Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3901154 A
Publication typeGrant
Publication dateAug 26, 1975
Filing dateFeb 27, 1961
Priority dateFeb 27, 1961
Publication numberUS 3901154 A, US 3901154A, US-A-3901154, US3901154 A, US3901154A
InventorsHolmes Daniel D
Original AssigneeUs Navy
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fuzing system
US 3901154 A
Abstract
1. A three channel infrared passive fuzing system providing controlled detonation position relative to a target for wide variations in relative velocity of a missile to a target and effective for head-on, side and tail approaches, comprising first, second and third channels each having means at different respective angles for receiving and detecting infrared radiation from a target, a first pulse generating means being connected to said first channel and being responsive to a signal caused by first channel detection of infrared radiation from a target for producing a first voltage pulse of a specific time duration; a first gate means being connected to said first pulse generating means, to said second channel and to a detonating means and being operable to be opened by said first voltage pulse for the specific time duration thereof, said first gate means being operable to pass a signal caused by second channel detection of infrared radiation from said target for actuating said detonating means when said second channel signal occurs during the specific time duration of said first voltage pulse, said second channel also being connected to a second pulse generating means for producing a second voltage pulse of a specific time duration; a second gate means being connected to said second pulse generating means, to said third channel and to said detonating means, and operable to be opened by said second voltage pulse for the time duration thereof, said second gate means being operable to pass a signal caused by third channel detection of infrared radiation from said target for actuating said detonating means when said third channel signal occurs during the specific time duration of said second voltage pulse, said third channel signal being used to actuate said detonating means only when said signal caused by second channel detection of infrared radiation from said target does not occur while said first gate means is open for passing the second channel signal to actuate said detonating means, wherein said fuzing system can be detonated for head-on approaches by said second channel detection signal and for tail approaches by said third channel detection signal.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Holmes 1 Aug. 26, 1975 i 1 FUZING SYSTEM get, a first pulse generating means being connected to 75 Inventor: Daniel D. Holmes, Riverside, Calif. d Channel and Y a caused by first channel detectlon of infrared radlatlon [73] Assignee: The United Stat s f Am s from a target for producing a first voltage pulse of a represented by the Secretary of the specific time duration; a first gate means being con- Navy, gt C nected to said first pulse generating means, to said [22] Filed: Feb. 27, 1961 second channel and to a detonating means and being operable to be opened by said first voltage pulse for pp the specific time duration thereof, said first gate means being operable to pass a signal caused by sec- [52] UL" cg 102/702 p; 343/7 PF ond channel detectionof infrared radiation from said [51] Int. Cl. .4 F42C 13/02 target for actuatipg Sald detonatiflg means i s aid [58] Field of Search 102/702, 50; 250/833 IR second channel signal occurs during the speclflc time 250/715; 343/ GC 5 MD 7, 13 duration of said first voltage pulse, said second channel also being connected to a second pulse generatlng 5 6] References Cited means for producing a second voltage pulse of a specific time duration; a second gate means being con- UNITED STATES PATENTS nected to said second pulse generating means, to said 2,570,295 /1951 Vantinc 102/702 third channel and to Said detonating means d 3 5 6/1957 Bagby i able to be opened by said second voltage pulse for the 2 2 time duration thereof, said second gate means being 2 5 5} 9/1961 Rose 250/835 operable to pass a signal caused by third channel de- 299q:l52 9/196] Gallagher at 31' 250/833 tectlon of infrared radiation from said target for actu- Primary Examinerstephen C. Bentley Assistant E.\'unIirler-C. T. Jordan Attorney, Agenl, 0r Firm-Richard S. Sciascia; Joseph M, St. Amand EXEMPLARY CLAIM l. A three channel infrared passive fuzing system providing controlled detonation position relative to a target for wide variations in relative velocity of a missile to a target and effective for head-on, side and tail approaches, comprising first, second and third channels each having means at different respective angles for receiving and detecting infrared radiation from a tarating said detonating means when said third channel signal occurs during the specific time duration of said second voltage pulse, said third channel signal being used to actuate said detonating means only when said signal caused by second channel detection of infrared radiation from said target does not occur while said first gate means is open for passing the second channel signal to actuate said detonating means, wherein said fuzing system can be detonated for head-on approaches by said second channel detection signal and for tail approaches by said third channel detection signal,

