Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3900632 A
Publication typeGrant
Publication dateAug 19, 1975
Filing dateApr 3, 1972
Priority dateFeb 27, 1970
Publication numberUS 3900632 A, US 3900632A, US-A-3900632, US3900632 A, US3900632A
InventorsRobinson James E
Original AssigneeKimberly Clark Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Laminate of tissue and random laid continuous filament web
US 3900632 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1 Robinson Aug. 19, 1975 1 LAMINATE OF TISSUE AND RANDOM LAID CONTINUOUS FILAMENT WEB [75] lnventor: James E. Robinson, Crescent Drive,

Wis.

[73] Assignee: Kimberly-Clark Corporation,

Neenah. Wis. a

22] Filed: Apr.3, 1972 [21] Appl. No.: 240,754

Related U.S. Application Data [63] Continuation-impart of Ser. No. 15,033, Feb. 27,

1970. abandoned.

Boy 28/72.12l

2,902,395 9/1959 Hirschy et a1 161/129 3,025,199 3/1962 Harwood 161/129 3.063.454 11/1962 Coates et al.. 161/150 3,276,944 10/1966 Levy 161/150 3,327,708 6/1967 Sokolowski... 161/128 3,341,394 9/1967 Kinney 161/150 3,368,934 2/1968 Vosburgh 161/148 3,424,643 1/1969 Lewis et al.... 161/150 3,509,009 4/1970 I-Iartmann 161/150 3,708,383 1/1973 Thomas et a1. 161/146 FOREIGN PATENTS OR APPLICATIONS 803.714 3/1963 Canada [5 7 ABSTRACT Laminates comprising cellulose wadding and a web of continuous thermoplastic filaments are disclosed. The

laminates have a good hand, are strong, attractive in appearance, and absorb and retain fluid.

11 Claims, 3 Drawing Figures LAMINATE OF TISSUE AND RANDOM LAID CONTINUOUS FILAMENT WEB Laminate of Tissue and Random Laid Continuous Filament Web and which application is now abandoned.

DESCRIPTION o rHE INVENTION This invention relates to nonwoven fabrics and, more particularly, to lightweight nonwoven laminates including websof continuous thermoplastic filaments.

Nonwoven webs comprised of a plurality of continuous filaments of synthetic polymers arenow widely known. As opposed to webs made by conventional spinning, weaving or knitting operations, webs of continuous filaments are generally prepared by continuous polymer extrusion and immediate deposition on .a supporting surface in a generally random manner. Ordinarily, in order to achieve fiber tenacity, the filaments are molecularly oriented after extrusion and prior to deposition on the supporting surface. U.S. Pat. Nos. 3,338,992 and 3,341,394 to Kinney illustrate types of continuous filament nonwoven webs.

These webs have been used in a wide variety of product applications. For example, they have been employed as curtain drape material, bookbinding material, insulation, and backings for carpet. However, while the webs are generally suitable for uses such as have been described, there has been no substantial use of these materials in the filed of disposable fabric products, such as clothing, bed sheets, pillow cases, and the like. While products in these areas have employed nonwoven webs, the nonwovens have been prepared from staple length fibers that are either resin bonded or bonded to tissue. Also, scrim-reinforced materials, i.e., crossed sets of threads bonded at their points of intersection and employed as a reinforcing layer for one or more plies of tissue have been used as disposable nonwovens. The optimum suitability of these nonwovens for disposable fabric uses is generally restricted with respect to either their appearance, their strength characteristics, or their ability to absorb energy under strain.

The use of continuous filament nonwoven webs for disposable fabrics has been limited because of the need for a desirable hand in combination with a pleasing appearance and adequate strength characteristics. In this respect, it has been found that continuous filament webs possessing a desirable hand such that they would be suitable for uses such as bed sheets, hospital gowns and the like, do not possess the necessary uniform and functional opaque appearance required in such applications. On the other hand, while the opaqueness can be increased by using webs with higher basis weights, the webs do not have the required desirable hand, particularly if subsequent softening techniques such as embossing are not employed. In this respect, it should be noted that the webs of the aforementioned Kinney patents as well as others are principally'high basis weight webs possessing an accompanying undesirable hand. Other methods for improving the opacity of low basis weight webs, such as by using lower denier filaments, have processing drawbacks since, for practical purposes. it is difficult toextrude such low denier ,filaments. 7

Moreover, even if a continuous filament web was prepared with an acceptable combination of hand, opacity, and strength, such a web would still be lacking in one very important characteristic. Because such websare comprised predominantly of hydrophobic thermoplastic polymers having an inherently low capacity for absorbing and retaining fluids such as water,

the webs themselves also have such low capacity and retentiveness. This behavior is particularly troublesome where it is desirable to treat the web with an agent such as a flame retardant, a necessity for any type of a disposable product where the user comes into direct contact with the material. Customarily, flame retardants are inexpensively applied with an aqueous carrier. Accordingly, the inability to easily absorb and retain water is a serious drawback necessitating complicated and expensive treating methods to achieve the desired flame retardancy, which methods can adversely affect the physical properties of the fiber. Also, because of this same characteristic, fabrics prepared from the continuous thermoplastic polymer webs do not acquire a high moisture content from the atmosphere, and this detracts from a natural fabric feel as well as presenting potential static problems.

