US3901033A - Vapor pressurized hydrostatic drive - Google Patents

Vapor pressurized hydrostatic drive Download PDF

Info

Publication number
US3901033A
US3901033A US486909A US48690974A US3901033A US 3901033 A US3901033 A US 3901033A US 486909 A US486909 A US 486909A US 48690974 A US48690974 A US 48690974A US 3901033 A US3901033 A US 3901033A
Authority
US
United States
Prior art keywords
fluid
working fluid
tank
motor
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US486909A
Inventor
Roy E Mcalister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US00229764A external-priority patent/US3830065A/en
Application filed by Individual filed Critical Individual
Priority to US486909A priority Critical patent/US3901033A/en
Application granted granted Critical
Publication of US3901033A publication Critical patent/US3901033A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H43/00Other fluid gearing, e.g. with oscillating input or output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F1/00Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
    • F04F1/06Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped
    • F04F1/10Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped of multiple type, e.g. with two or more units in parallel

Abstract

A hydrostatic drive system generally of the type wherein vapor is alternately directed into one of two reservoir tanks so that working fluid in that tank is forced out of the tank by pressure of the vapor and through a fluidic motor to generate a mechanical output before it returns to refill the other tank. When the first tank is substantially depleted, the vapor pressure is directed into the refilled tank so that fluid from that tank now flows through the moter to refill the first, now depleted, tank. In one embodiment, cyclic pressure generated by a vapor generator forces fluid cyclically through an AC fluid motor. In another embodiment, heat from the working fluid is employed to generate the vapor pressure and reduce the temperature of the working fluid passing through the motor. In a further embodiment, the fuel serves as the working fluid and the vapor from the refilling tank is combusted to provide heat to convert the fuel from its liquid to vapor state. In another embodiment, the combustion gases are combined with the vapor so that, when water is the working fluid, the water vapor in the combustion gases serves as make up working fluid. In a further embodiment, heat from working fluid on its way to the motor is transferred to other working fluid in a second system to drive a second motor. Further aspects of the invention are set forth below.