1 Claim, 2 Drawing Figures II l i i I b I'\ l5 i I6 I: '7 l AMPLIFIER AMPLIFIER AMPLIFIER PULSE GENERATOR 22 24 29 PuLsE GENERATOR GATE GATE DETONATING CIRCUIT PATENTEI] AUG 2 6 I975 AMPLIFIER PULSE GENERATOR I2 i I I I6 l l AMPLIFIER AMPLIFIER PULSE GENERATOR w [29 GATE GATE DETONATING CIRCUIT DANIEL D. HOLMES INVEN TOR.

QW.%W

ATTORNEYS FUZING SYSTEM The invention herein described may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.

The present invention relates to fuzing systems and more particularly to an infrared detection fuzing system for providing controlled missle warhead burst position relative to a target for wide variations in relative velocity of missile to target. The present system allows an infrared fuze to be effective for both head-on and tail approaches.

Previous methods of infrared fuzing are limited to either head-on or tail approach capability and do not have both capabilities as does the present system.

The present infrared fuzing system has three detectors oriented at certain angles so that radiation from a target will be detected in a certain time sequence depending upon whether the fuze carrying missile approaches the target from a head-on or a tail-on position. Thus the missile can be detonated on an approach from either angle.

It is an object of the invention, therefore, to provide a novel infrared fuzing system for detonating a missile whether the approach of the target is from the tail or from a head-on position.

Another object of the invention is to provide an infrared fuze for a missile which controls the burst position by sensing relative velocity of missile to target.

It is another object of the invention to provide an infrared fuzing system that controls warhead burst position relative to the target for wide variations in relative velocity of missile to target and that can detonate whether the approach of the target is from a head-on or tail position.

A further object of the invention is to provide a three channel infrared passing fuzing system for both headon and tail on target approach.

Other objects and many of the attendant advantages of this invention will become readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:

FIG. 1 is a simplified block diagram of the present threechannel fuzing system.

FIG. 2 is a block diagram of one circuit embodying the present invention.

Referring now to the drawings like numerals refer to like parts in each of the figures.

The simplified system, as shown in FIG. 1, is a three channel infrared fuze. In operation, the system functions as follows: lnfrared radiation from a target 10, approaching from any direction, is received by three receivers ll, 12 and 13, at angles 15, 16 and 17 respectively. For tail approaches, the time intervals between the reception, by receivers 11, 12 and 13, of infrared signals from the target will be relatively long ascompared to the time intervals for a head-on approach. By using appropriate circuitry 18zfor tail approaches, the system is made to function on the detection of an infrared signal by receiver 13 of the third channel after receivers 11 and 12, of the first and second channels respectively, have detected infrared radiation signals from target and also, to function for head-on approaches on the detection of an infrared signal by receiver 12 of the second channel after receiver 11 of the first channel has detected infrared radiation from target 10.

