US3901231A - Infusion pump apparatus - Google Patents

Infusion pump apparatus Download PDF

Info

Publication number
US3901231A
US3901231A US440410A US44041074A US3901231A US 3901231 A US3901231 A US 3901231A US 440410 A US440410 A US 440410A US 44041074 A US44041074 A US 44041074A US 3901231 A US3901231 A US 3901231A
Authority
US
United States
Prior art keywords
motor
angulation
syringe
infusion pump
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US440410A
Inventor
Raymond G Olson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baxter International Inc
Original Assignee
Baxter Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baxter Laboratories Inc filed Critical Baxter Laboratories Inc
Priority to US440410A priority Critical patent/US3901231A/en
Application granted granted Critical
Publication of US3901231A publication Critical patent/US3901231A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14212Pumping with an aspiration and an expulsion action
    • A61M5/14216Reciprocating piston type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/01Motorized syringe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/12Pressure infusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/13Infusion monitoring

Definitions

  • ABSTRACT Infusion pump apparatus for delivering intravenous fluid from a syringe to a patient so that volume may be accurately controlled between a small delivery rate and a large delivery rate is disclosed.
  • the pump is adaptable to adjust the amplitude of the syringe stroke in order to accurately meter the volume of fluid delivered to a patient within a given time period.
  • the pump may be employed in an oxygen atmosphere without creating a potentially dangerous condition likely to result in an explosion.
  • An an optional feature a pressure sensitive arrangement which stops the pump in the event the resistance to flow of fluid becomes greater than that required for normal operation is also disclosed.
  • the present invention relates to an infusion pump system and more particularly to a pump having a synchronous motor adaptable to move a piston of a surgical syringe to deliver to a patient predetermined accurately measured volumetric amounts of intravenous fluid.
  • syringe pump that comprises a pump assembly adaptable to be either permanently affixed to a syringe or detachably connected thereto.
  • a detachable syringe pump assembly is shown by Rosenberg in US. Pat. No. 3,447,479.
  • Rosenberg discloses a pump driven by the combined efforts of a synchronous timing motor and an induction drive motor.
  • induction motors There are inherent problems to be overcome combining operating characteristics of such drive motors; Among the problems encountered by induction motors are the continual making and breaking of electrical. contact with resultant arcing between contacts, the dis-; advantages of which are self-evident when one is re-. quired to operate a motor in an atmosphere wherein: free oxygen is present. Moreover, induction type mo-- tors are affected by variances in voltage and thus it isdifficult if not impossible to deliver with exactitude a: constant and closely controlled volume of intravenous" fluid wherein the power services may be irregular; thus,; the supply of energy to the pump may vary greatly with? resultant highly diverse amounts of fluid pumped into a patients veins.
  • infusion pump apparatus for rectilinear pumping and delivery of fluid, e.g., l.V. solution to a patient, at an average rate which can be selected within a range of rates.
  • the apparatus includes a novel rate selecting mechanism which includes means for defining an arcuate movement path and means for pivotally reciprocating the arcuate means.
  • a driving linkage is coupled to reciprocate the pump and also coupled to be moved by the arcuate means while reciprocating along a range of positions on the arcuate path thereon.
  • a range of defining member is coupled to the driving linkage for movement therewith and has a fixed pivot whose position is selectively variable. At any fixed pivot point the member limits the range of movement of the driving member along the arcuate path and thus fixes the stroke and average output of the pump.
  • means are provided for sensing the pressure in fluid output and for stopping the pump or signaling a warning for sensed pressures over a preselected high value.
  • This latter feature has the advantage of preventing damage to the patient should the l.V. capillary be inserted wrongly, e.g. into a muscle tissue.
  • FIG. 1 is a perspective view of a portable stand adaptable to support a source of supply of intravenous fluid, infusion pump apparatus including a syringe pump and a motor drive assembly therefor.
  • FIG. 2 is a perspective view of the syringe pump and drive assembly showing more specific details of its exterior construction.
  • FIG. 3 is a vertical front sectional view through the pump and drive assembly with the front portion of the housing broken away so that the working parts of the drive assembly may be seen more clearly.
  • the component parts of the assembly are shown in two positions, the solid lines showing the syringe piston fully extended, the dotted lines showing the syringe piston fully retracted, and defining a maximum amplitude of syringe stroke.
  • FIG. 4 is a vertical front sectional view of the pump and drive assembly similar to FIG. 3 but showing the component parts operative between a position of complete piston extension and complete piston retraction, but defining an intermediate amplitude of syringe stroke.
  • FIG. 5 is a vertical side sectional view through the drive assembly, taken along line 55 of FIG. 3, a front portion of the housing broken away to show more clearly the working parts thereof.
  • the drive assembly is shown secured to a portion of a vertical column of the stand.
  • FIG. 6 is a schematic diagram of a control circuit for use with the subject pump system.
  • FIG. 7 is a schematic diagram of a control circuit similar to that shown in FIG. 6 employing a pressure sensitive device for use with the subject pump system.
  • an'infusion pump apparatus 10 is shown mounted by a clamping arrangement on a vertical rod member 12 of a portable stand 14 adaptable to support an intravenous fluid storage bottle 16 from a hook member 18 disposed at an upper end of the rod member 12.
  • pump apparatus 10 comprises a housing 20 having a front face member 22, side members 24, top 26 and bottom 28 members and a back plate 30.
  • Front face member 22 may be remov ably secured to housing 20 as by machine screws 32.
  • Face member 22 has imprinted thereon a scale 34 of incremental numbcrs corresponding to a desired .parametcr of operation for pumping of fluid by the appa; ratus.
  • the-scale 34 shows a range of numbers from to 300 and refers to milliliters of fluid pumped per hour.
  • Adjusting knob 36 is keyed in a known manner to an exterior portionof a shaft 38 FIG. 5) hereinafter described in detail disposed within the housing. rotation of the knob 36 serves to set the pump at a predetermined rate of delivery of fluid for infusion into the veins of a patient and the volume of fluid flow is indicated by a fingcr 39 formed integrally withand extending outwardly from knob 36.
  • Adjusting knob 36 must include a friction loaded shaft provision or other means (such as a lock knob) to insure that it will main tain itself in any desired selected position to have the apparatus pump the required flow of fluid.
  • the friction shaft or other provisions are needed to overcome a small tendency of the hereinafter described variable rate mechanism to shift the setting.
  • a knurled member 42 is located exteriorly of the face 22 and iskeyed to a portion of a shaft 44 (FIG. 5) extensive exteriorly of the housing.
  • the knurled member 44 is effective when rotated to move a magnetic switch 46 assembly (FIGS. 3 and 4) between off and on positions to activate the pump apparatus.
  • a magnetic switch 46 assembly (FIGS. 3 and 4) between off and on positions to activate the pump apparatus.
  • the switch is preferably of the type shown, the present invention, at least in its broader aspects, contemplates the use of alternative switches such as the conventional toggle switch.
  • An operation or on light 150 is disposed -in face member 22 and serves to indicate that the apparatus flange62 formed thereon adapted to be securablyand pivotally received by a yoke 64 carved from an exterior end of a lever member 66 (hereinafter described in detail).
  • the rod member has an inner end formed toprovide a piston (not shown) head or plunger adaptable to move reciprocat'ingly within the body 56 of the syringe 58.
  • syringe 58 The upper end of syringe 58 is operatively con n ected. as is well known in the art to a valve arrangement68. (FIGS. 1 and 2) that permits flow offluid therethrough of syringe 58 isa" rodmember 60 having a circular only to the patient and prevents back flow of solution into the bottle 16 when rod member moves upwardly to cause pressure to be exerted in valve arrangement 68.
  • This is preferably a pair of one-way valves permitting flow only from I.V. bottle 16 to syringe 58 and from syringe S8 to the patient-connected line.
  • a synchronous electrical motor 98 (FIG. 5) is secured to a back side of mounting plate 72 and is adaptable to rotate a drive shaft 100 that extends through a mounting plate aperture 102 having a diameter somewhat larger. than the diameter of the drive shaft.
  • the drive shaft 100 is keyed or otherwise affixed to an cecentric member 104.
  • the member 104 has an outboard end that pivotally receives a pin 106 secured in one end of a pivot link 108.