Description

United States Patent [1 1 McAlister [4 1 Aug. 26, 1975 VAPOR PRESSURIZED HYDROSTATIC DRIVE [76] Inventor: Roy E. McAlister, 5285 N. Red
Rock Dr., Phoenix, Ariz. 85108 [22] Filed: July 9, 1974 [21] Appl. No.: 486,909
I Related US. Application Data [62] Division of Ser. No. 229,764, Feb. 28, 1972, Pat. No. 3,830,065, which is a division of Scr. No. 58,934, July 28, 1970, Pat. No. 3,648,458.
52 U.S.Cl 60/516; 60/655;91/4R 51 Int. Cl. ..F0lk 23/02 [58] Field of Search ..91/4 R; 60/644, 655, 670,
Primary ExaminerMartin P. Schwadron Assistant Examiner-Allen M. Ostrager Attorney, Agent, or Firm-Cushman, Darby & Cushman 5 7 ABSTRACT A hydrostatic drive system generally of the type wherein vapor is alternately directed into one of two reservoir tanks so that working fluid in that tank is forced out of the tank by pressure of the vapor and through a fluidic motor to generate a mechanical output before it returns to refill the other tank. When the first tank is substantially depleted, the vapor pressure is directed into the refilled tank so that fluid from that tank now flows through the moter to refill the first, now depleted, tank. In one embodiment, cyclic pressure generated by a vapor generator forces fluid cyclically through an AC fluid motor. In another embodiment, heat from the working fluid is employed to generate the vapor pressure and reduce the temperature of the working fluid passing through the motor. In a further embodiment, the fuel serves as the working fluid and the vapor from the refilling tank is combusted to provide heat to convert the fuel from its liquid to vapor: state. In another embodiment, the combustion gases are combined with the vapor so that, when wateris the working fluid, the water vapor in the combustion gases serves as make up working fluid. In a further embodiment, heat from working fluid on its way to the motor is transferred to other working fluid in a second system to drive a second motor. Further aspects of the invention are set forth below.
1 Claim, 18 Drawing Figures A AAAMAAAAA PATENTEDAUBZBIQYS 3.901 033 saw 2 BF 9 PATENTED AUBZ 5 I975 (Zn zeal.
PATENTEB AUBZB 1975 saw u o 9 PATENTED AUBZBIQYS 3,90]. I133 SHEET 8 BF 9 1 VAPOR PRESSURIZED HYDROSTATIC DRIVE This is a division of application Ser. No. 229,764, filed Feb. 28, 1972, now US. Pat. No. 3,830,065, which is a division of application Ser. No. 58,934, filed July 28, 1970, now U.S. Pat. No. 3,648,458.
BRIEF DESCRIPTION OF THE PRIOR ART AND SUMMARY OF THE INVENTION gines is, however, completely satisfactory. Both are complicated heavy machines-whose efficiency in accomplishing the energy conversion is normally quite low. The internal combustion engine produces pollutants which are both dangerous and obnoxious.
One promising heat conversion apparatus which has been developed includes a tank containing a working fluid and a fluid motor operatively connected to the tank so that when heat is added to the system a pressure is generated on the fluid in the tank which forces it out the tank and through the motor, thus generating a mechanical output. A second tank can be added to the system so that the fluid after passage through the motor can refill that tank. When the second tank is full,'pressure can be generated on the fluid in that tank to force fluid flow out of the second and through the motor to refill the first. Such systems are shown, for example, in Pike US. Pat. No. 228,555 and Parish US. Pat. No. 2,941, 608.
The present invention relates to a number of embodiments basically similar to such devices. In these embodiments, the basic engine is improved to increase its efficiency and make it more satisfactory for use as an energy conversion system.
Many other objects and purposes of the invention will become clear from the. following detailed description of the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a first embodiment" of the invention with a DC. fluid motor,
FIG. 2 shows a further embodiment with an A.C.
fluid motor, v
FIG. 3 shows a device for injecting fluidas fine droplets into a steam generator,
F IG. 4 shows a further embodiment of the invention wherein the fluid to be; varporized is drawn from the reservoir tank,
FIG. 5 shows a further embodiment of the inventio in which a resonant coupled acoustic pump is employed to inject the fluid into a steam generator as fine droplets,
FIG. 6 shows a reservoir tank having a thin walled steam quench for preventing thermal shock to the res'- wherein the working fluid is a fuel which is combusted to provide heat,
FIG. 8 shows yet another embodiment of the invention in which fluid transmitted to the steam generator absorbs heat from the working fluid in the tank being refilled, i
FIG. 9 shows a further embodiment of the invention in which a porous steam storage bed absorbs heat from the working fluid in the tank being refilled,
FIG. 10 shows another embodiment of the invention wherein a portion of the heat in the working fluid is recovered and employed to generate a mechanical out put,
FIG. 11 shows another embodiment in which heat in the fluid on its way to the fluid motor is transmitted to fluid leaving the fluid motor on its way to refill one of the reservoir tanks,
FIG. 12 shows another embodiment of the invention wherein a portion of the working fluid is evaporated from the heat exchanger to cool the working fluid,
. FIG. 13 shows another embodiment of the invention in which the working fluid which is vaporized absorbs heat from the working fluid in the tank being refilled,
FIG. 14 shows a further embodiment whereby heat in the working fluid on its way to the fluid motor is transferred to working fluid in a second system to cause vaporization of that second fluid and operation of a second fluid motor,
FIG. 15 shows an embodiment of the invention wherein two systems are connected together to a single shaft,
FIG. 16 shows an embodiment of the invention in which each reservoir includes fluids separated by an impermiable barrier which is able to move within the reservoir.
FIG. 17 shows another embodiment of the invention in which the heat generated by fuel being combusted is employed to generate vapor pressure to force the fuel through a fluid motor and into the combustion chamber,
FIG. 18 shows a modification of the embodiment of FIG. 17 in which the vapor pressure in the reservoir tank is generated by vaporizing a portion of the fuel in that tank.
DETAILED DESCRIPTION OF THE DRAWINGS Referenceis-now made to FIG. 1 which illustrates a hydrostatic drive system 18 suitable for use with a DC. fluid motor. In this embodiment, as in many of the other embodiments of the invention, as discussed in detail below, vapor is alternatively directed into one of the two reservoir tanks 20 and 22 sovthat the working fluid in that tank is forced out of the tank by the pressure of the vapor, and through a conventional fluidic motor 38 to generate a mechanical output before it returns to refill the other tank. When the first tank is substantially depleted, the vapor pressure is directed into the refilled tank so that the fluid from that tank now flows again through motor 38 to refill the first, now depleted, tank. I
In FIG. 1, a suitable reservoir 24 of a fluid such as water is connected to a conventional phase converter or boiler 26 which converts the fluid from a liquid to a vapor phase. This conversion may be accomplished by burning a suitable fuel such as a hydrocarbon adjacent boiler 26 so that the generated heat changes the phase of at least a portion of the fluid in boiler 26. Any other suitable arrangement for generating the vapor which is employed to impart motion to the working fluid can be employed. The vapor pressure output of boiler 26 i's'directed to either reservoir tank or tank 22 via master valve 28 which may be a conventional solenoid valve or any other suitable type of conventional mechanism. As depicted schematically in FIG. 1, valve 28 is operated by a suitable control apparatus 30, which alternately causes valve 28 to direct the vapor pressure generated by boiler 26 to reservoir tanks 20 and 22. Control may be mechanically or otherwise linked to the fluid motor 38 so that theposition of the valve 28 is responsive to the physical position of the rotating part of fluid motor 38. Altemately,' control 30 in tank 22 causes working fluid to exit from the bottom of tank 22 and to flow through motor 38 via one way check vale '32. Valve 32, as well as the other check valves in this and the other embodiments set'forth be low, permit fluid flow in one direction but prevent it in the other. These valves may be of any suitable type and are well known in the'art. After passage-throughmot'or 38, the moving fluid passes through check valve 34 and enters tank 20-. The differential between the pressure of the fluid'exiting from tank 22 and the fluid exitingfrom motor 38 prevents fluid from flowing back through check valves 36 and 38. An exhaust valve 40, which also is shown under the control of apparatus 30, is vented to the atmosphere during this time so that the fluid can freely enter chamber'20. Valve 42 at the same time is closed to prevent the loss of the vapor pressure generated by the flow of vapor into tank 22 via valve The cyclic venting of tanks 20 and 22 to the atmosphere results in a gradual reduction in the quantity of working fluid in the system. Reservoir 24 provides some make-up fluid since some of the vapor directed into the tanks condenses therein and is thus added to the supply of working fluid. However, it may be desirable to provide some suitable arrangement for automatically or otherwise replenishing the working fluid from-time to time.
When tank 22 has been depleted or substantially depleted, control mechanism 30 shifts the position of valve 28 so that the vapor pressure generated by boiler 26 is now directed into tank 20 and begins to force the fluid which has refilled it out of tank 20 and through fluid motor 38 via check valve 36. At the same time, exhaust valve 40 is closed and'valve 42 opened by apparatus 30 so that the fluid now flowing through motor 38 via check valve 36 returns to tank 32 via check valve 39. Open valve 42 permits the vapor pressure in chamber 22 to escape'to the atmosphere so that tank 22 can refill.
A portion of the fluid flowing out of one or the other 4 eous phase and 'can' be suitably used "in thisarrangemerit, any other suitable fluid which can be satisfactorily converted from its liquid to its vapor phase can be employed.