Accordingly, it is an object of the present invention to provide a nonwoven material including a web of continuous thermoplastic filaments which possesses a desirable combination of hand and appearance; A related object is to provide such a material wherein the contin- --uous filament web has a low basis weight.

It is a further object to provide a nonwoven material with the above-described characteristics which also has a good capaicty for absorbing and retaining fluids. A still further object is to provide such a material wherein the strength characteristics are quite isotropic.

It is a still further object to provide a nonwoven material as above described which can be prepared in an eeonomical manner.

Other objects and advantages of the present invention will become apparent by reference to the following description and the accompanying drawings in which:

FIG. l is a schematic illustration of apparatus, and showing one means for forming the nonwoven materials of the present invention.

FIG. 2 is a schematic cross-sectional view of a laminate in various stages of preparation and showing levels of adhesive penetration therein; and

FIG. 3 is a fragmentary plan view of the laminate prepared as illustrated by FIG. I, and with sections of individual layers broken away.

While the present invention is susceptible of various modifications and alternative constructions, there is shown in the drawings and will herein be described in detail the preferred embodiments. It is to be understood, however, that it is not intended to limit the invention to the specific forms disclosed. On the contrary, it is intended to cover all modifications and alternative constructions falling within the spirit and scope of the invention as expressed in the appended claims.

Briefly, the process hereinafter described involves preparing a laminate comprised of a web of continuous thermoplastic polymer filaments and a cellulose wadding web. Lamination is accomplished in a manner such that the desirable attributes of the laminated product are not detrimentally affected.

Turning now to the drawings, FIG. 1 schematically illustrates apparatus which can be used in preparing a three ply laminate of the present invention, wherein the outer plies are cellulosic webs. As shown, a web comprised of a plurality of substantially continuous filaments of a synthetic polymer is unwound from a roll 12 and passed to an adhesive printing station 14. The manner of initial formation of the web 10 is not particularly important, and a variety of well known techniques can be used. In general, such techniques involve continuously extruding a polymer through a spinneret, drawing the spun filaments, and thereafter depositing the drawn filaments on a continuously moving surface in a substantially random fashion. Drawing serves to give the polymer filaments tenacity, while substantially random deposition gives the web desirable isotropic strength characteristics. The aforementioned Kinney patents as well as other patents, such as Levy, US. Pat. No. 3,276,944, illustrate useful techniques of initial web formation.

A particularly useful technique is described in copending application Ser. No. 865,128, titled Continuous Filament Non Woven Web And Process For Producing The Same, and filed on Oct. 9, 1969 and now US. Pat. No. 3,692,618. Use of the method therein disclosed permits high rates of web formation. In general, the disclosed method involves conventional spinning of continuous filaments of synthetic polymer by, for example, extruding the polymer through a multiple number of downwardly directed spinning nozzles preferably extending in a row or multiple number of rows. The filaments as they are spun are gathered into a straight row of side-by-side, evenly spaced apart, untwisted bundles each containing at least 15 and preferably from 50 to 150 filaments. These filament bundles are simultaneously drawn downwardly at a velocity of at least 3,000 meters per minute, and preferably from 3,500 to 8,000 meters per minute, in individually surrounding gas columns flowing at a supersonic velocity and thus directed to impinge on a substantially horizontal carrier.

, The gathering of the filaments into the bundles and their drawing and directing to impinge on the carrier'is preferably effected by passing the bundles through air guns which surround the filaments with a column or jet of air which is directed downward at supersonic velocity. The air guns are arranged so as to extend in a straight row in a direction extending across the carrier at right angles to its direction of movement, so that the bundles contained in the gas columns as they strike the moving carrier extend in a line or row at right angles across the carrier. In order to enhance intermingling of the bundles, the air guns can be made to oscillate, the plane of oscillation being transverse to the direction of carrier movement. The carrier can be a conventional carrier used in the nonwoven art, such as an endless carrier or belt screen or the upper portion of a drum, as for example a screen drum.

When prepared as described above, the filament bundles containing a number of parallel filaments are laid down on the carrier in a loop-like arrangement with primary loops extending back and forth across the width of a section defined by the impingement of the air column from one air gun on the carrier. Before and as the parallel filament bundles impinge the carrier, they are broken up into sub-bundles containing a lesser number of parallel filaments and forming secondary smaller loops and swirls. The secondary loops and swirls overlap each other, and those of adjacent sections, to result in substantially complete intermingling with the overlapping portions of adjacent sections. Thus, the laid-down filament bundles form a continuous uniform nonwoven web.

Referring again to FIG. 1, the thermoplastic polymer used in preparing the continuous filament web 10 must be crystallizable and spinnable and also capable of being bonded as hereinafter discussed. Due to its cost, predominantly isotactic polypropylene is preferred; however, other polymers such as other polyolefins, e. g., linear polyethylene, polyisobutylene, polybutadiene, etc., polyurethanes, polyvinyls, polyamides, and polyesters can also be used. In addition, mixtures of the above polymers and copolymers prepared from monomers used in preparing the above polymers are useful.