  • Pivot link 108 has secured in its other end a pin 1.10 pivotally received by the aperture formed in the second leg 78B of U.-shaped member 78.
  • a range defining member 112 has one end 114 pivotally secured to link member 90 and extends to connect its other end in pivotal engagement at IlZP with one end of a rod member 116.
  • the other end of rod member 116 is secured to shaft 38 and rotates coincidentally therewith.
  • shaft 38 is connected to and controlled by adjusting knob 36.
  • control knob selects or fixes the posi tion of pivot 112? and this in turn controls through range of positions that pivot 96 can travel on arcuate path 82 (considering the relative movement between arcuate means 78 and the pivot 96.)
  • This determines the vertical strokc distance of driving linkage 90 and thus.(through arm 66) of the pump stroke the syringe 58.
  • the rate of reciprocating of the syringe plunger is determined by the rotation of the motor 98 which is preferably fixed so that the position determines the average pumpingrate. s
  • calibration means 1 l8 is provided comprising a block 120, a first adjustment screws 122 threadably receivable therethrough for establishing a minimum adjustrnent position and-a second adjustment screw I24 threadably receivable by the block for establishing a maximum adjustment position of the shaft 38. It should be noted that either screw when th r caded inwaidly or outawrdly of the block will; upon rotation of shaft 38,
  • the Unit 10 is designed to be connected to the commonly available AC power mains (60 hz, 120 v) via a conventional three prong plug 134 which includes a separate ground male prong for connection to ground.
  • AC power mains 60 hz, 120 v
  • a conventional three prong plug 134 which includes a separate ground male prong for connection to ground.
  • the added ground wiring system is commonly used in hospitals in the US. and provides additional protection against electrical shock and leakage currents which could be very dangerous in this environment of use.
  • the plug 134 has three conductors 134A, 134C and 1346 leading to the unit 10.
  • Conductors 134A and 134C are for the convention AC power and conductor 1346 is connected to the ground prong of plug 134.
  • the ground wire 134G is connected to a terminal 146 of a terminal block 132.
  • the terminal146 is securely electrically and physically connected to the housing of the unit 10 to ground that housing.
  • the AC power line 134A is connected through a terminal 133 on block 132 to one side of the switch 130.
  • the switch 130 comprised an insulated sealed envelope housing 130H and a pair of switch blades normally mechanically biased apart switch blades 1308 which are made of magnetic material. When the magnet 126 is moved to the horizontal position the magnetic flux causes the blades to move together and complete the connection through the switch 130.
  • switch 130 is connected via a line 136, terminal 138 and line 140 to the motor 98 of the pump assembly.
  • the other side of the motor connects by a wire 142 with a post 144 of the terminal assembly 132 which part is, in turn, connected to the power input line 134C of the power cord.
  • the indicator light 150 is connected between wires 140 and 142, and is lighted to signal when the motor is running and is off when the motor is shut down.
  • a second preferred embodiment of the invention is illustrated employing, in accordance with a feature of the present invention, means 152 for sensing pressure in the l.V. line to the patient and for automatically shutting off the pump unit 10 in response to a sensed pressure over a selected level.
  • This means 152 in this embodiment, includes a closed housing 152H having a diaphragm 152D which is in pressure communication (via a noncompressive, non-conductive fluid in zone 152A and a flexible diaphragm 1521 with the [.V. line to the patent.
  • a diaphragm 152D which is in pressure communication (via a noncompressive, non-conductive fluid in zone 152A and a flexible diaphragm 1521 with the [.V. line to the patent.
  • a two prong plug 160 is adaptable to be received by receptacle 154 and includes the two wires 162; 164 leading from the pressure sensitive switch 168.
  • a relay switch arrangement 172 is disposed along the wire 158 of the device and includes an indicator light 174 for warning-of an overpressure. It should be noted that in the event pressure sensor 152 reads a pressure considered inimical to the operation of the system, switch 168 will open, causing the light 174 :to light and, more importantly the interruptionof current flow through switch 172 to shut down motor 98 even thoughmagnetic switch 130 remains in a closed position.
  • a supply of intravenous fluid is attached to a stand and from the supply conduit means is connected through the pump apparatus 10 to a vein of a patient as is well known.
  • the pump apparatus is set to a desired'flow of fluid by rotating adjusting knob 36 to the selected point as indicated on scale 34.
  • Knob'42 is rotated from the off to on position and the motor will begin operation to cause'the syringe piston to reciprocate in cylinder 56,alternat 'ely drawing fluid into one-way arrangement means '68 on a retraction stroke and forcing fluid out of this means 68 into a vein of apatient on an extension stroke;
  • the fluid flow setting as accomplished by'rotating knob 36 is translated into a desired volume of fluid flow by varying amplitude of the syringe piston between positions of full retraction and extension.
  • Rotation of knob 36 causes rod 116 to turn between the screws 122, 124 of the calibration means 118 to have indicator arm 39 point to a desired number on scale 34.
  • I v I Rotational movement of rod 1 16 to a desired position between, threadably adjustable screws 122 and 124 forces bar member 112, by virtue of its pinned and articulated relationship with the link 90, to position the link in a desired position along the curvilinear path defined by grooves 82 formed in the member 78.
  • the link 90 having one end positioned in grooves 82 and its other end secured substantially intermediate the ends of lever 66 is effective to move the lever 66 through an acutate angle about its end 70 pivotally secured to mounting plate 72.
  • eccentric 104 rotation of eccentric 104 by the motor causes pivot link 108 to urge the free end 88 of member 78 upwardly and downwardly and thereby define angular displacement about the end 84 of member 78 pivotally secured to the mounting plate.
  • Link 90 positioned in grooves 82 of member 78 and connected to lever 66 causes the lever to rotate about its end 70.
  • the lever in turn translates its angular movement to the rod of the piston syringe 58 and by virtue of its pivotal connection therewith, causes the piston to move rectilinearly and reciprocatingly within the cylinder of the syringe.
  • the cooperative construction of the present invention makes it possible by interrelated structure to combine in a unique arrangement angular motion with rectilinear motion to establish a desired amplitude of stroke for a piston syringe. It should be noted that positioning the end 94 of link at any desired point along the curvilinear path defined by grooves 82 is effective to change the amplitude of the piston stroke and thereby deliver to a patients vein a highly accurate and closely controlled volume of intravenous fluid.
  • Infusion pump apparatus with an adjustable piston stroke amplitude for reciprocating a piston within a syringe to deliver fluid comprising:
  • angulation means pivotally disposed in said housing and operatively connected to said piston to cause said reciprocation of said piston in said syringe; arcuate means pivotally disposed in said housing operatively connected to said angulation means; said arcuate means adaptable to adjustably determine said piston stroke amplitude by varying the displacement of said angulation means: motor means connnected to said arcuate means operable to reciprocate said angulation means through said angular displacement; and
  • said calibration means comprising (a) means for preselecting the fluid flow rate of said infusion pump apparatus by adjusting said displacement of said angulation means, and (b) adjusting means for establishing the minimum and maximum displacement of said angulation means.
  • said angulation means comprises lever means having one end pivotally secured within said housing, said arcuate means comprising a substantially Ushaped member having a middle portion shaped to form a portion of an arc and having grooves formed in said middle portion to define a curvilinear path, link means connected between a point substantially intermediate the ends of said lever means and a point adjustably positioned along said curvilinear path of said U-shaped member, said point of position of said link means along the curvilinear path of said U-shaped member being effective to control the angular distance traveled by said lever and thereby control the amplitude of the syringe piston.
  • said motor means comprises a brushless synchronous electric motor, and magnetic switch means for controlling said motor means between on and off positions, said motor means and said magnetic switch means being adaptable to operate safely in an explosive atmosphere when said switch controls said motor in an operable condition or causes said motor to turn on or off.
  • said motor means comrises a synchronous motor adaptable to operate safely in an explosive atmosphere, an eccentric member keyed to a shaft rotatable by said motor, and a pivot link having one end pivotally connected to said eccentric member and another end pivotally connected to the point of position between said arcuate means and said link means located on the curvilinear path of said U-shaped member.