Reference is now made to FIG. 2 which shows another embodiment of the invention of this'application. In this arrangement, the fluid motor 50 is an hydrost atic motor whichis capable of converting reciprocating motion into continuous shaft rotation, eg by meansof a reciprocating or swash plate motor. Such AC. motors are well known in the art, and no further discussion of them is necessary. This embodiment of the invention operates in.the same fashion as the embodiment illustrated in FIG. 1 as discussed above with two tanks 52 and 54 alternately filled and emptied of the working fluid by means of vaporgenerated within boiler 54 and alternately directed to tanks 52 and 54 by master valve 56 which is under the control of a suitable control mechanism 58. A reservoir 60 is provided in the system and a valve 62 connects reservoir 60 to the fluid in the two tanks for providing additional fluid for vaporization in boiler 54. Boiler or vapor generator 54 produces cyclic pressure at N times the hydraulic I motor shaft rotation frequency, N being any suitable ters vessel 70 through a conventional inlet valve 72.
Vessel 70 is constructed or associated with piezo electric, magnetic restrictive, or solenoid driven material or structure so that the volume of vessel,70 is cyclically changed due to the harmonic residence of its elastic walls. Thus, the fluid which enters vessel 70 through inlet check valve 72 is cyclically injected into boiler 74 for conversion from a liquid to gaseous phase. This injection technique also finely dividesthe injected droplets; In fact, inlet valve 72 may not be required in operation because water is injected into the boiler steam generator .74 at such high rate to make back flow through the normally small orifices which will preferablybe employed a negligible problem. I
FIG. 4 illustrates another arrangement similar to that of FIG; 1 whereby the fluid which is converted into boiler or other steam generator 90 which converts ,the
of the tanks 20 or 22 also returns to reservoir 24 via yalve 46 which may be controlled by apparatus 30 or may "be manually orotherwise adjusted to provide a suitable flow of liquid intoreservoir 24 for vaporization within boiler 26. As mentioned above, 'while water is one suitable material which exists in the vapor and gasreceived fluid from its liquid to its gaseous phase. Master valve 92 directs the fluid to tanks and 82 alternately as in the embodiment of FIG. 1, and the fluid forced from one tank by vapor pressure flows through actuator or fluid motor 94 and refills the other'tank in the same manner as in FIG. 1. Valves 86 and 88 are operated by control mechanism which also controls master valve 92 so that fluid is drawn from the tank which is refilling to provide fluid to be vaporized to provide the pressure which imparts motion to the working fluid. As in the other embodiments, vapor pressure in the tank being refilled is vented to the atmosphere through valves-102 and 104. Valves 86 and 88 are cyclically opened to cause flow into boiler 90. The heat available from the walls of boiler preferably converts the liquid to vapor. Preferably the period during which water flows into boiler 90 is related to the speed of sound in the vapor compared to its speed in the liquid and upon the geometrical proximities of valves and reservoirs.
FIG. 5 illustrates another embodiment of the invention similar to that of FIG. 1 in which a hydrostatic resonant coupled acoustic pump is employed to draw liquid from the drive system to be converted into vapor within boiler 110. As in the arrangement of FIG. 1, tanks 112 and 114 are alternately emptied and refilled with the working fluid by means of vapor pressure which is generated in boiler and alternately directed into the respective tanks by master valve 116 which is controlled by a suitable control 120.
Whenever additional working fluid, e.g. water, is re quired for boiler 110, tuning fork 120 is set in motion by any suitable mechanism. For example, in this embodiment tuning fork 120 is shown connected to the hydrostatic motor 124 by some suitable linkage mechanism. The horn may also be driven by cams or strikers from the motor 124. Horn 122 magnifies the acoustic excursion generated by fork 120 by the inverse ratio of the steam chamber inlet area to the base area so that water is pushed from the region of tuning fork 120 through horn 122 and injected into boiler 110 as fine droplets.
FIG. 6 illustrates one particular reservoir which is believed to be of particular use in conjunction with a system such as depicted in FIGS. 1-5 and in the other Figures discussed below. In this arrangement, the returning hot water enters tank 126 and is kept from the walls thereof by a thinwalled steam quench 128 which is provided with a number of holes which permit the returning hot water to exit therefrom. Quench 128 thus prevents the return water from thermally shocking the reservoir tank walls and also allows the heat stored in that wall to generate steam within the reservoir tank itself.
FIG. 7 illustrates yet another embodiment of the in vention similarly to the basic D.C. hydrostatic drive system shown in FIG. 1. In this arrangement, as in the others, fluid from two vessels 130 and 132 is alternately forced through a fluidic motor 134 via suitable check valves. However, this particular arrangement differs from those illustrated above in that the fuel which is burned to generate the heat which is converted to me chanical energy is also employed as the working fluid. The fuel, e.g. methane, is stored in a suitable reservoir 136 and added to the system at point 138 where the working fluid exists from fluidic motor 134. The working fluid which is also the fuel then returns to the tank 130 or 132 which is being refilled through the associated check valve.
Part of the liquid which flows out of the tank 130 or 132 which is being depleted is also diverted through either valve 140 or 142, which are both controlled by the control mechanism 134, into either boiler or 152, respectively where heat is added to cause the fuel to change from a liquid to a gaseous state and expand into the associated tank so as to force the working fluid therein out its exit to drive fluid motor 138 and refill the other tank. The gas inthe tank which is being refilled, for example, tank l30,is also exhausted to 21 burner via either valve 164 or 166. An oxidant,
from a suitable reservoir 168 is also supplied to burner 160 for combusting the gaseous fuel. Thus the liquid fuel serves as the working fluid and the vapor which must be exhausted from the tank being refilled then combusted to provide a compact heat source. Floating head barriers may be disposed in each of the vessels 130 and 132 to increase heat transfer between the gas and fluid stages.
FIG. 8 illustrates yet another modification of the basic hydrostatic drive system set forth in FIG. 1. In this arrangement, heat exchange from the vapor expanding within the reservoir tank to feed water on its way to the boiler or vapor generators provides a simple regenerative system. Tanks 170 and 172 are filled with a suitable working fluid as in the other embodiment, and this working fluid is, alternately forced out of one of the tanks 170 and 172 through fluidic motor 174 to refill the other tank. Further, some of the fluid forced from tank 172 or 174 is diverted into line 176, and from line 176, the working fluid thus diverted flows through either coil 178 or 180 depending on which of the check valves 184 and 186 is open. Valves 184 and 186 are under the control of a suitable control apparatus 190 as shown so that the fluid is normally permitted to flow only through the coil 178 or 180 which is in the tank being refilled. The fluid passing through coil 178 or 180 absorbs heat from the working fluid in the surrounding tank and from the hot vapor in that tank as it is exhausted. Thus, the feed fluid enters either boiler 200 or 202 at an elevated temprature, which reduces the quantity of heat necessary to convert the fluid from a liquid to a vapor phase before injection into tank 170 or 172.
FIG. 9 illustrates another embodiment of the invention which is regenerative in the sense that heat in the working fluid is employed, at least in part, to generate the vapor pressure which forces that fluid for one tank through the motor to refill the other tank. In this embodiment, two tanks 210 and 212 are designed to be filled to a maximum level which is just below the porous heat storage bed 214 with a fluid which will change from liquid to vapor phase at a suitable temper ature. When heat is added to one side of storage bed 214, for example, the side associated with tank 210, the added heat causes a conversion of some of the fluid in vessel 210 from its liquid to its vapor phase resulting in a volume expansion which force part of the remaining fluid out the exit of vessel 210 and through a fluidic motor 220 to refill tank 210. When tank 210 has been emptied to a desired level, the procedure is reversed and heat is added to the portion of the porous heat storage bed 214 associated with tank 212. Next the working fluid in tank 212 is partially vaporized so that part of the remaining fluid is out the exit of tank 212 and through fluidic motor 220 into vessel 210.
Meanwhile in the tank that is being refilled with working fluid, bed 214 is absorbing heat from the fluid entering that tank. This heat is retained in bed 214 until that tank has been refilled and additional heat can thereafter be added to cause partial vaporization of the fluid in that tank. Thus, the system is regenerative in the sense that a portion of the heat which is imparted to the working fluid and not initially used to generate mechanical output is thereafter removed from the fluid and reused to generate mechanical output.
FIG. 10 shows yet another embodiment of the invention in which heat is exchanged in the system in a manner similar to an Ericso n cycle. In this arrangement,
heat is generated, for example, by burning methane or some other suitable fuel in burner 218, and then conducted into the vessel through coils 220.and 222. Suitable valves may be provided for switching the flow of the exhaust gases and the heat to the respective tanks for cyclically emptying and refilling tanks 224 and 226. The fluid re-enterting either of the tanks also passes through a coil 228 or 230 before being emptied into vessel 226 or 224, respectively, so that the heat which exists in the fluid which is leaving the tank on its way through motor 232 is in part given back to the water which is returning to the vessel. Similarly, coils 242 and 244 are provided to at least partially cool the fluid exiting from motor 232.
FIG. 1 1 shows yet another embodiment of the invention whereby the heat imparted to the working fluid which would be otherwise lost is in part saved and used to generate a mechanical output. In this embodiment, two tanks 240 242 are alternately filled and emptied with working fluid which passes through conventional fluid motor 244. Fuel such as kerosene, natural gas, powered coal or LP gas from a suitable source 246 is combined with a suitable oxidant and combusted in a suitable burner 248 after passage through a valve 250 which may be manually or automatically adjusted to permit flow of a desired amount of fuel. Heat from the burner 248 is employed to convert the working fluid injected into boilers 252 and 254 into vapor, in which state it is directed into tanks 240 and 242, respectively. Suitable valve means may be provided in boilers 252 and 254 if necessary or desirable.