For use in the process illustrated in FIG. 1, the web 10 generally can have a basis weight of about 0.3 l oz./yd. with the filaments thereof having a denier of about 0.5 6. Especially preferred laminates can be prepared with webs having basis weights of 0.3 0.7 oz./yd. and filament deniers of about 0.8 2.5.

In order to facilitate web handling, particularly during the subsequently described adhesive application step, it is preferred that the web 10 be bonded. While web bonding can be accomplished by a variety of known techniques, a patterned method of bonding wherein the web is spot bonded at a number of intermittent points throughout the web is preferably employed. As described in copending Brock et al. application, Ser. No. 177,078, filed Sept. 1, 1971 entitled Nonwoven Laminate Containing Bonded Continuous Filament Web, now US. Pat. No. 3,788,936, which is a continuation-in-part of an earlier filed application, Ser. No. 14,943, filed Feb 27, 1970, entitled Nonwoven Laminate Containing Bonded Continuous Filament Web, now abandoned, laminates with a particularly desirable hand are obtained when a pattern bonded continuous filament web is employed. Furthermore, as described in the Brock et al. application, when pattern bonding is accomplished in a manner such that the web is a release bonded" web, laminates with improved properties with respect to energy absorption can be obtained. The manner of preparing a release bonded web is disclosed in copending Hansen et al. application, Ser. 177,077, filed Sept. 1, 1971 entitled Pattern Bonded Continuous Filament Web, now US. Pat. No. 3,855,046, which is a continuation-in-part of an earlier filed and now abandoned application, Ser. No. 121,880, filed Mar. 8, 1971, which is a continuation-inpart application of now abandoned application Ser. No. 15,034, filed Feb. 27, 1970. When the web 10 is pattern bonded with a regular intermittent pattern of bonds, the total bonded area of the web should be about 550% of the web area, and the density of individual bonds should be about 503 200 per square inch. Preferred webs have a total bond area of 820% and a bond density of about -500 per square inch.

Referring again to FIG. 1, at the printing station 14 the continuous filament web 10 is printed on the bottom surface with a discontinuous adhesive pattern. Thus, as is shown, the web passes between an adhesive printing roll 16 and back-up roll 18, the printing roll 16 being partially submerged in the tank 20 containing adhesive 22. The surface of the printing roll 16 is provided with a series of grooves which serve to pick up the adhesive 22 from the tank 20 and transfer the adhesive to the bottom surface of the web 10. A doctor blade can be used to control the amount of adhesive applied.

The grooves on the roll 16 can be in any patterned configuration; however, it is important that the pattern be substantially open and that, after printing, the area.

of the web which is occupied by adhesive be not more than about 25 of the total area, and preferably only about l5% or less of the area. The selection of the appropriate groove pattern on the roll 16 and the effect thereof on the characteristics of the resultant laminate is well known in the art.

While other types of adhesives such as hot melts, latexes, and the thermoplastic'fibers themselves can be employed in the process described herein, it is preferred to employ a'p'lastis'o ladhesive because of the ease of application and the'ability to cure without adversely affecting the desirable laminate characteristics. For example, a plastisol comprised of a polyvinyl chloride resin plasticized' with dioctyl phthalate or any other well known plasticizer can advantageously be used so long as curing can be accomplished at a temperature which does not adversely affect the components of the laminate. At application, the viscosity of i the plastisol is generally about 800-6000 cps. and, preferably l2003200 cps., in order to obtain satisfactory transfer to the web.

Following the adhesive addition, the cellulose wadding webs 24 and 26, generally having basis weights of about 0.3 0.7 oz./yd. and unwound from rolls 28 and 30, are brought into contact with the adhesively printed web at the roll 32 to form the laminate 84. The prime requirements of the cellulose wadding are that it provide the desired opacity for the product laminate and that it have sufficient absorbency to retain any aqueous-borne additives such as flame retardants, printing inks, etc., that might be necessary for a particular application. After formation, the laminate is passed around the heated drum 36 in order to cure the plastisol. The roll 32 and the take off roll 38 serve to maintain contact between the laminate 34 and the heateddrurn 36. If only a two ply laminate is desired,

only the bottom cellulosic web 24 can be employed.

As is apparent from the above discussion, when the web 10 is bonded, adhesive can be directly printed thereon. On the other hand, direct printing is difficult when the web is unbonded. Accordingly, when an unbonded web is used, the adhesive is generally printed directly on the cellulosic webs 24 and 26. Alternatively, if only a two ply laminate is being prepared, the cellulosic web and the unbonded continuous filament web can be reversed in the positions designated in FIG. 1.

In order to obtain a laminate which is both aesthetically pleasing and possesses high delamination resistance, the manner in which the laminate is formed is important. Thus, laminate formation is accomplished such that the adhesive used in bonding sufficiently penetrates the cellulosic layers to assure good laminate strength, and yet adhesive strike-through to the outer surfaces of the cellulose and adhesive spreading within the laminate is minimized. Adhesive strike-through adversely affects laminate appearance, while adhesive spreading gives rise to an undesirable increase in laminate stiffness.