Abstract

Infusion pump apparatus for delivering intravenous fluid from a syringe to a patient so that volume may be accurately controlled between a small delivery rate and a large delivery rate is disclosed. The pump is adaptable to adjust the amplitude of the syringe stroke in order to accurately meter the volume of fluid delivered to a patient within a given time period. The pump may be employed in an oxygen atmosphere without creating a potentially dangerous condition likely to result in an explosion. An an optional feature a pressure sensitive arrangement which stops the pump in the event the resistance to flow of fluid becomes greater than that required for normal operation is also disclosed.

Description

[11] 3,901,231 Aug. 26, 1975 INFUSION PUMP APPARATUS [75] Inventor: Raymond 6. Olson, Niles, 111.
[73] Assignee: Baxter Laboratories, Inc., Morton Grove, Ill.
[22] Filed: Feb. 7, 1974 [21] Appl. No.-:440,4l0
[52] US. Cl. 128/214 F; 128/218 R; 92/13]; l28/D1G, 1; 128/010. 12; 128/D1G. 13
[51] Int. Cl. A6lm 5/00 [58] Fieldoiseal'clt 128/214 E,2l4 F,218 A, 128/218 R, 218 G, DIG. l, DIG. l2, DIG. 13;
5/1973 Wilhclmson ct a1 l28/D1G. l 6/1974 Fumagalli 92/l3.7
Primary Examiner-Richard A. Gaudet Assistant Examiner-Henry S. Layton [57] ABSTRACT Infusion pump apparatus for delivering intravenous fluid from a syringe to a patient so that volume may be accurately controlled between a small delivery rate and a large delivery rate is disclosed. The pump is adaptable to adjust the amplitude of the syringe stroke in order to accurately meter the volume of fluid delivered to a patient within a given time period. The pump may be employed in an oxygen atmosphere without creating a potentially dangerous condition likely to result in an explosion. An an optional feature a pressure sensitive arrangement which stops the pump in the event the resistance to flow of fluid becomes greater than that required for normal operation is also disclosed.
5 Claims, 7 Drawing Figures PATENTEU Auszs 197s SHIT 1 BF 4 PATIENT PATENTEBAUBZSIQTS" 3.9019231 T0 i T0 PATIENT PATIENT l V SOLUTION mrusrou PUMP APPARATUS The present invention relates to an infusion pump system and more particularly to a pump having a synchronous motor adaptable to move a piston of a surgical syringe to deliver to a patient predetermined accurately measured volumetric amounts of intravenous fluid.
The use of surgical syringes for injecting intravenous fluid into the veins of a pateint has long been known. It is common practice to employ a syringe comprising a cylinder and a piston reciprocatingly disposed therein to cause fluid to 'move from a source of supply to a patient who requires a constant and measured amount of the fluid for purposes of life sustaining nourishment or other aspects of medicinal treatment.
Various means may be utilized to operate the piston of a syringe. The most elementary means for causing movement of a piston would be pressing by hand against a rod portion of the piston extending exteriorly of the cylinder, thereby forcing the head of the piston to move rectilinearly and pump fluid from the supply source to the patient. Modern technology has developed more advanced and sophisticated means for delivering fluid from a source of supply by means of a syringe. In this connection, electromechanical devices have been created that automatically move a piston or plunger of a syringe to cause fluid to be pumped to a patient who requires the adminstering of intravenous fluid to obtain nutrients for sustaining life.
Illustrative of devices that may be used to pump intravenous fluid is a so called syringe pump that comprises a pump assembly adaptable to be either permanently affixed to a syringe or detachably connected thereto. A detachable syringe pump assembly is shown by Rosenberg in US. Pat. No. 3,447,479. However Rosenberg discloses a pump driven by the combined efforts of a synchronous timing motor and an induction drive motor.
There are inherent problems to be overcome combining operating characteristics of such drive motors; Among the problems encountered by induction motors are the continual making and breaking of electrical. contact with resultant arcing between contacts, the dis-; advantages of which are self-evident when one is re-. quired to operate a motor in an atmosphere wherein: free oxygen is present. Moreover, induction type mo-- tors are affected by variances in voltage and thus it isdifficult if not impossible to deliver with exactitude a: constant and closely controlled volume of intravenous" fluid wherein the power services may be irregular; thus,; the supply of energy to the pump may vary greatly with? resultant highly diverse amounts of fluid pumped into a patients veins.
BRIEF SUMMARY OF THE INVENTION In accordance with a major feature of the present irivention infusion pump apparatus is provided for rectilinear pumping and delivery of fluid, e.g., l.V. solution to a patient, at an average rate which can be selected within a range of rates. The apparatus includes a novel rate selecting mechanism which includes means for defining an arcuate movement path and means for pivotally reciprocating the arcuate means. A driving linkage is coupled to reciprocate the pump and also coupled to be moved by the arcuate means while reciprocating along a range of positions on the arcuate path thereon.
A range of defining member is coupled to the driving linkage for movement therewith and has a fixed pivot whose position is selectively variable. At any fixed pivot point the member limits the range of movement of the driving member along the arcuate path and thus fixes the stroke and average output of the pump.
In accordance with another feature of the invention means are provided for sensing the pressure in fluid output and for stopping the pump or signaling a warning for sensed pressures over a preselected high value.
This latter feature has the advantage of preventing damage to the patient should the l.V. capillary be inserted wrongly, e.g. into a muscle tissue.
These and other features and advantages of the invention will become apparent from the ensuing description, reference being had to the accompanying drawings, in which like members are used to identify like elements in the several views.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a portable stand adaptable to support a source of supply of intravenous fluid, infusion pump apparatus including a syringe pump and a motor drive assembly therefor.
FIG. 2 is a perspective view of the syringe pump and drive assembly showing more specific details of its exterior construction.
FIG. 3 is a vertical front sectional view through the pump and drive assembly with the front portion of the housing broken away so that the working parts of the drive assembly may be seen more clearly. The component parts of the assembly are shown in two positions, the solid lines showing the syringe piston fully extended, the dotted lines showing the syringe piston fully retracted, and defining a maximum amplitude of syringe stroke.
FIG. 4 is a vertical front sectional view of the pump and drive assembly similar to FIG. 3 but showing the component parts operative between a position of complete piston extension and complete piston retraction, but defining an intermediate amplitude of syringe stroke. 1
FIG. 5 is a vertical side sectional view through the drive assembly, taken along line 55 of FIG. 3, a front portion of the housing broken away to show more clearly the working parts thereof. The drive assembly is shown secured to a portion of a vertical column of the stand.
FIG. 6 is a schematic diagram of a control circuit for use with the subject pump system.
FIG. 7 is a schematic diagram of a control circuit similar to that shown in FIG. 6 employing a pressure sensitive device for use with the subject pump system.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1, an'infusion pump apparatus 10 is shown mounted by a clamping arrangement on a vertical rod member 12 of a portable stand 14 adaptable to support an intravenous fluid storage bottle 16 from a hook member 18 disposed at an upper end of the rod member 12.
As seen more clearly in FIG. 2 pump apparatus 10 comprises a housing 20 having a front face member 22, side members 24, top 26 and bottom 28 members and a back plate 30. Front face member 22 may be remov ably secured to housing 20 as by machine screws 32.
Access to the interior of the housing is accomplished by unthreading the screws and removing face member 22 from the housing. I
Face member 22 has imprinted thereon a scale 34 of incremental numbcrs corresponding to a desired .parametcr of operation for pumping of fluid by the appa; ratus. As illustrated. the-scale 34 shows a range of numbers from to 300 and refers to milliliters of fluid pumped per hour. Adjusting knob 36 is keyed in a known manner to an exterior portionof a shaft 38 FIG. 5) hereinafter described in detail disposed within the housing. rotation of the knob 36 serves to set the pump at a predetermined rate of delivery of fluid for infusion into the veins of a patient and the volume of fluid flow is indicated by a fingcr 39 formed integrally withand extending outwardly from knob 36. Adjusting knob 36 must include a friction loaded shaft provision or other means (such as a lock knob) to insure that it will main tain itself in any desired selected position to have the apparatus pump the required flow of fluid. The friction shaft or other provisions are needed to overcome a small tendency of the hereinafter described variable rate mechanism to shift the setting.
A knurled member 42 is located exteriorly of the face 22 and iskeyed to a portion of a shaft 44 (FIG. 5) extensive exteriorly of the housing. The knurled member 44 is effective when rotated to move a magnetic switch 46 assembly (FIGS. 3 and 4) between off and on positions to activate the pump apparatus. Although the switch is preferably of the type shown, the present invention, at least in its broader aspects, contemplates the use of alternative switches such as the conventional toggle switch.
An operation or on light 150 is disposed -in face member 22 and serves to indicate that the apparatus flange62 formed thereon adapted to be securablyand pivotally received by a yoke 64 carved from an exterior end ofa lever member 66 (hereinafter described in detail). The rod member has an inner end formed toprovide a piston (not shown) head or plunger adaptable to move reciprocat'ingly within the body 56 of the syringe 58. i
The upper end of syringe 58 is operatively con n ected. as is well known in the art to a valve arrangement68. (FIGS. 1 and 2) that permits flow offluid therethrough of syringe 58 isa" rodmember 60 having a circular only to the patient and prevents back flow of solution into the bottle 16 when rod member moves upwardly to cause pressure to be exerted in valve arrangement 68. This is preferably a pair of one-way valves permitting flow only from I.V. bottle 16 to syringe 58 and from syringe S8 to the patient-connected line.
Referringnow to FIGS. 3, 4, and 5, it can be seen that of pivot ll2P byfixing the stroke pair of arcuate.grooves 82..Ihefifstleg-7:8A= has its end 84 pivotally connected at 86 to the mounting plate 72.
A first link driving mcmber 90 has a first end 92 'pivotally secured substantially intermediate "the ends of lever 66 and has a second end,94 secured as bypins 96 received in the arcuate grooves 82 of membcr=78. It should be noted that the second end 94 of link 90 may be assumed positions along an arcuate path defined by the grooves 82 formed in the middle portion member A synchronous electrical motor 98 (FIG. 5) is secured to a back side of mounting plate 72 and is adaptable to rotate a drive shaft 100 that extends through a mounting plate aperture 102 having a diameter somewhat larger. than the diameter of the drive shaft. ,The drive shaft 100 is keyed or otherwise affixed to an cecentric member 104. The member 104 has an outboard end that pivotally receives a pin 106 secured in one end of a pivot link 108. Pivot link 108 has secured in its other end a pin 1.10 pivotally received by the aperture formed in the second leg 78B of U.-shaped member 78.