A portion of the fluid exiting from the tank 240 and 242 being emptied is drawn through either coil 260 or 262 into boiler 252 or 254, respectively. Valves 266 and 268 control the flow of fluid into coils 260 and 262 and these valves are controlled in turn by a suitable control apparatus 270 which insures that fluid will enter only that boiler which is supplying vapor to the tank which is being emptied. Thus, if fluid is to be forced out of tank 240 by the addition of vapor to the top thereof, then valve 268 will be open and valve 266 closed so that the fluid which passes valve 268 will pass through coil 262 and be injected by a suitable injector into boiler 254. As the working fluid passes through coil 262, heat is imparted to it by the burner 248 to preheat the fluid so that it arrives at the boiler at an elevated temperature, thus considerably increasing the amount of vapor that can be injected into the tanks 240 and 242 within any given period of time.
Further, water or other fluid existing from the tank being emptied passes through heat exchanger 270 or 272 before passage through fluid motor 244. These heat exchangers reduce the temperature of the working fluid on its way to motor 244 and thereby decrease the possibility of damage to the fluid motor because of exposure to overheated fluid. The heat in the fluid which enters heat exchanger 272 from the tank 240 or 242 being emptied is in part transferred to the fluid which is leaving motor 244 and is being returned to the tank 240 or 242 which is being refilled so that this heat raises the temperature of the fluid in the tank being refilled.
Reference is now made to FIG. 12 which shows another embodiment of the engine whereby water derived as a by-product of hydrocarbon or other fuel combustion is employed as a makeup supply for the working fluid of the system and further as means of rejecting into the atmosphere heat which is not converted into useful mechanical output. This heat transfer management technique significantly simplifies the apparatus required for converting chemical potential energy into shaft Work and increases the efficiency compared to Otto or Diesel cycle processes.
Hydrocarbon fuels yield carbon monoxide and water when burned to completion in oxygen or oxygenbearing atmospheres. The amount of water produced compared to the amount of carbon monoxide produced depends upon the hydrogen to carbon ratio of the fuel being burned. In common liquid petroleum fuels, the amount of water produced is approximately equal to the amount of fuel burned. In liquefied petroleum gas fuels (butane, propane, methane, etc.) combustion products tend to an even greater extent to be water. vaporization of water at a fixed pressure fixes the boil off temperature. At sea level the temperature for boil off is about 212F. and, at lower atmospheric pressure, the boil off temperature is correspondingly lower. The embodiment of the invention as illustrated in FIG. 12 uses this by-product of hydrogenous fuel combustion as a make-up working fluid supply.
In this embodiment, as in the other embodiments, two reservoir tanks 276 and 278 are alternately discharged and refilled with working fluid which flows from one tank to the other through fluid motor 280, thus, converting the pressure of the working fluid and the kinetic energy embodied in the flow of that fluid into useful output shaft power. The flow of the working fluid is also cyclically directed via valves 282 and 284 into the boilers 286 and 288 which provide the vapor pressure for forcing the working fluid cyclially from tanks 278 and 280. Fuel from a suitable source 300 is directed via valve 302 into boilers 286 and 288, respectively. Valve 302 may be under the control of a suitable mechanism such as control apparatus 304 which controls valve 282 and 284 as well as valves 306 and 308 in the same fashion as discussed above.
In contrast to the embodiment illustrated in FIG. 11, the fuel derived from source 300 is combusted within boilers 286 or 288 which alternately may be any other type of combustion device suitable for combusting the fuel and directing the combined vapor and exhaust gases therefrom. The exhaust gases of combustion together with the water or other vapor produced from the working fluid are alternately passed into tanks 276 and 278 to force the fluid therein to flow out the exit and pass through the fluid motor 280. In this fashion, the water vapor which is derived from the burning of the hydrocarbon fuel and thus added to the system at least in part replaces the vapor which is exhausted to the atmosphere by the alternate opening of valves 310 and 312 during alternate refilling of tanks 276 and 278.
A portion of the fluid existing from motor 280 also passes through valves 306 and 308 which are under control of apparatus 304 and enter the evaporator radiator devices 320 and 322. These devices are preferably provided with an open top or are otherwise accessible to the atmosphere so that the fluid that enters these devices evaporates to the atmosphere tanking with it heat imparted to the evaporating fluid by the working fluid which passes through coils 324 and 326 on its way to fluid motor 280. Part of the heat imparted to the fluid in evaporators 320 and 322 is also transmitted to the fluid returning to tanks 276 and 278 via coils 330 and 332. Thus, part of the heat of the working fluid in tanks 276 and 278 is employed to pre-heat the fluid returning to the tanks after passing through motor 280 and part is vented to the atmosphere so that the fluid which is passed through motor 280 is at a temperature which will not damage the motor.
As in the other embodiments, the working fluid in this embodiment may be water or may be more sophisticated solutions, e.g. mixtures of water and other compounds which might, for example, prevent freezing, in-. crease lubricity, increase or decrease heat transfer, or aid or retard absorption and retention of combustion gases. Conversely, the working fluid may contain a less dense compound or particle which floats upon its surface, thus providing insulation between the combustion gases and working fluid during the period that the pressure is being transmitted in fromthe hot gases to the working fluid in the reservoir. Compounds added to the working fluid may be separated from vaporizable or combustible portions of the working fluid prior to admission to the generator-combustor sections such as boilers 286 and 288.
By utilization of common and inexpensive steels, ceramics, bearings, valves and other hardware, the embodiment of the invention illustrated in FIG. 12, as well as the embodiments of the other figures, maybe designed to operate at temperatures of, for example, 2000F. and 6000 lbs. per square inch at the inlet of the tank receiving the vapor through 160F. or lower by use of heat-dams, insulation, and other arrangements such as flow deflectors and surface coatings. Conversely, the upper portion of the reservoir walls may be maintained at temperatures exceeding 1200F. if desired, thus allowing heat input and storage previous to steam generaton by conduction of heat into the fluid at the time during the filling of the reservoir tank that the fluid level reaches the high wall temperature level.
The basic versatility of the embodiment of FIG. 12 is further illustrated by the potential'of using more than two fluid reservoirs. Manufacture of 100 horsepower modules consisting of two reservoirs and one motor actuator allows engine units of 200 HP, 400 HP, 600 HP, and 1000 HP, or more, to be assembled simply by joining the output shafts of each motor to a common output shaft. Such an output shaft would only have the minimum fabrication requirement of being attachable per the application function and would not involve the various sophistications characteristic of intemalcoinbustion engine crankshafts. Similarly multiple reservoir modules maybe hydraulically connected -to a single motor. l i i The vast variety of hydrostatic, hydraulic, and hydrodynamic actuators further exemplifies particuarly the versatility of the embodiment of FIG. 12 in various applications only being served today by complex mechanisms involving clutches, transmissions, angle drives, universal joints, and differentials. The probability of costly failure is inherently reduced in the embodiment. FIG. 12, as well as the other embodiments, compares favorably to conventional internal combustion reciprocating engines by the reduced number of working parts, the reduced metal to metal relative motion, and the reduced gyratory forces involved. The ability to achieve high horsepower to weight ratios at high efficiencies, particularly when materials selections typical to aircraft turbines are made, makes the engine shown in FIG. 12 preferable to turbines for propeller driven aircraft.
Reference is now made to FIG. 13 which shows another embodiment of the invention which is somewhat similar to the conventional Stirling cycle engine. The Stirling cycle distinguishes itself primarily as one employing regeneration techniques in which heat is transferred from the working fluid into a thermal reservoir as a working fluid begins its expansion. After mechanical output has been generated, the stored heat is readded to the cooled working fluid as it is being reheated to the maximum temperature of the cycle.
The embodiment of the invention illustrated in FIG. 13 is similar in that it is regenerative, but this embodiment also employs advantageous aspects of both the liquid and gas phases in the process of converting heat into mechanical work. In the embodiment illustrated in FIG. 13, heat, for example, produced by combustion of hydrocarbon or other fuels, nuclear fission, or fusion is transferred into vapor phases of the working fluid at heat source 350 which may be, for example, a boiler such as in the other embodiments.
As in the other embodiments, heat from source 350 is employed to convert working fluid from a liquid to a gaseous phase and to direct the vapor pressure thus generated alternately into tanks 352 and 354 so that working fluid is forced out of one of the tanks and through fluidic motor 356 to refill the other tank. A portion of the working fluid which is forced out of each of the tanks is also employed to provide liquid for conversion to a gaseous phase. However, in this embodiment, fluid on its way to a vapor generator such as a boiler passes through a heating coil in the tank being refilled so as to absorb as much of the heat as possible from the fluid entering that tank and also to absorb as much heat as possible from and extended heat transfer surface which is mounted adjacent to the coil through which the fluid passes. For example, a portion of the fluid exiting from tank 352 passes through valve 360 and coil 362 which is mounted in tank 354 as shown. During the time that tank 354 is refilling, working fluid on its way to boiler 366 passes through tank 354 via coil 362. The fluid returning to tank 354 from motor 356 passes through negative heat rejection coil 364 and the fluid returning to tank 352 through negative heat rejection coil 365.