With reference again to FIG. 1, suitable laminate bonding with a plastisol adhesive can be accomplished by appropriately coordinatingthe temperature of the contact with the drum (dwell time), and the pressure exerted on the laminate in the nip formed between the drum and the roll 32. In understanding the manner in .which these parameters are coordinated, reference is and thus, is low. Consequently, on bringing the web into contact with the cellulose wadding webs and subsequently bringing the laminate into contact with the drum, care must be exercised to avoid excessive adhesive penetration and spreading. Nip pressures between the roll 32 and the drum on the order of about -100 pli. are sufficient to achieve a desirable penetration as illustrated-in embodiment (b) of FIG. A

On the other hand, as the laminate' tra velson the drum surface, plastisol temperature and viscosity rise, and the problem of excessive adhesive penetration becomes less significant. Regardingtravelfon the drum surface, the laminate must remainin contact with the surface for a sufficient time to permit the plastisol to cure and develop maximum strength characteristics. For drum temperatures of about 250F. .300F., dwell times of 0.5 3 seconds are usually sufficient. Embodiment (0) of FIG. 2 depicts a cross-section of the finished laminate with the plastisol substantially cured. As can be seen, little additional adhesive penetration occurs during curing on the drum surface.

Referring again to FIG. 1, after leaving the drum 36, the laminate can be passed through the calender stack 40 to provide a smooth surface finish and then wound up on the roll 42. Typically, the calender stack 40 comprises three rolls, 44, 46, and 48, with the top roll 44 generally being at about the same temperature as the drum 36 in order to assure complete plastisol curing. Pressures about equivalent to the nip pressure between the roll 37 and the drum are useful calender pressures.

FIG. 3 illustrates a laminate prepared by thernethod described above. As shown, the laminate has outer plies of cellulosic webs 24 and 26 and a single inner ply of a continuous filament web 10. The individual filaments in the web 10 are bonded together by means of the intermittent pattern of bonds. The layers 24, 10 and 26 are united together by means of the spaced pattern of plastisol adhesive 22.

As should be apparent from the above discussion, the apparatus and process illustrated by FIG. 1 can readily be used to prepare a laminate wherein the outer plies are the continuous filament webs and the inner ply is a cellulosic web. Such laminates are disclosed in co- 0 tinuation-in-part application, Ser. No. 247,962, filed Apr. 27, 1972, now U.S. Pat. No. 3,870,592. In addition to possessing the desirable attributes discussed above with respect to the laminates illustrated in FIG.

3, the laminates disclosed in the Brock and Hudson apheated drum, the time during which the laminate is in plication additionally possess exceptionally surprising textile-like features, are wrinkle resistant, and can be washed several times.

The following example illustrates the invention. All parts and percentages are by weight unless otherwise indicated. As reported in the example, Tensile Strength Elongation (7:

(Ts) and Elongation (E) are measured on l X 3 inch samples using a cross-head speed of 12 in/min. according to ASTM D l 1 17-63. Wrinkle Recovery (WR) and Opacity (Op) are measured using the following standard procedures:

(WR) A TC 66 1959T (Op) TAPPIT 425M 6O EXAMPLE I A laminate having outer plies of creped cellulose wadding (each being 12 wide and having a basis weight of 13 g/yd?) and an inner ply of an intermittently bonded continuous filament polypropylene web (12" wide with basis weight of 15 g/yd. bonded according to Example of Hansen et al.) was prepared in a manner described above with reference to FIG. 1. The conditions of preparation were as follows: Web Speed 50 ft./min. Roll 32 6.5 inch dia., 200 pli. pressure against drum 36; Drum 36 30 inch dia., 285F.; 11011544, 46, and 48 inch dia., roll 44 at 225F., calender pressure at 200 pli. Laminate wrap on drum surface 4.25 feet. The adhesive applied at the printing station 14 was a plastisol consisting of: 100 parts polyvinyl chloride copolymer (Geon 130 X 10), 100 parts dioctyl phthalate plasticizer (BFG 264) and 10 parts low odor mineral spirits (No. 17 The plastisol was applied to the web in an amount of 5 grams/yd. and at a Brookfield viscosity of 1400 cps. (No. 4 spindle, 20 rpm.s C). After printing, the plastisol occupied 10% of the web area and was disposed thereon in a rectangular block (0.02 X 0.20) pattern with 43,200 blocks/yd? TABLE 1 Test M.D C.D

Tensile Strength (lbs) 5.9 4.9

Wrinkle Recovery Opacity (7( light ab.)

As can be seen the laminate prepared above possesses desirable isotropic strength characteristics and a desirable opaque appearance. In addition, it has a desirable hand and good capacity for absorbing and retaining fluids. Accordingly, the laminate fully satisfies the aims, objectives and advantages set forth above. Reference is also directed to copending Beaudoin, et a1. application, Ser. No. 126,530, filed on Feb. 22, 1972 which application has been abandoned in favor of continuation-in-part application Ser. No. 228,349, filed Feb. 22, 1972, and now US Pat. No. 3,793,133. Therein, it is disclosed that a laminate comprised of an intermittently bonded continuous filament web and a web of cellulose wadding can be fashioned with especially desirable energy absorbing and strength characteristics by appropriately controlling the intensity of the intermittent bonds and the ply attaching adhesive.