A range defining member 112 has one end 114 pivotally secured to link member 90 and extends to connect its other end in pivotal engagement at IlZP with one end of a rod member 116. The other end of rod member 116 is secured to shaft 38 and rotates coincidentally therewith. As hereinbefore described shaft 38 is connected to and controlled by adjusting knob 36.
Note that the control knob selects or fixes the posi tion of pivot 112? and this in turn controls through range of positions that pivot 96 can travel on arcuate path 82 (considering the relative movement between arcuate means 78 and the pivot 96.) This, however, in accordance with a major feature of the present invention determines the vertical strokc distance of driving linkage 90 and thus.(through arm 66) of the pump stroke the syringe 58. The rate of reciprocating of the syringe plungeris determined by the rotation of the motor 98 which is preferably fixed so that the position determines the average pumpingrate. s
The pump unit as described has bee'nconstructed and tested. Empirical data has established that a near linear relationship can be made to-exist between the setting of knob 36 and-the flow rate and that the average rate of pumping can be precisely controlled over a satisfactory range. y
In order to control the rotation-of shaft 38 between minimum and maximum limit positions. asindicatcd on scale 34, calibration means 1 l8 isprovided comprising a block 120, a first adjustment screws 122 threadably receivable therethrough for establishing a minimum adjustrnent position and-a second adjustment screw I24 threadably receivable by the block for establishing a maximum adjustment position of the shaft 38. It should be noted that either screw when th r caded inwaidly or outawrdly of the block will; upon rotation of shaft 38,
establish a contact point with-either edge of rod member 116 and thereby prevent furtherrotation of shaft 38. Thus. it is possible to adjust the rotation'of shaft 38 between minimum and maximum positions so that-opposite correspondence is I maintained with scale 34 whenknob 36 is turned to rotate shaft 38 and thereby select a desired rate of fluid infusion.
It can be seen that rotation of knurled knob 42 causes a magnetic arm I26 affixied thereto'to rotate therewith throughout an angle of substantially-90 as defined by limit pin 128 protruding from the mounting plate and an exterior side of an enclosed magnetic switch 130 secured as by screws to the mounting plate 72. The pump assembly is inoperative when magnetic arm 126 is engaged with pin 128 and becomes operative when magnetic arm 126 is rotated by knob 42 into contact with magnetic switch 130. Magnetic switch 130 is wired in a known manner. to an insulated terminal assembly 132 (FIGS. 6 and 7) secured to the mounting plate 72.
Referring now to FIG. 6, the Unit 10 is designed to be connected to the commonly available AC power mains (60 hz, 120 v) via a conventional three prong plug 134 which includes a separate ground male prong for connection to ground. Of course, other power sources and double insulation may be employed without departing from the invention. However, the added ground wiring system is commonly used in hospitals in the US. and provides additional protection against electrical shock and leakage currents which could be very dangerous in this environment of use.
The plug 134 has three conductors 134A, 134C and 1346 leading to the unit 10. Conductors 134A and 134C are for the convention AC power and conductor 1346 is connected to the ground prong of plug 134.
The ground wire 134G is connected to a terminal 146 of a terminal block 132. The terminal146 is securely electrically and physically connected to the housing of the unit 10 to ground that housing.
The AC power line 134A is connected through a terminal 133 on block 132 to one side of the switch 130. As best shown in FIG. 6, the switch 130 comprised an insulated sealed envelope housing 130H and a pair of switch blades normally mechanically biased apart switch blades 1308 which are made of magnetic material. When the magnet 126 is moved to the horizontal position the magnetic flux causes the blades to move together and complete the connection through the switch 130.
The other side of switch 130 is connected via a line 136, terminal 138 and line 140 to the motor 98 of the pump assembly. The other side of the motor connects by a wire 142 with a post 144 of the terminal assembly 132 which part is, in turn, connected to the power input line 134C of the power cord.
The indicator light 150 is connected between wires 140 and 142, and is lighted to signal when the motor is running and is off when the motor is shut down.
ln HO. 7 a second preferred embodiment of the invention is illustrated employing, in accordance with a feature of the present invention, means 152 for sensing pressure in the l.V. line to the patient and for automatically shutting off the pump unit 10 in response to a sensed pressure over a selected level.
This means 152, in this embodiment, includes a closed housing 152H having a diaphragm 152D which is in pressure communication (via a noncompressive, non-conductive fluid in zone 152A and a flexible diaphragm 1521 with the [.V. line to the patent. When the pressure in the IV chamber 152C rises above a threshold level, it moves diaphragm 152D to break the contact of a switch 168 and disconnect the connection between lines 162 and 164.
A two prong plug 160 is adaptable to be received by receptacle 154 and includes the two wires 162; 164 leading from the pressure sensitive switch 168. A relay switch arrangement 172 is disposed along the wire 158 of the device and includes an indicator light 174 for warning-of an overpressure. It should be noted that in the event pressure sensor 152 reads a pressure considered inimical to the operation of the system, switch 168 will open, causing the light 174 :to light and, more importantly the interruptionof current flow through switch 172 to shut down motor 98 even thoughmagnetic switch 130 remains in a closed position.
In the operation of the present invention, a supply of intravenous fluid is attached to a stand and from the supply conduit means is connected through the pump apparatus 10 to a vein of a patient as is well known. The pump apparatus is set to a desired'flow of fluid by rotating adjusting knob 36 to the selected point as indicated on scale 34. Knob'42 is rotated from the off to on position and the motor will begin operation to cause'the syringe piston to reciprocate in cylinder 56,alternat 'ely drawing fluid into one-way arrangement means '68 on a retraction stroke and forcing fluid out of this means 68 into a vein of apatient on an extension stroke;
The fluid flow setting as accomplished by'rotating knob 36 is translated into a desired volume of fluid flow by varying amplitude of the syringe piston between positions of full retraction and extension. Rotation of knob 36 causes rod 116 to turn between the screws 122, 124 of the calibration means 118 to have indicator arm 39 point to a desired number on scale 34. I v I Rotational movement of rod 1 16 to a desired position between, threadably adjustable screws 122 and 124 forces bar member 112, by virtue of its pinned and articulated relationship with the link 90, to position the link in a desired position along the curvilinear path defined by grooves 82 formed in the member 78. The link 90 having one end positioned in grooves 82 and its other end secured substantially intermediate the ends of lever 66 is effective to move the lever 66 through an acutate angle about its end 70 pivotally secured to mounting plate 72.
It can be seen that rotation of eccentric 104 by the motor causes pivot link 108 to urge the free end 88 of member 78 upwardly and downwardly and thereby define angular displacement about the end 84 of member 78 pivotally secured to the mounting plate. Link 90 positioned in grooves 82 of member 78 and connected to lever 66 causes the lever to rotate about its end 70. The lever in turn translates its angular movement to the rod of the piston syringe 58 and by virtue of its pivotal connection therewith, causes the piston to move rectilinearly and reciprocatingly within the cylinder of the syringe. Thus, it can be seen that the cooperative construction of the present invention makes it possible by interrelated structure to combine in a unique arrangement angular motion with rectilinear motion to establish a desired amplitude of stroke for a piston syringe. It should be noted that positioning the end 94 of link at any desired point along the curvilinear path defined by grooves 82 is effective to change the amplitude of the piston stroke and thereby deliver to a patients vein a highly accurate and closely controlled volume of intravenous fluid.
It is thought that the invention and many of its attendant advantages will be understood from the foregoing description and it will be apparent to those skilled in the art that various changes may be made in the form, construction and arrangement of the component parts without departing from the spirit and scope of the invention or sacrificing all its material advantages, the
form hereinbefore described being merely a preferred embodiment thereof.
I claim:
1. Infusion pump apparatus with an adjustable piston stroke amplitude for reciprocating a piston within a syringe to deliver fluid comprising:
a housing;
angulation means pivotally disposed in said housing and operatively connected to said piston to cause said reciprocation of said piston in said syringe; arcuate means pivotally disposed in said housing operatively connected to said angulation means; said arcuate means adaptable to adjustably determine said piston stroke amplitude by varying the displacement of said angulation means: motor means connnected to said arcuate means operable to reciprocate said angulation means through said angular displacement; and
calibration means cooperable with said operative connection between said angulation means and said arcuate means,
said calibration means comprising (a) means for preselecting the fluid flow rate of said infusion pump apparatus by adjusting said displacement of said angulation means, and (b) adjusting means for establishing the minimum and maximum displacement of said angulation means.
2. The infusion pump apparatus of claim 1 wherein said adjusting means comprises a plurality of threadably adjustable screws.
3. The infusion pump apparatus of claim 1 wherein said angulation means comprises lever means having one end pivotally secured within said housing, said arcuate means comprising a substantially Ushaped member having a middle portion shaped to form a portion of an arc and having grooves formed in said middle portion to define a curvilinear path, link means connected between a point substantially intermediate the ends of said lever means and a point adjustably positioned along said curvilinear path of said U-shaped member, said point of position of said link means along the curvilinear path of said U-shaped member being effective to control the angular distance traveled by said lever and thereby control the amplitude of the syringe piston.
4. The infusion pump apparatus of claim 1 wherein said motor means comprises a brushless synchronous electric motor, and magnetic switch means for controlling said motor means between on and off positions, said motor means and said magnetic switch means being adaptable to operate safely in an explosive atmosphere when said switch controls said motor in an operable condition or causes said motor to turn on or off. 5. The infusion pump apparatus of claim 3 wherein said motor means comrises a synchronous motor adaptable to operate safely in an explosive atmosphere, an eccentric member keyed to a shaft rotatable by said motor, and a pivot link having one end pivotally connected to said eccentric member and another end pivotally connected to the point of position between said arcuate means and said link means located on the curvilinear path of said U-shaped member.