Further, an extended heat transfer surface comprising coil 367 within tank 354 is mounted adjacent coil 362. Coil 367 absorbs heat from the working fluid reentering tank 354 and also absorbs heat from the exhaust gases generated by source 350 which are exhausted to the atmosphere via coil 367 as well as coil 370. The heated fluid existing from coil 362 is injected into boiler 366 where it is converted into its vapor phase and that vapor then transmitted to tank 352 to force the working fluid therein out its exit and through motor 356. Coils 368 and 370 within tank 352 operate similarly when that tank is being refilled, and tank 354 is being emptied. As shown, coils 362 and 368, which each preferably comprise a hollow coil,.are connected to an exhaust 372 so that, forexample, the hot combustion gases are transmitted through coils 366 and 368 so that the heat of the combustion gases-can, at leastin part, be imparted to the working fluid which is to be vaporized and eventually employed to generate a mechanical output. Nuclear loop transfers, of course, would not need an exhaust but preferably employ a similar circuit to optimize the efficiency of energy conversion. i
Reference is now made toFIG. 1 4 which shows yet another embodiment of the invention. In this arrangement, two or morev working fluids are employed to permit extension of the thermal gradiarit to higher and lower temperatures than allowed by' a single Working fluid. This arrangement offers considerable advantages from the standpoint of thermodynamics. In this embodiment, as in the embodiment of FIG. 11, fuel from a suitable source 400 is burned by a suitable burner 402 adjacent conventional boilers 406 and 408. Vapor thus' generated is alternately directed into reservoir tanks 410 and 412, one of which is continually emptying and refilling the other through fluidic motor 414 and thus generating a continuous and useful mechanical shaft output. H
However, fluid issuing from either of the tanks 410 or 412 passes through a heat exchanging coil 414 or 416 on its path through motor 414, thus imparting heat to the fluid in lines 420 and 422 respectively which will normally contain working fluid having a different critical point than the working fluid in tanks 410 and 412. The heat thus imparted causes the fluid in lines 420 and 422 to change from its liquid to its vapor phase and the resulting expansion of the working fluid causes the fluid in tanks 424 and 426 alternately to be forced through a second fluid motor 426 which may bein parallel with the first motor for combining the mechanical shaft output.
A number of combinations of working fluids can be employed in this arrangement. A few examples are mercury and water, mercury and potassium-sodium eutectic, water and freon, water and silicone fluids, freon and liquified gases and many others. A simple extension of the illustrated system permits the development of engines which use three or four or more working fluids.
Reference is now made to FIG. which shows yet another embodiment of the invention in which two hydrostatic systems, each having two tanks are employed to operate a single shaft with two motors 402'and 404 connected in parallel. It should be apparent that any number of systems such as illustrated above can'connected together to generate any desired power output.
FIG. 16 shows yet another embodiment of the invention wherein elastic diaphragms 410 and 412 are connected between two working fluids. The diaphragms separate each of the two tanks 416 and 418 into an upper and lower compartment. The fluid in the upper compartment, for example, the fluid in the upper part of tank'4l8 can be expanded for any suitable means, for example, by heating in boiler 420 with the result that the downward pressure exerted by elastic diaphragm 412 forces the fluid in the lower portion of tank 418 out of its exit and through hydrostatic motor 420 thus deriving a mechanical output. The fluid thus forced from tank 412 then refills the bottom portion of tank 410 which then forces the fluid out of the upper portion and thereof and into the upper portion of tank 418 via valve 422. The process is then reversed with the fluid in the lower portion of tank 410 being forced out by the fluid expanded by boiler 426 and directed into the upper portion of tank 410. Similarly pistons, bellows, and floating particles may be used to separate the fluids.
Reference is now made to FIG. 17 which shows a hydrostatic drive system employing only a single reservoir tank 424. This embodiment which could be used, for example, in a rocket system for travel in outer space employs the heat generated by the fuel which is combusted to supply the rocket thrust to impart motion to the fuel which then serves as the working fluid for conventional hydrostatic or other similar motor 426. The heat generated in combustion chamber 428 which is normally wasted is employed to convert the fuel fluid from a liquid to a gaseous state in pressure source 430 so that the'pressure thus generated forces the fuel fluid in tank 424 out its exit and through motor 426 to be burned in combustion chamber 428. A cooling arrangement 432 can be'disposed adjacent the tank 424 for condensing some of the vapor added to tank 424' into a liquid which can then be used as the working fluid and combusted after passage through motor 426.
FIG. 18 shows a modification of the embodiment of FIG. 7 whereby the heat generated by combusting the working fluid in a combustion chamber 440, for exam ple, to generate thurst to propel a rocket or other vehicle is employed by a heater 442whichhas coils disposed about reservoir tank 444 which is filled with a suitable fuel fluid. The heat added to the fluid in tank 444 by heater 442 causes a portion of it to be converted into a vapor state and expand, thus forcing'part of the working fluid in chamber 444 out past valve 446 and through fluid motor 448 to combustion chamber 440 where it is burned. Thus, the waste heat from the combustion is employed to generate the mechanical output which can be employed in the device for any purpos desired.
The above discussed embodiments of the invention can of course be satisfactorily employed in a number of applications. These include, but are not limited to:
a. Air heating and cooling,
Lawn mowers,
0. Motor generator units,
(1. Garden Tractors e. Sump pumps, I
ffGarbage Disposal and Compaction, g. Irrigation pumps,
h. Electrical Power Generation i. Compressor Stations j Oil and Gas Drill Drilling and Pumping k. Elevators and Lifts l. Conveyors m. Ore Crushers and Pulverizers n. Grain Mills 0. Scrap Shredders and Compactors p. Automobile A q. Rail Cars r. Bus-and Train s. Truck and Tractorsv t. Other Farm Equipment I u. Highway construction equipment v. Pleasure and Commercial Boats w. Aircraft The following Table represents a few resultant engine horsepowers and weights based upon the use of fired boiler rated steels and conventional hydrostatic motors as derived from computer modeling studies.
TABLE Maximum 7 Engine Continuous No. of Full Torque Total Engine Shown in HP Reservoirs RPM Range Dry Weight H0. 12 5 2 100-2000 or 30 lbs.
200020,0() FIG. l2 l 4 lOO-2,000 or 72 lbs.
2,000-20000 H6. 13 50 4 l002,()00 128 lbs. FIG. 13 100 4 l002,000 182 lbs, FIG. 1 l 300 2 l002,000 287 lbs. FIG. 1 l 600 4 loo-2,000 665 lbs.
The use of titanium alloys, composites, and coatings will permit considerable improvement in the weight to power ratios of the Table. However, for most applica tions the Table ratios will be sufficient.
Many changes and modifications in the above discussed embodiments of the invention can of course be made without departing from the scope of the invention. Accordingly, that scope is intended to be limited only by the scope of the appended claims.
What is claimed is:
1. An energy conversion system comprising:
first means for containing a first working fluid,
second means for containing said first working fluid,
first motor means operatively communicating with said first working fluid in said first and second containing means for receiving said first working fluid so that said first working fluid flows into and out of at least a portion of said first motor means so as to generate a mechanical motion,
first means for transmitting said first working fluid from said first containing means to said first motor means,
second means for transmitting said first working fluid from said second containing means to said first motor means,
third means for transmitting said first working fluid from said motor means to said first containing means,
fourth means for transmitting said first working fluid from said motor means to said second containing means,
means for alternately supplying a given fluid in a vapor phase to said first containing means at a pressure such that said working fluid is forced from said first containing means, through said first transmitting means, into and out of said portion of said motor means through said third transmitting means and into said second containing means and to said second containing means at a pressure such that said first working fluid is forced from second means, through said second transmitting means,
into and out of said portion of said motor means, through said fourth transmitting means and into said first means,
third means for containing a second working fluid different from the working fluid in said first and second containing means fourth means for containing said second working fluid,
means for receiving said given fluid in a liquid phase and for heating said given fluid in said liquid phase to convert it to said given fluid in said vapor phase,
second motor means operatively communicating with said second working fluid in said third and fourth containing means for receiving said second working fluid so that said second working fluid flows into and out of at least a portion of said second motor means so as to generate a mechanical motion,
fifth means for transmitting said second working fluid from said third containing means to said second motor means,
sixth means for transmitting said second working fluid from said fourth containing means to said second motor means,
seventh means for tansmitting said second working fluid from said second motor means to said third containing means,
eighth means for transmitting said second working fluid from said second motor means to said fourth containing means,
first heat exchanger means associated with said first and said seventh transmitting means for transmitting heat from the fluid in said first transmitting means to the fluid in said seventh transmitting means, and
second heat exchanger means associated with said second and eighth transmitting means for transmitting heat from fluid in said second transmitting means to the fluid in said eighth transmitting means.

