 1978Fuji Photo Film Co., Ltd.Method of producing a support for a printing plate
US4148067 *Mar 5, 1976Apr 3, 1979E M I LimitedModulated groove records with a thick metal layer and method for making same
US4202706 *Mar 12, 1979May 13, 1980Minnesota Mining And Manufacturing CompanyCorrosion resistance treatment of aluminum with N-alkyl-fluoroaliphaticsulfonamidophosphonic acids and salts thereof
US4308079 *Jun 16, 1980Dec 29, 1981Martin Marietta CorporationDurability of adhesively bonded aluminum structures and method for inhibiting the conversion of aluminum oxide to aluminum hydroxide
US4320023 *Dec 5, 1980Mar 16, 1982Conoco Inc.Antifreeze formulation useful for retarding precipitation of aluminum corrosion products in the cooling systems of internal combustion engines
US4349391 *Feb 18, 1981Sep 14, 1982Hoechst AktiengesellschaftProcess for preserving planographic printing forms
US4381226 *Dec 23, 1981Apr 26, 1983American Hoechst CorporationElectrochemical treatment of aluminum in non-aqueous polymeric polybasic organic acid containing electrolytes
US4388156 *Dec 23, 1981Jun 14, 1983American Hoechst CorporationAluminum electrolysis in non-aqueous monomeric organic acid
US4659439 *Mar 21, 1985Apr 21, 1987Pilot Man-Nen-Hitsu Kabushiki KaishaSurface treatment of aluminum or aluminum alloys
US4718482 *Aug 19, 1986Jan 12, 1988Mitsubishi Aluminum Kabushiki KaishaMethod for manufacturing heat exchange vehicle
US4765870 *May 8, 1987Aug 23, 1988Matematicko-Fyzikalni Fakulta UniversityMethod of manufacture of an electric moisture-content sensor
US4777091 *Apr 28, 1987Oct 11, 1988The Dow Chemical CompanyMetal substrates treated with aminophosphonic acid compounds and products resulting from coating such substrates
US4778533 *Feb 4, 1987Oct 18, 1988Aluminum Company Of AmericaAluminum-magnesium alloy sheet product and method for inhibiting formation of a film thereon
US4781984 *Apr 28, 1987Nov 1, 1988The Dow Chemical CompanyAromatic polyether resins having improved adhesion
US4939001 *Jun 14, 1989Jul 3, 1990Henkel Kommanditgesellschaft Auf AktienProcess for sealing anodized aluminum
US5103550 *Dec 26, 1989Apr 14, 1992Aluminum Company Of AmericaMethod of making a food or beverage container
US5178916 *Sep 16, 1991Jan 12, 1993At&T Bell LaboratoriesProcess for making corrosion-resistant articles
US5217813 *Dec 11, 1991Jun 8, 1993Basf AktiengesellschaftPolyethyleneimine and polyvinylamine derivatives, aluminum-based substrate materials coated with these derivatives and the use thereof for the production of offset printing plates
US5622569 *Jun 2, 1995Apr 22, 1997Aluminum Company Of AmericaAluminum rigid container sheet cleaner and cleaning method
US5736256 *May 23, 1996Apr 7, 1998Howard A. FromsonLithographic printing plate treated with organo-phosphonic acid chelating compounds and processes relating thereto
US5738943 *Jan 8, 1997Apr 14, 1998Howard A. FromsonLithographic printing plate treated with organo-phosphonic acid chelating compounds and processes related thereto
US5738944 *Jan 8, 1997Apr 14, 1998Howard A. FromsonLithographic printing plate treated with organo-phosphonic acid chelating compounds and processes related threreto
US5853797 *Sep 30, 1997Dec 29, 1998Lucent Technologies, Inc.Method of providing corrosion protection
US5935656 *Oct 9, 1996Aug 10, 1999Henkel Kommanditgesellschaft Auf AktienShort duration hot seal for anodized metal surfaces
US6059897 *May 22, 1997May 9, 2000Henkel Kommanditgesellschaft Auf AktienShort-term heat-sealing of anodized metal surfaces with surfactant-containing solutions
US7061249 *Dec 26, 2002Jun 13, 2006Tetra Laval Holdings & Finance S.A.Sealed condition inspecting device
DE4105887A1 *Feb 25, 1991Sep 12, 1991Fuji Photo Film Co LtdPhotosensitive lithographic plate with hydrophilic coat - contg. amino phosphoric acid or phosphonic or phosphinic acid or salt, preventing stating and soiling
DE4105887B4 *Feb 25, 1991Jun 9, 2004Fuji Photo Film Co., Ltd., Minami-AshigaraVorsensibilisierte Platte zur Verwendung in der Herstellung lithographischer Druckplatten
WO1988008762A1 *May 6, 1988Nov 17, 1988Masco CorpA process for the production of hard surface control members for faucets
Classifications
U.S. Classification205/204, 205/324, 148/253, 205/229, 205/328
International ClassificationC25D11/24, C25D11/18
Cooperative ClassificationC25D11/246
European ClassificationC25D11/24D