Claims (5)

1. Infusion pump apparatus with an adjustable piston stroke amplitude for reciprocating a piston within a syringe to deliver fluid comprising: a housing; angulation means pivotally disposed in said housing and operatively connected to said piston to cause said reciprocation of said piston in said syringe; arcuate means pivotally disposed in said housing operatively connected to said angulation means; said arcuate means adaptable to adjustably determine said piston stroke amplitude by varying the displacement of said angulation means: motor means connnected to said arcuate means operable to reciprocate said angulation means through said angular displacement; and calibration means cooperable with said operative connection between said angulation means and said arcuate means, said calibration means comprising (a) means for pre-selecting the fluid flow rate of said infusion pump apparatus by adjusting said displacement of said angulation means, and (b) adjusting means for establishing the minimum and maximum displacement of said angulation means.
2. The infusion pump apparatus of claim 1 wherein said adjusting means comprises a plurality of threadably adjustable screws.
3. The infusion pump apparatus of claim 1 wherein said angulation means comprises lever means having one end pivotally secured within said housing, said arcuate means comprising a substantially U-shaped member having a middle portion shaped to form a portion of an arc and having grooves formed in said middle portion to define a curvilinear path, link means connected between a point substantially intermediate the ends of said lever means and a point adjustably positioned along said curvilinear path of said U-shaped member, said point of position of said link means along the curvilinear path of said U-shaped member being effective to control the angular distance traveled by said lever and thereby control the amplitude of the syringe piston.
4. The infusion pump apparatus of claim 1 wherein said motor means comprises a brushless synchronous electric motor, and magnetic switch means for controllinG said motor means between on and off positions, said motor means and said magnetic switch means being adaptable to operate safely in an explosive atmosphere when said switch controls said motor in an operable condition or causes said motor to turn on or off.
5. The infusion pump apparatus of claim 3 wherein said motor means comrises a synchronous motor adaptable to operate safely in an explosive atmosphere, an eccentric member keyed to a shaft rotatable by said motor, and a pivot link having one end pivotally connected to said eccentric member and another end pivotally connected to the point of position between said arcuate means and said link means located on the curvilinear path of said U-shaped member.
US440410A 1974-02-07 1974-02-07 Infusion pump apparatus Expired - Lifetime US3901231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US440410A US3901231A (en) 1974-02-07 1974-02-07 Infusion pump apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US440410A US3901231A (en) 1974-02-07 1974-02-07 Infusion pump apparatus

Publications (1)

Publication Number Publication Date
US3901231A true US3901231A (en) 1975-08-26

Family

ID=23748655

Family Applications (1)

Application Number Title Priority Date Filing Date
US440410A Expired - Lifetime US3901231A (en) 1974-02-07 1974-02-07 Infusion pump apparatus

Country Status (1)

Country Link
US (1) US3901231A (en)