Claims (1)

1. An energy conversion system comprising: first means for containing a first working fluid, second means for containing said first working fluid, first motor means operatively communicating with said first working fluid in said first and second containing means for receiving said first working fluid so that said first working fluid flows into and out of at least a portion of said first motor means so as to generate a mechanical motion, first means for transmitting said first working fluid from said first containing means to said first motor means, second means for transmitting said first working fluid from said sEcond containing means to said first motor means, third means for transmitting said first working fluid from said motor means to said first containing means, fourth means for transmitting said first working fluid from said motor means to said second containing means, means for alternately supplying a given fluid in a vapor phase to said first containing means at a pressure such that said working fluid is forced from said first containing means, through said first transmitting means, into and out of said portion of said motor means through said third transmitting means and into said second containing means and to said second containing means at a pressure such that said first working fluid is forced from second means, through said second transmitting means, into and out of said portion of said motor means, through said fourth transmitting means and into said first means, third means for containing a second working fluid different from the working fluid in said first and second containing means fourth means for containing said second working fluid, means for receiving said given fluid in a liquid phase and for heating said given fluid in said liquid phase to convert it to said given fluid in said vapor phase, second motor means operatively communicating with said second working fluid in said third and fourth containing means for receiving said second working fluid so that said second working fluid flows into and out of at least a portion of said second motor means so as to generate a mechanical motion, fifth means for transmitting said second working fluid from said third containing means to said second motor means, sixth means for transmitting said second working fluid from said fourth containing means to said second motor means, seventh means for tansmitting said second working fluid from said second motor means to said third containing means, eighth means for transmitting said second working fluid from said second motor means to said fourth containing means, first heat exchanger means associated with said first and said seventh transmitting means for transmitting heat from the fluid in said first transmitting means to the fluid in said seventh transmitting means, and second heat exchanger means associated with said second and eighth transmitting means for transmitting heat from fluid in said second transmitting means to the fluid in said eighth transmitting means.
US486909A 1972-02-28 1974-07-09 Vapor pressurized hydrostatic drive Expired - Lifetime US3901033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US486909A US3901033A (en) 1972-02-28 1974-07-09 Vapor pressurized hydrostatic drive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US00229764A US3830065A (en) 1970-07-28 1972-02-28 Vapor pressurized hydrostatic drive
US486909A US3901033A (en) 1972-02-28 1974-07-09 Vapor pressurized hydrostatic drive