I claim as my invention: 1. A nonwoven fabric-like laminate comprising, in

combination, 1 a. a low basis weight, single ply nonwoven web of substantially continuous and randomly deposited, molecula rly oriented filaments of a hydrophobic thermoplastic polymer, said web prepared by continuous polymer extrusion through a spinneret and filament deposition on a supporting surface and having a basis weight of up to about 0.7 oz./yd. with the filaments thereof having a denier of about 0.5-about 6,

b. a web of cellulose wadding having a basis weight of about 0.3-about 0.7 oz./yd. disposed in laminar relationship with respect to the single ply web (a), and

c. patterned areas of adhesive disposed between said webs which penetrate into said cellulose wadding web at spaced open areas in a manner so as to provide delamination resistance in combination with fabric-like flexibility, said nonwoven web and cellulose wadding web combining to provide a material with desirable isotropic strength characteristics, fabric-like opaqueness, absorbency, and a natural fabric feel.

2. The nonwoven fabric-like laminate of claim 1 wherein the nonwoven web has a basis weight of about 0.3-about 0.7 oz./yd. the thermoplastic polymer is polypropylene, and the filaments have a denier of about 0.8-about 2.5.

3. The nonwoven fabric-like laminate of claim 1 comprising outer plies of cellulose wadding and, as an inner ply, the single ply nonwoven web.

4. The nonwoven fabric-like laminate of claim 3 wherein the continuous filament web is bonded by the application of heat and pressure at intermittent areas occupying about 5-50% of the web area and in a density of about 50-3200 per square inch. 7

5. The nonwoven fabric-like laminate of claim 4 wherein the thermoplastic polymer is polypropylene.

6. The nonwoven fabric-like laminate of claim 3 wherein the nonwoven web has a basis weight of about O.3-about 0.7 oz./yd. the thermoplastic polymer is polypropylene, and the filaments have a denier of about O.8about 2.5.

7. A nonwoven fabric-like laminate comprising, in combination,

a. a low basis weight, single ply nonwoven web of substantially continuous and randomly deposited, molecularly oriented filaments of a hydrophobic'thermoplastic polymer selected from polyolefins, polyurethanes, polyvinyls, polyamides and polyesters, said web prepared by continuous polymer extrusion through a spinneret and filament deposition on a supporting surface and having a basis weight of up to 0.7 oz./yd. with the filaments thereof having a denier of about 0.5-about 6,

b. a web of cellulose wadding having a basis weight of about 0.3-about 0.7 oz./yd. disposed in laminar relationship with respect to the single ply web (a), and

c. patterned areas of a plastisol adhesive disposed between said webs which penetrate into said cellulose wadding web at spaced open areas occupying less than about 25% surface area in a manner so as to provide delamination resistance in combination with fabric-like flexibility, said nonwoven web and cellulose wadding web combining to provide a material with desirable isotropic strength characteristics, fabric-like opaqueness, absorbency, and a natural fabric feel.

8. The nonwoven fabric-like laminate of claim 7 wherein the continuous filament web is bonded by the.

application of heat and pressure at intermittent areas occupying about 5-50% of the web area and in a density of about 50-3200 per square inch.

comprising outer plies of cellulose wadding and, as an inner ply, the single ply nonwoven web.