One circuit for accomplishing the aforementioned detonation position control is illustrated in FIG. 2 and details of operation of this circuit are as follows: Upon detection of infrared radiation from a target 10, receiver 11 produces a voltage pulse; this voltage pulse is amplified by amplifier 20. The amplified pulse from amplifier 20 is used to trigger a pulse generator 22 which in turn produces a pulse of time duration T. This pulse from pulse generator 22 is applied to gate circuit 24 and causes the gate to open for the time T. A time T after receiver 11 detects infrared radiation, receiver 12 will also detect this infrared radiation from target 10. If time T occurs within the time T, gate 24 will be open and the pulse at time T from receiver 12, amplified by amplifier 25, will go through gate 24 to initiate a detonating circuit 26. This would occur in a head-on approach. if the pulse from receiver 12 occurs after the time T, gate 24 will be closed and detonating circuit 26 will not be activated thereby. The pulse from receiver 12 is also applied to pulse generator 28; thus, if detonating circuit 26 is not initiated by the pulse from receiver 12, pulse generator 28 produces a pulse of time duration T which will open gate 29 for this same time interval T Thus, if receiver 13, of the third channel, also produces a pulse within the time T after receiver 12, of the second channel, has produced a voltage pulse from detecting infrared radiation from target 10, gate 29 will be open allowing this channel three pulse, which is amplified by amplifier 30, to initiate the detonating circuit 26. This would occur for tail approaches as mentioned previously.

While previous infrared passive fuzing systems have been limited to tail approaches which severely limits the tactical capabilities of a missile, the present system is not limited to tail approaches but can be used for head on approaches as well as side approaches to the target.

Another embodiment of the present fuzing system,

which only approximates the above discussed circuit, replaced the third channel by a delay network. Thus, if the signals received by receivers 11 and 12 are within a time T, the delay is not used, but if the signal from receiver 12 occurs at a time longer than T after the signal produced by receiver 11, the delay will be used.

Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.

What is claimed is:

l. A three channel infrared passive fuzing system providing controlled detonation position relative to a target for wide variations in relative velocity of a missile to a target and effective for head-on, side and tail approaches, comprising first, second and third channels each having means at different respective angles for receiving and detecting infrared radiation from a target, a first pulse generating means being connected to said first channel and being responsive to a signal caused by first channel detection of infrared radiation from a target for producing a first voltage pulse of a specific time duration; a first gate means being connected to said first pulse generating means, to said sec- 7 0nd channel and to a detonating means and beingoperable to be opened by said first voltage pulse for the specific time duration thereof, said first gate means being operable to pass a signal caused by second channel detection of infrared radiation from said target for actuating said detonating means when said second channel signal occurs during the specific time duration of said first voltage pulse, said second channel also being connected to a second pulse generating means for producing a second voltage pulse of a specific time duration; a second gate means being connected to said second pulse generating means, to said third channel and to said detonating means, and operable to be opened by said second voltage pulse for the time duration thereof, said second gate means being operable to pass a signal caused by third channel detection of infrared radiation from said target for actuating said detonating means when said third channel signal occurs during the specific time duration of said second voltage pulse, said third channel signal being used to actuate said detonating means only when said signal caused by second channel detection of infrared radiation from said target does not occur while said first gate means is open for passing the second channel signal to actuate said detonating means, wherein said fuzing system can be detonated for head-on approaches by said second channel detection signal and for tail approaches by said third channel detection signal.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2570295 *Apr 27, 1948Oct 9, 1951Vantine Jr HarryParachute safety opener
US2795778 *May 3, 1955Jun 11, 1957Northrop Aircraft IncTow target
US2892093 *Dec 30, 1944Jun 23, 1959Henderson Joseph EFuze
US2967933 *Nov 7, 1955Jan 10, 1961Scherbatskoy Serge ADip determination
US2999151 *Aug 6, 1957Sep 5, 1961Servo Corp Of AmericaBi-directional hot box detector
US2999152 *Oct 28, 1958Sep 5, 1961Servo Corp Of AmericaHot-box detector
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4848239 *Apr 27, 1987Jul 18, 1989The Boeing CompanyAntiballistic missile fuze
US20050002037 *Sep 23, 2003Jan 6, 2005Harrison Dale A.Vacuum ultraviolet referencing reflectometer
DE2947779C1 *Nov 28, 1979Jan 16, 1997Daimler Benz Aerospace AgDirectional fuse with interference suppression for land or sea mines
Classifications
U.S. Classification102/213, 342/68
International ClassificationF42C13/00, F42C13/02
Cooperative ClassificationF42C13/02
European ClassificationF42C13/02