Publications (1)

Publication Number Publication Date
US3901033A true US3901033A (en) 1975-08-26

Family

ID=26923586

Family Applications (1)

Application Number Title Priority Date Filing Date
US486909A Expired - Lifetime US3901033A (en) 1972-02-28 1974-07-09 Vapor pressurized hydrostatic drive

Country Status (1)

Country Link
US (1) US3901033A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006595A (en) * 1975-12-30 1977-02-08 Orange State, Inc. Refrigerant-powered engine
US4148195A (en) * 1977-12-12 1979-04-10 Joseph Gerstmann Liquid piston heat-actuated heat pump and methods of operating same
US4195481A (en) * 1975-06-09 1980-04-01 Gregory Alvin L Power plant
US4209982A (en) * 1977-04-07 1980-07-01 Arthur W. Fisher, III Low temperature fluid energy conversion system
US4270350A (en) * 1978-10-25 1981-06-02 Chevalier Donald M Apparatus and method for converting solar energy
EP0082101A2 (en) * 1981-12-11 1983-06-22 Ephraim Feinblum Apparatus and method for using low grade energy source
US4783961A (en) * 1987-06-16 1988-11-15 Walters Randall W Natural gas pressure differential energy recovery system
WO1991002166A1 (en) * 1989-08-10 1991-02-21 Kari Ven Procedeure and device for pumping liquid at high temperature through a pipe
US5127369A (en) * 1991-05-21 1992-07-07 Goldshtik Mikhail A Engine employing rotating liquid as a piston
WO1996034213A1 (en) * 1995-04-27 1996-10-31 United States Environmental Protection Agency Accumulator engine
WO1996034212A1 (en) * 1995-04-27 1996-10-31 U.S. Environmental Protection Agency Lightweight, safe hydraulic power system and a method of operation thereof
US5865086A (en) * 1995-11-02 1999-02-02 Petichakis P.; Haris Thermo-hydro-dynamic system
US20040237525A1 (en) * 2001-07-07 2004-12-02 Gerhard Stock Assembly of gas expansion elements and method of operating said assembly
US20050146142A1 (en) * 2002-04-12 2005-07-07 Corcoran Craig C. Method and apparatus for energy generation utilizing temperature fluctuation-induced fluid pressure differentials
US20050188688A1 (en) * 2004-01-23 2005-09-01 Bruno Best Hydraulic motor arrangement and method of operating a hydraulic motor
US20060059912A1 (en) * 2004-09-17 2006-03-23 Pat Romanelli Vapor pump power system
US20070186553A1 (en) * 2006-02-15 2007-08-16 Lin Hsing-Fa Thermo-driven engine
US20080196412A1 (en) * 2007-02-19 2008-08-21 Michael Miller Engine
US20090013691A1 (en) * 2007-05-09 2009-01-15 Jones Jack A Phase change material thermal power generator
US20100089058A1 (en) * 2008-10-06 2010-04-15 Steven Merrill Harrington Combustion Powered Hydroelectric Sequential Turbines
US20100146963A1 (en) * 2007-02-19 2010-06-17 Michael Miller Engine
US20110061741A1 (en) * 2009-05-22 2011-03-17 Ingersoll Eric D Compressor and/or Expander Device
US20110169277A1 (en) * 2007-02-19 2011-07-14 Michael Miller Engine
WO2011123955A1 (en) 2010-04-09 2011-10-13 Daniel John Kenway System and method for energy storage and retrieval
US20120006023A1 (en) * 2010-03-22 2012-01-12 Keith Sterling Johnson Loop thermal energy system
US20120079825A1 (en) * 2010-04-15 2012-04-05 Gershon Machine Ltd. Generator
DE102011101665A1 (en) 2011-05-16 2012-11-22 Ide Tec GmbH Heat-driven power generating unit for producing power from heat, has electrical intermediate storage unit connected with electric machine, and storage tank receiving portion of liquid phase of process fluid from process chamber
US20120297761A1 (en) * 2010-03-17 2012-11-29 Alexander Anatolyevich Strognaov Method of conversion of heat into fluid power and device for its implementation
US8454321B2 (en) 2009-05-22 2013-06-04 General Compression, Inc. Methods and devices for optimizing heat transfer within a compression and/or expansion device
US20130234439A1 (en) * 2012-03-06 2013-09-12 Access Energy Llc Heat recovery using radiant heat
DE102012011514A1 (en) * 2012-06-04 2013-12-05 Förderverein dream4life e.V. Pressure tank for receiving defined amount of working medium e.g. gas, has force-transforming device that is provided for discharging mechanical energy, so that volume of pressure tank is changed
US20140175798A1 (en) * 2012-12-20 2014-06-26 Howard G. Hoose, JR. Power generation system and method of use thereof
US9540963B2 (en) 2011-04-14 2017-01-10 Gershon Machine Ltd. Generator
US9765758B2 (en) 2014-12-24 2017-09-19 Michael Miller Compressed gas engine
US10100683B2 (en) 2014-12-24 2018-10-16 Michael Miller Compressed gas engine
US10364006B2 (en) 2016-04-05 2019-07-30 Raytheon Company Modified CO2 cycle for long endurance unmanned underwater vehicles and resultant chirp acoustic capability
US10472033B2 (en) * 2016-10-28 2019-11-12 Raytheon Company Systems and methods for power generation based on surface air-to-water thermal differences
US10502099B2 (en) 2017-01-23 2019-12-10 Raytheon Company System and method for free-piston power generation based on thermal differences
CN111237022A (en) * 2020-02-11 2020-06-05 西安交通大学 Power generation device and method utilizing organic working medium without pump circulation
US10914478B2 (en) 2018-03-15 2021-02-09 Michael Miller Portable energy generation and humidity control system
US10968585B2 (en) 2016-06-17 2021-04-06 Koks Group B.V. Vacuum installation for industrial vacuum processes
US11001357B2 (en) 2019-07-02 2021-05-11 Raytheon Company Tactical maneuvering ocean thermal energy conversion buoy for ocean activity surveillance
US11052981B2 (en) 2016-10-28 2021-07-06 Raytheon Company Systems and methods for augmenting power generation based on thermal energy conversion using solar or radiated thermal energy
US11085425B2 (en) 2019-06-25 2021-08-10 Raytheon Company Power generation systems based on thermal differences using slow-motion high-force energy conversion
US11333101B2 (en) * 2018-01-18 2022-05-17 Thermal Tech Holdings Floating head piston assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3608311A (en) * 1970-04-17 1971-09-28 John F Roesel Jr Engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3608311A (en) * 1970-04-17 1971-09-28 John F Roesel Jr Engine