11. The nonwoven fabric-like laminate of claim 10 wherein the spaced open areas of plastisol adhesive occupy less than about 15% surface area.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2410884 *Jan 26, 1943Nov 12, 1946Utility Fabrics Company IncComposite fabric
US2638146 *Jan 7, 1949May 12, 1953Glas Kraft IncReinforced paper and method and apparatus for the manufacture thereof
US2693844 *Dec 30, 1950Nov 9, 1954Owens Corning Fiberglass CorpApparatus for reinforcing sheet material
US2902395 *Sep 30, 1954Sep 1, 1959Kimberly Clark CoAbsorbent wiping sheet
US3025199 *Jul 31, 1959Mar 13, 1962Kimberly Clark CoPuffed cellulosic product and method of manufacture
US3063454 *Feb 26, 1959Nov 13, 1962Cleanese Corp Of AmericaNon-woven products
US3276944 *Aug 30, 1963Oct 4, 1966Du PontNon-woven sheet of synthetic organic polymeric filaments and method of preparing same
US3327708 *Jun 21, 1965Jun 27, 1967Kimberly Clark CoLaminated non-woven fabric
US3341394 *Dec 21, 1966Sep 12, 1967Du PontSheets of randomly distributed continuous filaments
US3368934 *May 13, 1964Feb 13, 1968Du PontNonwoven fabric of crimped continuous polyethylene terephthalate fibers
US3424643 *Nov 8, 1965Jan 28, 1969Kimberly Clark CoSheet material creped tissue product
US3509009 *Feb 6, 1967Apr 28, 1970Freudenberg Carl KgNon-woven fabric
US3708383 *Jun 4, 1971Jan 2, 1973Kimberly Clark CoNon-woven roll towel material
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3973066 *Jan 16, 1975Aug 3, 1976The Fiberwoven CorporationElectric blanket shell and method of production
US4507351 *Jan 11, 1983Mar 26, 1985The Proctor & Gamble CompanyPaper, thermoplastic adhesive
US4588457 *Aug 2, 1985May 13, 1986The Procter & Gamble CompanyTwo-ply nonwoven fabric laminate
US4610915 *Mar 11, 1983Sep 9, 1986The Procter & Gamble CompanyTwo-ply nonwoven fabric laminate
US5629077 *Jun 27, 1994May 13, 1997Advanced Cardiovascular Systems, Inc.Mesh comprised of woven fibers heat bonded together with lower melting polymer and laminated to film; high radial strength, medical equipment, vascular systems
US5766710 *Jun 19, 1996Jun 16, 1998Advanced Cardiovascular Systems, Inc.Biodegradable mesh and film stent
US5910224 *Sep 11, 1997Jun 8, 1999Kimberly-Clark Worldwide, Inc.Method for forming an elastic necked-bonded material
US5981037 *Jan 30, 1998Nov 9, 1999Owens Corning Fiberglas Technology, Inc.Patterned bonding of encapsulation material to an insulation assembly
US6527801Apr 13, 2000Mar 4, 2003Advanced Cardiovascular Systems, Inc.Biodegradable drug delivery material for stent
US6537644 *Dec 13, 1999Mar 25, 2003First Quality Nonwovens, Inc.Nonwoven with non-symmetrical bonding configuration
US6872274 *Oct 5, 2001Mar 29, 2005First Quality Nonwovens, Inc.Method of making nonwoven with non-symmetrical bonding configuration
US7077860Jun 24, 2004Jul 18, 2006Advanced Cardiovascular Systems, Inc.Medical insert coated with compound that bonds to heparin
US7186789Jun 11, 2003Mar 6, 2007Advanced Cardiovascular Systems, Inc.nonfouling surfaces; block copolyesters having a biobeneficial moiety that provides a biological benefit without releasing pharmaceutically active agent; condensation polymerization
US7198675Sep 30, 2003Apr 3, 2007Advanced Cardiovascular SystemsStent mandrel fixture and method for selectively coating surfaces of a stent
US7229471Sep 10, 2004Jun 12, 2007Advanced Cardiovascular Systems, Inc.Compositions containing fast-leaching plasticizers for improved performance of medical devices
US7258891Apr 7, 2003Aug 21, 2007Advanced Cardiovascular Systems, Inc.Reduct coating, controlling thickness in support contactor zones
US7285304Jun 25, 2003Oct 23, 2007Advanced Cardiovascular Systems, Inc.Coating the device with a polymer, an active agent and a solvent; evaporating the solvent; and applying a polymer-free fluid to the dry coating to increase the crystallinity of the polymer
US7291166May 18, 2005Nov 6, 2007Advanced Cardiovascular Systems, Inc.Polymeric stent patterns
US7297159Jul 21, 2004Nov 20, 2007Advanced Cardiovascular Systems, Inc.Selective coating of medical devices
US7297758Aug 2, 2005Nov 20, 2007Advanced Cardiovascular Systems, Inc.Method for extending shelf-life of constructs of semi-crystallizable polymers
US7301001Dec 20, 2006Nov 27, 2007Advanced Cardiovascular Systems, Inc.Bioabsorbable, biobeneficial polyester polymers for stent coatings
US7312299Dec 20, 2006Dec 25, 2007Advanced Cardiovascular Systems, Inc.Nonfouling surfaces; block copolyesters having a biobeneficial moiety that provides a biological benefit without releasing pharmaceutically active agent; condensation polymerization; for medical implants
US7329366Jun 18, 2004Feb 12, 2008Advanced Cardiovascular Systems Inc.Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US7381048Apr 12, 2005Jun 3, 2008Advanced Cardiovascular Systems, Inc.Stents with profiles for gripping a balloon catheter and molds for fabricating stents
US7390333Jan 10, 2003Jun 24, 2008Advanced Cardiovascular Systems, Inc.Biodegradable drug delivery material for stent
US7470283Jan 10, 2003Dec 30, 2008Advanced Cardiovascular Systems, Inc.Biodegradable drug delivery material for stent
US7476245Aug 16, 2005Jan 13, 2009Advanced Cardiovascular Systems, Inc.Polymeric stent patterns