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3985133A (en) * 1974-05-28 1976-10-12 Imed Corporation IV pump
US3999542A (en) * 1975-04-10 1976-12-28 Shaw Robert F Anti-clogging liquid administration apparatus and method
DE2609699A1 (en) * 1974-05-28 1977-09-15 Imed Corp Pump with predetermined flow rate and dispensed volume - has volumetric cassette with piston and piston delivery stroke control
US4056333A (en) * 1974-07-15 1977-11-01 Valleylab Intravenous feeding pump failure alarm system
US4067332A (en) * 1975-02-28 1978-01-10 Ivac Corporation Syringe pump drive system and disposable syringe cartridge
US4078562A (en) * 1976-08-16 1978-03-14 Diana W. Friedman Infusion pump with feedback control
US4091810A (en) * 1975-11-03 1978-05-30 Valleylab Method for intravenous feeding of a patient
US4126132A (en) * 1975-07-28 1978-11-21 Andros Incorporated Intravenous and intra arterial delivery system
US4175474A (en) * 1976-12-13 1979-11-27 Elitex, Koncern Textilniho Strojirenstvi Variable displacement pump
US4178927A (en) * 1975-11-03 1979-12-18 Valleylab Intravenous liquid delivery system
US4264281A (en) * 1978-05-11 1981-04-28 Paul Hammelmann Pump with an automatically adjusted output rate
WO1982000590A1 (en) * 1980-08-25 1982-03-04 Travenol Lab Baxter Metering apparatus with downline pressure monitoring system
US4381006A (en) * 1980-11-10 1983-04-26 Abbott Laboratories Continuous low flow rate fluid dispenser
US4382753A (en) * 1979-03-09 1983-05-10 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
US4391600A (en) * 1979-03-09 1983-07-05 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
US4391599A (en) * 1979-01-18 1983-07-05 Imed Corporation Apparatus for providing a controlled flow of intravenous fluid to a patient
US4392847A (en) * 1979-01-08 1983-07-12 Whitney Douglass G Injection and monitoring system
US4410322A (en) * 1979-03-09 1983-10-18 Avi, Inc. Nonpulsating TV pump and disposable pump chamber
DE2660392C2 (en) * 1976-03-06 1983-10-20 Imed Corp., 92131 San Diego, Calif. Piston pump arrangement for an infusion apparatus
US4452251A (en) * 1982-11-05 1984-06-05 Medrad, Inc. Syringe content indicating device
US4468222A (en) * 1976-05-24 1984-08-28 Valleylab Intravenous liquid pumping system and method
US4674722A (en) * 1985-11-18 1987-06-23 Critikon, Inc. Medical accessory pole clamp
US4696671A (en) * 1984-02-08 1987-09-29 Omni-Flow, Inc. Infusion system having plural fluid input ports and at least one patient output port
US4816019A (en) * 1986-03-04 1989-03-28 Kamen Dean L Infiltration detection system using pressure measurement
US4828545A (en) * 1984-02-08 1989-05-09 Omni-Flow, Inc. Pressure responsive multiple input infusion system
US4838860A (en) * 1987-06-26 1989-06-13 Pump Controller Corporation Infusion pump
US4854836A (en) * 1986-02-18 1989-08-08 Baxter International Inc. Collapsible conduit for linear peristaltic pump and method of making the same
US4857048A (en) * 1987-05-29 1989-08-15 Hewlett-Packard Company IV pump and disposable flow chamber with flow control
US4898579A (en) * 1987-06-26 1990-02-06 Pump Controller Corporation Infusion pump
US5100380A (en) * 1984-02-08 1992-03-31 Abbott Laboratories Remotely programmable infusion system
GB2252798A (en) * 1991-02-14 1992-08-19 Danby Medical Ltd Pumping arrangment for intravenous supply of fluids
WO1993002627A1 (en) * 1991-07-31 1993-02-18 Mentor O&O Inc. Controlling operation of handpieces during ophthalmic surgery
US5232439A (en) * 1992-11-02 1993-08-03 Infusion Technologies Corporation Method for pumping fluid from a flexible, variable geometry reservoir
US5320503A (en) * 1988-05-17 1994-06-14 Patient Solutions Inc. Infusion device with disposable elements
US5342313A (en) * 1992-11-02 1994-08-30 Infusion Technologies Corporation Fluid pump for a flexible, variable geometry reservoir
US5395320A (en) * 1992-06-09 1995-03-07 Sabratek Corporation Programmable infusion pump with interchangeable tubing
US5462256A (en) * 1994-05-13 1995-10-31 Abbott Laboratories Push button flow stop useable with a disposable infusion pumping chamber cassette
US5584667A (en) * 1988-05-17 1996-12-17 Davis; David L. Method of providing uniform flow from an infusion device
US5609575A (en) * 1994-04-11 1997-03-11 Graseby Medical Limited Infusion pump and method with dose-rate calculation
US5620312A (en) * 1995-03-06 1997-04-15 Sabratek Corporation Infusion pump with dual-latching mechanism
US5628619A (en) * 1995-03-06 1997-05-13 Sabratek Corporation Infusion pump having power-saving modes
US5637093A (en) * 1995-03-06 1997-06-10 Sabratek Corporation Infusion pump with selective backlight
US5788674A (en) * 1996-03-05 1998-08-04 Medication Delivery Devices, Inc. Apparatus and method for limiting free-flow in an infusion system
US5795327A (en) * 1995-03-06 1998-08-18 Sabratek Corporation Infusion pump with historical data recording
US5803712A (en) * 1988-05-17 1998-09-08 Patient Solutions, Inc. Method of measuring an occlusion in an infusion device with disposable elements
US5816779A (en) * 1994-05-13 1998-10-06 Abbott Laboratories Disposable fluid infusion pumping cassette having an interrelated flow control and pressure monitoring arrangement
US5829723A (en) * 1995-06-28 1998-11-03 Medex, Inc. Medical device mounting structure
US5853386A (en) * 1996-07-25 1998-12-29 Alaris Medical Systems, Inc. Infusion device with disposable elements
US5904668A (en) * 1995-03-06 1999-05-18 Sabratek Corporation Cassette for an infusion pump
US5910110A (en) * 1995-06-07 1999-06-08 Mentor Ophthalmics, Inc. Controlling pressure in the eye during surgery
US5951510A (en) * 1997-04-11 1999-09-14 Nestec S.A. Pump system with error detection for clinical nutrition
USD418916S (en) * 1998-09-16 2000-01-11 Mentor Ophthalmics, Inc. Tube set for surgical instrument
US6468242B1 (en) 1998-03-06 2002-10-22 Baxter International Inc. Medical apparatus with patient data recording
WO2002087665A1 (en) * 2001-04-26 2002-11-07 Groening Ruediger Pump for the time-controlled, metered administration of medicaments
US20030069541A1 (en) * 1999-03-09 2003-04-10 Durect Corporation Implantable device for access to a treatment site
WO2003035138A2 (en) * 2001-10-22 2003-05-01 L.G. Med Ltd. Method and device for detecting malfunction in a gravity fed intravenous delivery system
US20050159708A1 (en) * 2002-07-24 2005-07-21 Rudolf Sidler Infusion pump, control program, semiconductor means and method for the dosed administration of a medicinal liquid
US20050197626A1 (en) * 1998-10-29 2005-09-08 Medtronic Minimed Inc. Fluid reservoir for use with an external infusion device
US20080076970A1 (en) * 2006-09-26 2008-03-27 Mike Foulis Fluid management measurement module
US20080108896A1 (en) * 2004-10-13 2008-05-08 Mallinckrodt Inc. Powerhead of a Power Injection System
US20090153058A1 (en) * 2007-12-18 2009-06-18 Hospira, Inc. Infusion pump with configurable screen settings
US20130158469A1 (en) * 2002-05-24 2013-06-20 Baxter Healthcare S.A. Dialysis machine with electrical insulation for variable voltage input
US20150133861A1 (en) * 2013-11-11 2015-05-14 Kevin P. McLennan Thermal management system and method for medical devices
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
WO2018215542A1 (en) 2017-05-23 2018-11-29 B. Braun Melsungen Ag Sterile pump module for an infusion pump
US10143795B2 (en) 2014-08-18 2018-12-04 Icu Medical, Inc. Intravenous pole integrated power, control, and communication system and method for an infusion pump
US10166328B2 (en) 2013-05-29 2019-01-01 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10342917B2 (en) 2014-02-28 2019-07-09 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US10430761B2 (en) 2011-08-19 2019-10-01 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
US10578474B2 (en) 2012-03-30 2020-03-03 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US10596316B2 (en) 2013-05-29 2020-03-24 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US10635784B2 (en) 2007-12-18 2020-04-28 Icu Medical, Inc. User interface improvements for medical devices
US10656894B2 (en) 2017-12-27 2020-05-19 Icu Medical, Inc. Synchronized display of screen content on networked devices
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US10874793B2 (en) 2013-05-24 2020-12-29 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US10918787B2 (en) 2015-05-26 2021-02-16 Icu Medical, Inc. Disposable infusion fluid delivery device for programmable large volume drug delivery
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
USD939079S1 (en) 2019-08-22 2021-12-21 Icu Medical, Inc. Infusion pump
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11324888B2 (en) 2016-06-10 2022-05-10 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
US11344673B2 (en) 2014-05-29 2022-05-31 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US11883361B2 (en) 2020-07-21 2024-01-30 Icu Medical, Inc. Fluid transfer devices and methods of use
US11972395B2 (en) 2023-02-01 2024-04-30 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2000262A (en) * 1931-11-09 1935-05-07 William Joyner Hypodermic injector
US2645224A (en) * 1950-03-18 1953-07-14 Ward L Beebe Hypodermic syringe
US3206072A (en) * 1964-09-22 1965-09-14 Calvin R Mencken Pipetting machine
US3443521A (en) * 1967-01-26 1969-05-13 Carl H Stender Pumping equipment and operating mechanism
US3559644A (en) * 1967-12-14 1971-02-02 Robert F Shaw Liquid infusion apparatus
US3731679A (en) * 1970-10-19 1973-05-08 Sherwood Medical Ind Inc Infusion system
US3818806A (en) * 1971-06-15 1974-06-25 G Fumagalli Pumping device for promoting patients breathing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2000262A (en) * 1931-11-09 1935-05-07 William Joyner Hypodermic injector
US2645224A (en) * 1950-03-18 1953-07-14 Ward L Beebe Hypodermic syringe
US3206072A (en) * 1964-09-22 1965-09-14 Calvin R Mencken Pipetting machine
US3443521A (en) * 1967-01-26 1969-05-13 Carl H Stender Pumping equipment and operating mechanism
US3559644A (en) * 1967-12-14 1971-02-02 Robert F Shaw Liquid infusion apparatus
US3731679A (en) * 1970-10-19 1973-05-08 Sherwood Medical Ind Inc Infusion system
US3818806A (en) * 1971-06-15 1974-06-25 G Fumagalli Pumping device for promoting patients breathing