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195481A (en) * 1975-06-09 1980-04-01 Gregory Alvin L Power plant
US4006595A (en) * 1975-12-30 1977-02-08 Orange State, Inc. Refrigerant-powered engine
US4209982A (en) * 1977-04-07 1980-07-01 Arthur W. Fisher, III Low temperature fluid energy conversion system
US4148195A (en) * 1977-12-12 1979-04-10 Joseph Gerstmann Liquid piston heat-actuated heat pump and methods of operating same
US4270350A (en) * 1978-10-25 1981-06-02 Chevalier Donald M Apparatus and method for converting solar energy
EP0082101A2 (en) * 1981-12-11 1983-06-22 Ephraim Feinblum Apparatus and method for using low grade energy source
EP0082101A3 (en) * 1981-12-11 1984-10-03 Ephraim Feinblum Apparatus and method for using low grade energy source
US4783961A (en) * 1987-06-16 1988-11-15 Walters Randall W Natural gas pressure differential energy recovery system
US5242272A (en) * 1989-08-10 1993-09-07 Kari Ven Method and device for pumping a liquid at high temperature through a pipe
GR900100599A (en) * 1989-08-10 1991-12-30 Kari Ven Method and arrangement for pumping liquids under high temperature
BE1004021A3 (en) * 1989-08-10 1992-09-08 Ven Kari Method and device for by a line pumps liquid high temperature.
WO1991002166A1 (en) * 1989-08-10 1991-02-21 Kari Ven Procedeure and device for pumping liquid at high temperature through a pipe
US5127369A (en) * 1991-05-21 1992-07-07 Goldshtik Mikhail A Engine employing rotating liquid as a piston
WO1994001665A1 (en) * 1991-05-21 1994-01-20 Goldshtik Mikhail A Engine employing rotating liquid as a piston
WO1996034212A1 (en) * 1995-04-27 1996-10-31 U.S. Environmental Protection Agency Lightweight, safe hydraulic power system and a method of operation thereof
WO1996034213A1 (en) * 1995-04-27 1996-10-31 United States Environmental Protection Agency Accumulator engine
US5579640A (en) * 1995-04-27 1996-12-03 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Accumulator engine
US5865086A (en) * 1995-11-02 1999-02-02 Petichakis P.; Haris Thermo-hydro-dynamic system
US20040237525A1 (en) * 2001-07-07 2004-12-02 Gerhard Stock Assembly of gas expansion elements and method of operating said assembly
US20050146142A1 (en) * 2002-04-12 2005-07-07 Corcoran Craig C. Method and apparatus for energy generation utilizing temperature fluctuation-induced fluid pressure differentials
US20050188688A1 (en) * 2004-01-23 2005-09-01 Bruno Best Hydraulic motor arrangement and method of operating a hydraulic motor
US7318489B2 (en) * 2004-01-23 2008-01-15 Shell Oil Company Hydraulic motor arrangement and method of operating a hydraulic motor
US20060059912A1 (en) * 2004-09-17 2006-03-23 Pat Romanelli Vapor pump power system
US20070186553A1 (en) * 2006-02-15 2007-08-16 Lin Hsing-Fa Thermo-driven engine
US20080196412A1 (en) * 2007-02-19 2008-08-21 Michael Miller Engine
US7694515B2 (en) 2007-02-19 2010-04-13 Michael Miller Engine
US20100146963A1 (en) * 2007-02-19 2010-06-17 Michael Miller Engine
US8791781B2 (en) 2007-02-19 2014-07-29 Michael Miller Spherical magnet
US20110169277A1 (en) * 2007-02-19 2011-07-14 Michael Miller Engine
US8633604B2 (en) 2007-02-19 2014-01-21 Michael Miller Engine
US8539765B2 (en) 2007-02-19 2013-09-24 Michael Miller Engine
US20090013691A1 (en) * 2007-05-09 2009-01-15 Jones Jack A Phase change material thermal power generator
US8689556B2 (en) 2007-05-09 2014-04-08 California Institute Of Technology Phase change material thermal power generator
US7987674B2 (en) * 2007-05-09 2011-08-02 California Institute Of Technology Phase change material thermal power generator
US20100089058A1 (en) * 2008-10-06 2010-04-15 Steven Merrill Harrington Combustion Powered Hydroelectric Sequential Turbines
US8850808B2 (en) * 2009-05-22 2014-10-07 General Compression, Inc. Compressor and/or expander device
US8286659B2 (en) 2009-05-22 2012-10-16 General Compression, Inc. Compressor and/or expander device
US8359857B2 (en) * 2009-05-22 2013-01-29 General Compression, Inc. Compressor and/or expander device
US8454321B2 (en) 2009-05-22 2013-06-04 General Compression, Inc. Methods and devices for optimizing heat transfer within a compression and/or expansion device
US20110061836A1 (en) * 2009-05-22 2011-03-17 Ingersoll Eric D Compressor and/or Expander Device
US9051834B2 (en) 2009-05-22 2015-06-09 General Compression, Inc. Methods and devices for optimizing heat transfer within a compression and/or expansion device
US20110061741A1 (en) * 2009-05-22 2011-03-17 Ingersoll Eric D Compressor and/or Expander Device
US20120297761A1 (en) * 2010-03-17 2012-11-29 Alexander Anatolyevich Strognaov Method of conversion of heat into fluid power and device for its implementation
US9140273B2 (en) * 2010-03-17 2015-09-22 Alexander Anatolyevich Stroganov Method of conversion of heat into fluid power and device for its implementation
US20120006023A1 (en) * 2010-03-22 2012-01-12 Keith Sterling Johnson Loop thermal energy system
EP3147518A1 (en) 2010-04-09 2017-03-29 Daniel John Kenway System and method for energy storage and retrieval
EP2556263A4 (en) * 2010-04-09 2015-08-05 Daniel John Kenway System and method for energy storage and retrieval
WO2011123955A1 (en) 2010-04-09 2011-10-13 Daniel John Kenway System and method for energy storage and retrieval
US20120079825A1 (en) * 2010-04-15 2012-04-05 Gershon Machine Ltd. Generator
US8800280B2 (en) * 2010-04-15 2014-08-12 Gershon Machine Ltd. Generator
US9540963B2 (en) 2011-04-14 2017-01-10 Gershon Machine Ltd. Generator
DE102011101665A1 (en) 2011-05-16 2012-11-22 Ide Tec GmbH Heat-driven power generating unit for producing power from heat, has electrical intermediate storage unit connected with electric machine, and storage tank receiving portion of liquid phase of process fluid from process chamber
DE102011101665B4 (en) 2011-05-16 2018-08-02 Ide Tec GmbH Heating unit for generating electrical energy and method for generating electricity from heat
US20130234439A1 (en) * 2012-03-06 2013-09-12 Access Energy Llc Heat recovery using radiant heat
US9551487B2 (en) * 2012-03-06 2017-01-24 Access Energy Llc Heat recovery using radiant heat
DE202012013027U1 (en) 2012-06-04 2014-09-03 Förderverein dream4life e.V. Device for converting thermal energy into mechanical energy and vice versa
DE102012011514A1 (en) * 2012-06-04 2013-12-05 Förderverein dream4life e.V. Pressure tank for receiving defined amount of working medium e.g. gas, has force-transforming device that is provided for discharging mechanical energy, so that volume of pressure tank is changed
US20140175798A1 (en) * 2012-12-20 2014-06-26 Howard G. Hoose, JR. Power generation system and method of use thereof
US9341165B2 (en) * 2012-12-20 2016-05-17 Howard G. Hoose, JR. Power generation system and method of use thereof
US9765758B2 (en) 2014-12-24 2017-09-19 Michael Miller Compressed gas engine
US10100683B2 (en) 2014-12-24 2018-10-16 Michael Miller Compressed gas engine
US10364006B2 (en) 2016-04-05 2019-07-30 Raytheon Company Modified CO2 cycle for long endurance unmanned underwater vehicles and resultant chirp acoustic capability
US10946944B2 (en) 2016-04-05 2021-03-16 Raytheon Company Modified CO2 cycle for long endurance unmanned underwater vehicles and resultant chirp acoustic capability
US10968585B2 (en) 2016-06-17 2021-04-06 Koks Group B.V. Vacuum installation for industrial vacuum processes
US10472033B2 (en) * 2016-10-28 2019-11-12 Raytheon Company Systems and methods for power generation based on surface air-to-water thermal differences
US11052981B2 (en) 2016-10-28 2021-07-06 Raytheon Company Systems and methods for augmenting power generation based on thermal energy conversion using solar or radiated thermal energy
US10502099B2 (en) 2017-01-23 2019-12-10 Raytheon Company System and method for free-piston power generation based on thermal differences
US11333101B2 (en) * 2018-01-18 2022-05-17 Thermal Tech Holdings Floating head piston assembly
US10914478B2 (en) 2018-03-15 2021-02-09 Michael Miller Portable energy generation and humidity control system
US11085425B2 (en) 2019-06-25 2021-08-10 Raytheon Company Power generation systems based on thermal differences using slow-motion high-force energy conversion
US11001357B2 (en) 2019-07-02 2021-05-11 Raytheon Company Tactical maneuvering ocean thermal energy conversion buoy for ocean activity surveillance
CN111237022A (en) * 2020-02-11 2020-06-05 西安交通大学 Power generation device and method utilizing organic working medium without pump circulation
CN111237022B (en) * 2020-02-11 2024-04-09 西安交通大学 Power generation device and method using organic working medium for pumpless circulation

Similar Documents

Publication Publication Date Title
US3901033A (en) Vapor pressurized hydrostatic drive
US3648458A (en) Vapor pressurized hydrostatic drive
US3839863A (en) Fluid pressure power plant
US3830065A (en) Vapor pressurized hydrostatic drive
US3991574A (en) Fluid pressure power plant with double-acting piston
US5934076A (en) Heat engine and heat pump
US4209982A (en) Low temperature fluid energy conversion system
KR100303550B1 (en) Thermal regeneration device
US3978661A (en) Parallel-compound dual-fluid heat engine
JP3504946B2 (en) Heat recovery device
US20030074900A1 (en) Energy conversion method and system with enhanced heat engine
US7260934B1 (en) External combustion engine
US3830326A (en) Gas turbine automotive machine
MXPA06005551A (en) Engine with an active mono-energy and/or bi-energy chamber with compressed air and/or additional energy and thermodynamic cycle thereof.
MXPA04003251A (en) Vapor engines utilizing closed loop.
US3339663A (en) Vehicular power plant
US7870735B2 (en) Closed loop expandable gas circuit for power generation
CN106762205A (en) Thermoresonance fusion engine
US3516249A (en) Paxton vapor engine cycle
CA1038632A (en) Vapor generator
US20050160735A1 (en) Water hydrogen engine system
US4149383A (en) Internal vaporization engine
US3987629A (en) System for producing work using a small temperature differential
US3841098A (en) High efficiency pollutant-free combustion gas generator
CA2150359C (en) A heat engine and heat pump