US7553377Apr 27, 2004Jun 30, 2009Advanced Cardiovascular Systems, Inc.Apparatus and method for electrostatic coating of an abluminal stent surface
US7563324Dec 29, 2003Jul 21, 2009Advanced Cardiovascular Systems Inc.System and method for coating an implantable medical device
US7604700Jan 16, 2007Oct 20, 2009Advanced Cardiovascular Systems, Inc.Stent mandrel fixture and method for selectively coating surfaces of a stent
US7622070Jun 20, 2005Nov 24, 2009Advanced Cardiovascular Systems, Inc.Tubing-mandrels; stents
US7632307Dec 16, 2004Dec 15, 2009Advanced Cardiovascular Systems, Inc.Abluminal, multilayer coating constructs for drug-delivery stents
US7658880Jul 29, 2005Feb 9, 2010Advanced Cardiovascular Systems, Inc.Polymeric stent polishing method and apparatus
US7662326Apr 27, 2007Feb 16, 2010Advanced Cardiovascular Systems, Inc.Compositions containing fast-leaching plasticizers for improved performance of medical devices
US7699890Jan 28, 2004Apr 20, 2010Advanced Cardiovascular Systems, Inc.Medicated porous metal prosthesis and a method of making the same
US7708548Apr 10, 2008May 4, 2010Advanced Cardiovascular Systems, Inc.Molds for fabricating stents with profiles for gripping a balloon catheter
US7731890Jun 15, 2006Jun 8, 2010Advanced Cardiovascular Systems, Inc.conveying a gas into a poly(L-lactide) tube disposed within a cylindrical mold to increase pressure inside tube, wherein increased pressure radially expands tube to conform to inside surface of the mold, applying tension along axis of the tube to axially extend tube, fabricating stent from expanded tube
US7740791Jun 30, 2006Jun 22, 2010Advanced Cardiovascular Systems, Inc.Method of fabricating a stent with features by blow molding
US7757543Jul 13, 2006Jul 20, 2010Advanced Cardiovascular Systems, Inc.Radio frequency identification monitoring of stents
US7758881Mar 24, 2005Jul 20, 2010Advanced Cardiovascular Systems, Inc.stents having everolimus and clobetasol; restenosis, vulnerable plaque; biodegradable
US7761968May 25, 2006Jul 27, 2010Advanced Cardiovascular Systems, Inc.Method of crimping a polymeric stent
US7794495Jul 17, 2006Sep 14, 2010Advanced Cardiovascular Systems, Inc.A stent having a structural element made of a polymer with a hydrolytically degradable L-lactide block and a polystyrenesulfonate or poly(2-acrylamido-2-methylpropanesulfonic acid) block in which the acid group is protecting group; when deprotected the acid group initiates degradation
US7794776Jun 29, 2006Sep 14, 2010Abbott Cardiovascular Systems Inc.modifying molecular weight, comprises polyester amide coating; improving degradation rate and drug release rate
US7823263Jul 9, 2007Nov 2, 2010Abbott Cardiovascular Systems Inc.Method of removing stent islands from a stent
US7829008May 30, 2007Nov 9, 2010Abbott Cardiovascular Systems Inc.Fabricating a stent from a blow molded tube
US7842737Sep 29, 2006Nov 30, 2010Abbott Cardiovascular Systems Inc.Polymer blend-bioceramic composite implantable medical devices
US7867547Dec 19, 2005Jan 11, 2011Advanced Cardiovascular Systems, Inc.spray coating with anti-coagulant, platelet inhibitor and/or pro-healing substance; cured via electrical resistance heater
US7875233Jul 18, 2005Jan 25, 2011Advanced Cardiovascular Systems, Inc.Method of fabricating a biaxially oriented implantable medical device
US7875283Jun 16, 2005Jan 25, 2011Advanced Cardiovascular Systems, Inc.A stent coated with hydrophobic polymer having water-labile bonds and strength to withstand forces of the vascular systems and also biodegrades on its surface rather than bulk erosion; mechanical properties; drug delivery; a polyester,-anhydride or -amide having the monomer, trimellitylimidotyrosine
US7886419Jul 18, 2006Feb 15, 2011Advanced Cardiovascular Systems, Inc.Stent crimping apparatus and method
US7901452Jun 27, 2007Mar 8, 2011Abbott Cardiovascular Systems Inc.Method to fabricate a stent having selected morphology to reduce restenosis
US7923022Sep 13, 2006Apr 12, 2011Advanced Cardiovascular Systems, Inc.stent body is made of polylactone copolymer consisting of monomers selected from lactic acid, glycolic acid and hydroxyhexanoic acid; copolymerized in solvent; mechanical stability, nonbrittleness, fracturing resist
US7951185Jan 6, 2006May 31, 2011Advanced Cardiovascular Systems, Inc.Delivery of a stent at an elevated temperature
US7951194May 22, 2007May 31, 2011Abbott Cardiovascular Sysetms Inc.Bioabsorbable stent with radiopaque coating
US7955381Jun 29, 2007Jun 7, 2011Advanced Cardiovascular Systems, Inc.Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US7959857Jun 1, 2007Jun 14, 2011Abbott Cardiovascular Systems Inc.Radiation sterilization of medical devices
US7959940May 30, 2006Jun 14, 2011Advanced Cardiovascular Systems, Inc.Polymer-bioceramic composite implantable medical devices
US7964210Mar 31, 2006Jun 21, 2011Abbott Cardiovascular Systems Inc.Degradable polymeric implantable medical devices with a continuous phase and discrete phase
US7967998Jan 3, 2008Jun 28, 2011Advanced Cardiocasvular Systems, Inc.Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US7971333May 30, 2006Jul 5, 2011Advanced Cardiovascular Systems, Inc.Manufacturing process for polymetric stents