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2609699A1 (en) * 1974-05-28 1977-09-15 Imed Corp Pump with predetermined flow rate and dispensed volume - has volumetric cassette with piston and piston delivery stroke control
US3985133A (en) * 1974-05-28 1976-10-12 Imed Corporation IV pump
US4056333A (en) * 1974-07-15 1977-11-01 Valleylab Intravenous feeding pump failure alarm system
US4067332A (en) * 1975-02-28 1978-01-10 Ivac Corporation Syringe pump drive system and disposable syringe cartridge
US3999542A (en) * 1975-04-10 1976-12-28 Shaw Robert F Anti-clogging liquid administration apparatus and method
US4126132A (en) * 1975-07-28 1978-11-21 Andros Incorporated Intravenous and intra arterial delivery system
US4091810A (en) * 1975-11-03 1978-05-30 Valleylab Method for intravenous feeding of a patient
US4178927A (en) * 1975-11-03 1979-12-18 Valleylab Intravenous liquid delivery system
DE2660392C2 (en) * 1976-03-06 1983-10-20 Imed Corp., 92131 San Diego, Calif. Piston pump arrangement for an infusion apparatus
US4468222A (en) * 1976-05-24 1984-08-28 Valleylab Intravenous liquid pumping system and method
US4078562A (en) * 1976-08-16 1978-03-14 Diana W. Friedman Infusion pump with feedback control
US4175474A (en) * 1976-12-13 1979-11-27 Elitex, Koncern Textilniho Strojirenstvi Variable displacement pump
US4264281A (en) * 1978-05-11 1981-04-28 Paul Hammelmann Pump with an automatically adjusted output rate
US4392847A (en) * 1979-01-08 1983-07-12 Whitney Douglass G Injection and monitoring system
US4391599A (en) * 1979-01-18 1983-07-05 Imed Corporation Apparatus for providing a controlled flow of intravenous fluid to a patient
US4410322A (en) * 1979-03-09 1983-10-18 Avi, Inc. Nonpulsating TV pump and disposable pump chamber
US4391600A (en) * 1979-03-09 1983-07-05 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
US4382753A (en) * 1979-03-09 1983-05-10 Avi, Inc. Nonpulsating IV pump and disposable pump chamber
WO1982000590A1 (en) * 1980-08-25 1982-03-04 Travenol Lab Baxter Metering apparatus with downline pressure monitoring system
US4394862A (en) * 1980-08-25 1983-07-26 Baxter Travenol Laboratories, Inc. Metering apparatus with downline pressure monitoring system
US4381006A (en) * 1980-11-10 1983-04-26 Abbott Laboratories Continuous low flow rate fluid dispenser
US4452251A (en) * 1982-11-05 1984-06-05 Medrad, Inc. Syringe content indicating device
USRE36871E (en) * 1984-02-08 2000-09-12 Abbott Laboratories Remotely programmable infusion system
US4696671A (en) * 1984-02-08 1987-09-29 Omni-Flow, Inc. Infusion system having plural fluid input ports and at least one patient output port
US5464392A (en) * 1984-02-08 1995-11-07 Abbott Laboratories Infusion system having plural fluid input ports and at least one patient output port
US4828545A (en) * 1984-02-08 1989-05-09 Omni-Flow, Inc. Pressure responsive multiple input infusion system
US5304126A (en) * 1984-02-08 1994-04-19 Abbott Laboratories Infusion system having plural fluid flow lines
US5100380A (en) * 1984-02-08 1992-03-31 Abbott Laboratories Remotely programmable infusion system
US4674722A (en) * 1985-11-18 1987-06-23 Critikon, Inc. Medical accessory pole clamp
US4854836A (en) * 1986-02-18 1989-08-08 Baxter International Inc. Collapsible conduit for linear peristaltic pump and method of making the same
US4816019A (en) * 1986-03-04 1989-03-28 Kamen Dean L Infiltration detection system using pressure measurement
US4857048A (en) * 1987-05-29 1989-08-15 Hewlett-Packard Company IV pump and disposable flow chamber with flow control
US4898579A (en) * 1987-06-26 1990-02-06 Pump Controller Corporation Infusion pump
US4838860A (en) * 1987-06-26 1989-06-13 Pump Controller Corporation Infusion pump
US5584667A (en) * 1988-05-17 1996-12-17 Davis; David L. Method of providing uniform flow from an infusion device
US6742992B2 (en) 1988-05-17 2004-06-01 I-Flow Corporation Infusion device with disposable elements
US6312227B1 (en) 1988-05-17 2001-11-06 I-Flow Corp. Infusion device with disposable elements
US5320503A (en) * 1988-05-17 1994-06-14 Patient Solutions Inc. Infusion device with disposable elements
US5803712A (en) * 1988-05-17 1998-09-08 Patient Solutions, Inc. Method of measuring an occlusion in an infusion device with disposable elements
US6146109A (en) * 1988-05-17 2000-11-14 Alaris Medical Systems, Inc. Infusion device with disposable elements
GB2252798B (en) * 1991-02-14 1994-07-27 Danby Medical Ltd Pumping apparatus
GB2252798A (en) * 1991-02-14 1992-08-19 Danby Medical Ltd Pumping arrangment for intravenous supply of fluids
US5199852A (en) * 1991-02-14 1993-04-06 Danby Medical Limited Pumping arrangement for intravenous supply of fluids
US5580347A (en) * 1991-07-31 1996-12-03 Mentor Ophthalmics, Inc. Controlling operation of handpieces during ophthalmic surgery
WO1993002627A1 (en) * 1991-07-31 1993-02-18 Mentor O&O Inc. Controlling operation of handpieces during ophthalmic surgery
US5395320A (en) * 1992-06-09 1995-03-07 Sabratek Corporation Programmable infusion pump with interchangeable tubing
US5342313A (en) * 1992-11-02 1994-08-30 Infusion Technologies Corporation Fluid pump for a flexible, variable geometry reservoir
US5232439A (en) * 1992-11-02 1993-08-03 Infusion Technologies Corporation Method for pumping fluid from a flexible, variable geometry reservoir
US5609575A (en) * 1994-04-11 1997-03-11 Graseby Medical Limited Infusion pump and method with dose-rate calculation
US5462256A (en) * 1994-05-13 1995-10-31 Abbott Laboratories Push button flow stop useable with a disposable infusion pumping chamber cassette
US5816779A (en) * 1994-05-13 1998-10-06 Abbott Laboratories Disposable fluid infusion pumping cassette having an interrelated flow control and pressure monitoring arrangement
US5637093A (en) * 1995-03-06 1997-06-10 Sabratek Corporation Infusion pump with selective backlight
US5795327A (en) * 1995-03-06 1998-08-18 Sabratek Corporation Infusion pump with historical data recording
US5791880A (en) * 1995-03-06 1998-08-11 Sabratek Corporation Infusion pump having power-saving modes
US5904668A (en) * 1995-03-06 1999-05-18 Sabratek Corporation Cassette for an infusion pump
US5766155A (en) * 1995-03-06 1998-06-16 Sabratek Corporation Infusion pump with selective backlight
US5993420A (en) * 1995-03-06 1999-11-30 Sabratek Corporation Cassette for an infusion pump
US5628619A (en) * 1995-03-06 1997-05-13 Sabratek Corporation Infusion pump having power-saving modes
US5620312A (en) * 1995-03-06 1997-04-15 Sabratek Corporation Infusion pump with dual-latching mechanism
US5910110A (en) * 1995-06-07 1999-06-08 Mentor Ophthalmics, Inc. Controlling pressure in the eye during surgery
US5829723A (en) * 1995-06-28 1998-11-03 Medex, Inc. Medical device mounting structure
US5788674A (en) * 1996-03-05 1998-08-04 Medication Delivery Devices, Inc. Apparatus and method for limiting free-flow in an infusion system
US6110153A (en) * 1996-07-25 2000-08-29 Alaris Medical Systems, Inc. Infusion device with optical sensor
US5853386A (en) * 1996-07-25 1998-12-29 Alaris Medical Systems, Inc. Infusion device with disposable elements
US5951510A (en) * 1997-04-11 1999-09-14 Nestec S.A. Pump system with error detection for clinical nutrition
US6468242B1 (en) 1998-03-06 2002-10-22 Baxter International Inc. Medical apparatus with patient data recording
USD418916S (en) * 1998-09-16 2000-01-11 Mentor Ophthalmics, Inc. Tube set for surgical instrument
US20050197626A1 (en) * 1998-10-29 2005-09-08 Medtronic Minimed Inc. Fluid reservoir for use with an external infusion device
US20030069541A1 (en) * 1999-03-09 2003-04-10 Durect Corporation Implantable device for access to a treatment site
WO2002087665A1 (en) * 2001-04-26 2002-11-07 Groening Ruediger Pump for the time-controlled, metered administration of medicaments
WO2003035138A2 (en) * 2001-10-22 2003-05-01 L.G. Med Ltd. Method and device for detecting malfunction in a gravity fed intravenous delivery system
WO2003035138A3 (en) * 2001-10-22 2003-10-30 L G Med Ltd Method and device for detecting malfunction in a gravity fed intravenous delivery system
US6974438B2 (en) * 2001-10-22 2005-12-13 L.G. Med Ltd. Method and device for detecting malfunction in a gravity fed intravenous delivery system
US20130158469A1 (en) * 2002-05-24 2013-06-20 Baxter Healthcare S.A. Dialysis machine with electrical insulation for variable voltage input
US9504778B2 (en) * 2002-05-24 2016-11-29 Baxter International Inc. Dialysis machine with electrical insulation for variable voltage input
US20050159708A1 (en) * 2002-07-24 2005-07-21 Rudolf Sidler Infusion pump, control program, semiconductor means and method for the dosed administration of a medicinal liquid
US20080108896A1 (en) * 2004-10-13 2008-05-08 Mallinckrodt Inc. Powerhead of a Power Injection System
US8180434B2 (en) * 2004-10-13 2012-05-15 Mallinckrodt Llc Powerhead of a power injection system
US20080076970A1 (en) * 2006-09-26 2008-03-27 Mike Foulis Fluid management measurement module
US20090157432A1 (en) * 2007-12-18 2009-06-18 Hospira, Inc. Infusion pump with configurable screen settings
US8543416B2 (en) * 2007-12-18 2013-09-24 Hospira, Inc. Infusion pump with configurable screen settings
US8700421B2 (en) 2007-12-18 2014-04-15 Hospira, Inc. Infusion pump with configurable screen settings
US9381296B2 (en) 2007-12-18 2016-07-05 Hospira, Inc. Infusion pump with configurable screen settings
US9393362B2 (en) 2007-12-18 2016-07-19 Hospira, Inc. Infusion pump with configurable screen settings
US10635784B2 (en) 2007-12-18 2020-04-28 Icu Medical, Inc. User interface improvements for medical devices
US20090153058A1 (en) * 2007-12-18 2009-06-18 Hospira, Inc. Infusion pump with configurable screen settings
US11599854B2 (en) 2011-08-19 2023-03-07 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10430761B2 (en) 2011-08-19 2019-10-01 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US11004035B2 (en) 2011-08-19 2021-05-11 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US11376361B2 (en) 2011-12-16 2022-07-05 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US10578474B2 (en) 2012-03-30 2020-03-03 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US11933650B2 (en) 2012-03-30 2024-03-19 Icu Medical, Inc. Air detection system and method for detecting air in a pump of an infusion system
US10463788B2 (en) 2012-07-31 2019-11-05 Icu Medical, Inc. Patient care system for critical medications
US11623042B2 (en) 2012-07-31 2023-04-11 Icu Medical, Inc. Patient care system for critical medications
US10874793B2 (en) 2013-05-24 2020-12-29 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
US11433177B2 (en) 2013-05-29 2022-09-06 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10166328B2 (en) 2013-05-29 2019-01-01 Icu Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US10596316B2 (en) 2013-05-29 2020-03-24 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US11596737B2 (en) 2013-05-29 2023-03-07 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US11213619B2 (en) * 2013-11-11 2022-01-04 Icu Medical, Inc. Thermal management system and method for medical devices
US20150133861A1 (en) * 2013-11-11 2015-05-14 Kevin P. McLennan Thermal management system and method for medical devices
US20220362457A1 (en) * 2013-11-11 2022-11-17 Icu Medical, Inc. Thermal management system and method for medical devices
US10034975B2 (en) 2013-11-11 2018-07-31 Icu Medical, Inc. Thermal management system and method for medical devices
US10342917B2 (en) 2014-02-28 2019-07-09 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
US11344673B2 (en) 2014-05-29 2022-05-31 Icu Medical, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US10143795B2 (en) 2014-08-18 2018-12-04 Icu Medical, Inc. Intravenous pole integrated power, control, and communication system and method for an infusion pump
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
US11660386B2 (en) 2015-05-26 2023-05-30 Icu Medical, Inc. Disposable infusion fluid delivery device for programmable large volume drug delivery
US10918787B2 (en) 2015-05-26 2021-02-16 Icu Medical, Inc. Disposable infusion fluid delivery device for programmable large volume drug delivery
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
US11324888B2 (en) 2016-06-10 2022-05-10 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
WO2018215542A1 (en) 2017-05-23 2018-11-29 B. Braun Melsungen Ag Sterile pump module for an infusion pump
US11395876B2 (en) 2017-05-23 2022-07-26 B. Braun Melsungen Ag Sterile pump module for an infusion pump
US11868161B2 (en) 2017-12-27 2024-01-09 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11029911B2 (en) 2017-12-27 2021-06-08 Icu Medical, Inc. Synchronized display of screen content on networked devices
US10656894B2 (en) 2017-12-27 2020-05-19 Icu Medical, Inc. Synchronized display of screen content on networked devices
USD939079S1 (en) 2019-08-22 2021-12-21 Icu Medical, Inc. Infusion pump
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11883361B2 (en) 2020-07-21 2024-01-30 Icu Medical, Inc. Fluid transfer devices and methods of use
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
US11972395B2 (en) 2023-02-01 2024-04-30 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data