US7989018Mar 31, 2006Aug 2, 2011Advanced Cardiovascular Systems, Inc.Fluid treatment of a polymeric coating on an implantable medical device
US7998404Jul 13, 2006Aug 16, 2011Advanced Cardiovascular Systems, Inc.Reduced temperature sterilization of stents
US8003156May 4, 2006Aug 23, 2011Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US8007529Aug 1, 2008Aug 30, 2011Advanced Cardiovascular Systems, Inc.Medicated porous metal prosthesis
US8016879Jun 27, 2007Sep 13, 2011Abbott Cardiovascular Systems Inc.Drug delivery after biodegradation of the stent scaffolding
US8017237Jun 23, 2006Sep 13, 2011Abbott Cardiovascular Systems, Inc.Nanoshells on polymers
US8034287May 15, 2007Oct 11, 2011Abbott Cardiovascular Systems Inc.Radiation sterilization of medical devices
US8043553Sep 30, 2004Oct 25, 2011Advanced Cardiovascular Systems, Inc.Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US8048441Jun 25, 2007Nov 1, 2011Abbott Cardiovascular Systems, Inc.Nanobead releasing medical devices
US8048448Jun 15, 2006Nov 1, 2011Abbott Cardiovascular Systems Inc.Nanoshells for drug delivery
US8099849Dec 13, 2006Jan 24, 2012Abbott Cardiovascular Systems Inc.Optimizing fracture toughness of polymeric stent
US8109994Jan 2, 2008Feb 7, 2012Abbott Cardiovascular Systems, Inc.Biodegradable drug delivery material for stent
US8128688Jun 19, 2007Mar 6, 2012Abbott Cardiovascular Systems Inc.Carbon coating on an implantable device
US8172897Jun 28, 2004May 8, 2012Advanced Cardiovascular Systems, Inc.Polymer and metal composite implantable medical devices
US8173062Sep 30, 2004May 8, 2012Advanced Cardiovascular Systems, Inc.Controlled deformation of a polymer tube in fabricating a medical article
US8197879Jan 16, 2007Jun 12, 2012Advanced Cardiovascular Systems, Inc.Method for selectively coating surfaces of a stent
US8202528Jun 5, 2007Jun 19, 2012Abbott Cardiovascular Systems Inc.Implantable medical devices with elastomeric block copolymer coatings
US8241554Jun 29, 2004Aug 14, 2012Advanced Cardiovascular Systems, Inc.Method of forming a stent pattern on a tube
US8262723Apr 9, 2007Sep 11, 2012Abbott Cardiovascular Systems Inc.Implantable medical devices fabricated from polymer blends with star-block copolymers
US8293260Jun 5, 2007Oct 23, 2012Abbott Cardiovascular Systems Inc.Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8293367Jul 15, 2011Oct 23, 2012Advanced Cardiovascular Systems, Inc.Nanoshells on polymers
US8333000Jun 19, 2006Dec 18, 2012Advanced Cardiovascular Systems, Inc.Methods for improving stent retention on a balloon catheter
US8343530Dec 22, 2006Jan 1, 2013Abbott Cardiovascular Systems Inc.Polymer-and polymer blend-bioceramic composite implantable medical devices
US8414642Dec 1, 2008Apr 9, 2013Advanced Cardiovascular Systems, Inc.Biodegradable stent of a polyorthoester polymer or a polyanhydride polymer
US8425591Jun 11, 2007Apr 23, 2013Abbott Cardiovascular Systems Inc.Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8435550Aug 13, 2008May 7, 2013Abbot Cardiovascular Systems Inc.Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8465789Jul 18, 2011Jun 18, 2013Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US8470014Aug 14, 2007Jun 25, 2013Advanced Cardiovascular Systems, Inc.Stent-catheter assembly with a releasable connection for stent retention
US8486135Apr 9, 2007Jul 16, 2013Abbott Cardiovascular Systems Inc.Implantable medical devices fabricated from branched polymers
US8535372Jun 18, 2007Sep 17, 2013Abbott Cardiovascular Systems Inc.Bioabsorbable stent with prohealing layer
US8568469Jun 28, 2004Oct 29, 2013Advanced Cardiovascular Systems, Inc.Stent locking element and a method of securing a stent on a delivery system
US8585754Jan 13, 2012Nov 19, 2013Abbott Cardiovascular Systems Inc.Stent formed of a Biodegradable material
US8592036Sep 20, 2012Nov 26, 2013Abbott Cardiovascular Systems Inc.Nanoshells on polymers
US8596215Jul 18, 2011Dec 3, 2013Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US8603530Jun 14, 2006Dec 10, 2013Abbott Cardiovascular Systems Inc.Nanoshell therapy
US8637110Jul 18, 2011Jan 28, 2014Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US8739727Oct 8, 2012Jun 3, 2014Boston Scientific Scimed, Inc.Coated medical device and method for manufacturing the same
US8741379Jul 18, 2011Jun 3, 2014Advanced Cardiovascular Systems, Inc.Rotatable support elements for stents
US8747878Apr 28, 2006Jun 10, 2014Advanced Cardiovascular Systems, Inc.Method of fabricating an implantable medical device by controlling crystalline structure
US8747879May 31, 2006Jun 10, 2014Advanced Cardiovascular Systems, Inc.Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8752267Aug 9, 2013Jun 17, 2014Abbott Cardiovascular Systems Inc.Method of making stents with radiopaque markers
US8752268Aug 9, 2013Jun 17, 2014Abbott Cardiovascular Systems Inc.Method of making stents with radiopaque markers
US8778256Sep 30, 2004Jul 15, 2014Advanced Cardiovascular Systems, Inc.Deformation of a polymer tube in the fabrication of a medical article
EP0689807A2 *Jun 27, 1995Jan 3, 1996Advanced Cardiovascular Systems, Inc.Biodegradable mesh-and-film stent
Classifications
U.S. Classification428/196, 428/198, 428/219, 442/389
International ClassificationD04H5/04, D04H5/00
Cooperative ClassificationD04H5/04
European ClassificationD04H5/04