Similar Documents

Publication Publication Date Title
US3901231A (en) Infusion pump apparatus
US4394862A (en) Metering apparatus with downline pressure monitoring system
US4468222A (en) Intravenous liquid pumping system and method
US4670006A (en) Fluid and air infusion device
US4261388A (en) Drop rate controller
US3425415A (en) Controlled infusion system
US4642098A (en) IV system and controller and combination IV filter and pump assembly for use therein and method
CA2176473C (en) A syringe infusion pump having a syringe plunger sensor
US3731679A (en) Infusion system
US4236880A (en) Nonpulsating IV pump and disposable pump chamber
US5411482A (en) Valve system and method for control of an infusion pump
US3557789A (en) Therapeutic fluid flow control apparatus
US3994294A (en) Syringe pump valving and motor direction control system
US4382753A (en) Nonpulsating IV pump and disposable pump chamber
US3575161A (en) Valve for biological systems
JPS62176457A (en) Vein dripping apparatus
EP0063727A2 (en) Fluid pump
US2065952A (en) Adjustable support
GB2106993A (en) Apparatus for enteral administration of nutriment
US3456648A (en) Automatic venous infusion monitoring apparatus
GB1165842A (en) Improvements in and relating to Injection Appliances for Contrast Agents for Medical Use
WO1982001320A1 (en) Metering apparatus having rate compensation circuit
US3757776A (en) Ventilator for an anesthesia gas machine
US4705462A (en) Process and device for improving working of liquid pumps
US4082090A (en) Mechanical cardiac resuscitator