Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3901231 A
Publication typeGrant
Publication dateAug 26, 1975
Filing dateFeb 7, 1974
Priority dateFeb 7, 1974
Publication numberUS 3901231 A, US 3901231A, US-A-3901231, US3901231 A, US3901231A
InventorsRaymond G Olson
Original AssigneeBaxter Laboratories Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Infusion pump apparatus
US 3901231 A
Abstract  available in
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

[11] 3,901,231 Aug. 26, 1975 INFUSION PUMP APPARATUS [75] Inventor: Raymond 6. Olson, Niles, 111.

[73] Assignee: Baxter Laboratories, Inc., Morton Grove, Ill.

[22] Filed: Feb. 7, 1974 [21] Appl. No.-:440,4l0

[52] US. Cl. 128/214 F; 128/218 R; 92/13]; l28/D1G, 1; 128/010. 12; 128/D1G. 13

[51] Int. Cl. A6lm 5/00 [58] Fieldoiseal'clt 128/214 E,2l4 F,218 A, 128/218 R, 218 G, DIG. l, DIG. l2, DIG. 13;

5/1973 Wilhclmson ct a1 l28/D1G. l 6/1974 Fumagalli 92/l3.7

Primary Examiner-Richard A. Gaudet Assistant Examiner-Henry S. Layton [57] ABSTRACT Infusion pump apparatus for delivering intravenous fluid from a syringe to a patient so that volume may be accurately controlled between a small delivery rate and a large delivery rate is disclosed. The pump is adaptable to adjust the amplitude of the syringe stroke in order to accurately meter the volume of fluid delivered to a patient within a given time period. The pump may be employed in an oxygen atmosphere without creating a potentially dangerous condition likely to result in an explosion. An an optional feature a pressure sensitive arrangement which stops the pump in the event the resistance to flow of fluid becomes greater than that required for normal operation is also disclosed.

5 Claims, 7 Drawing Figures PATENTEU Auszs 197s SHIT 1 BF 4 PATIENT PATENTEBAUBZSIQTS" 3.9019231 T0 i T0 PATIENT PATIENT l V SOLUTION mrusrou PUMP APPARATUS The present invention relates to an infusion pump system and more particularly to a pump having a synchronous motor adaptable to move a piston of a surgical syringe to deliver to a patient predetermined accurately measured volumetric amounts of intravenous fluid.

The use of surgical syringes for injecting intravenous fluid into the veins of a pateint has long been known. It is common practice to employ a syringe comprising a cylinder and a piston reciprocatingly disposed therein to cause fluid to 'move from a source of supply to a patient who requires a constant and measured amount of the fluid for purposes of life sustaining nourishment or other aspects of medicinal treatment.

Various means may be utilized to operate the piston of a syringe. The most elementary means for causing movement of a piston would be pressing by hand against a rod portion of the piston extending exteriorly of the cylinder, thereby forcing the head of the piston to move rectilinearly and pump fluid from the supply source to the patient. Modern technology has developed more advanced and sophisticated means for delivering fluid from a source of supply by means of a syringe. In this connection, electromechanical devices have been created that automatically move a piston or plunger of a syringe to cause fluid to be pumped to a patient who requires the adminstering of intravenous fluid to obtain nutrients for sustaining life.

Illustrative of devices that may be used to pump intravenous fluid is a so called syringe pump that comprises a pump assembly adaptable to be either permanently affixed to a syringe or detachably connected thereto. A detachable syringe pump assembly is shown by Rosenberg in US. Pat. No. 3,447,479. However Rosenberg discloses a pump driven by the combined efforts of a synchronous timing motor and an induction drive motor.

There are inherent problems to be overcome combining operating characteristics of such drive motors; Among the problems encountered by induction motors are the continual making and breaking of electrical. contact with resultant arcing between contacts, the dis-; advantages of which are self-evident when one is re-. quired to operate a motor in an atmosphere wherein: free oxygen is present. Moreover, induction type mo-- tors are affected by variances in voltage and thus it isdifficult if not impossible to deliver with exactitude a: constant and closely controlled volume of intravenous" fluid wherein the power services may be irregular; thus,; the supply of energy to the pump may vary greatly with? resultant highly diverse amounts of fluid pumped into a patients veins.

BRIEF SUMMARY OF THE INVENTION In accordance with a major feature of the present irivention infusion pump apparatus is provided for rectilinear pumping and delivery of fluid, e.g., l.V. solution to a patient, at an average rate which can be selected within a range of rates. The apparatus includes a novel rate selecting mechanism which includes means for defining an arcuate movement path and means for pivotally reciprocating the arcuate means. A driving linkage is coupled to reciprocate the pump and also coupled to be moved by the arcuate means while reciprocating along a range of positions on the arcuate path thereon.

A range of defining member is coupled to the driving linkage for movement therewith and has a fixed pivot whose position is selectively variable. At any fixed pivot point the member limits the range of movement of the driving member along the arcuate path and thus fixes the stroke and average output of the pump.

In accordance with another feature of the invention means are provided for sensing the pressure in fluid output and for stopping the pump or signaling a warning for sensed pressures over a preselected high value.

This latter feature has the advantage of preventing damage to the patient should the l.V. capillary be inserted wrongly, e.g. into a muscle tissue.

These and other features and advantages of the invention will become apparent from the ensuing description, reference being had to the accompanying drawings, in which like members are used to identify like elements in the several views.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a portable stand adaptable to support a source of supply of intravenous fluid, infusion pump apparatus including a syringe pump and a motor drive assembly therefor.

FIG. 2 is a perspective view of the syringe pump and drive assembly showing more specific details of its exterior construction.

FIG. 3 is a vertical front sectional view through the pump and drive assembly with the front portion of the housing broken away so that the working parts of the drive assembly may be seen more clearly. The component parts of the assembly are shown in two positions, the solid lines showing the syringe piston fully extended, the dotted lines showing the syringe piston fully retracted, and defining a maximum amplitude of syringe stroke.

FIG. 4 is a vertical front sectional view of the pump and drive assembly similar to FIG. 3 but showing the component parts operative between a position of complete piston extension and complete piston retraction, but defining an intermediate amplitude of syringe stroke. 1

FIG. 5 is a vertical side sectional view through the drive assembly, taken along line 55 of FIG. 3, a front portion of the housing broken away to show more clearly the working parts thereof. The drive assembly is shown secured to a portion of a vertical column of the stand.

FIG. 6 is a schematic diagram of a control circuit for use with the subject pump system.

FIG. 7 is a schematic diagram of a control circuit similar to that shown in FIG. 6 employing a pressure sensitive device for use with the subject pump system.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIG. 1, an'infusion pump apparatus 10 is shown mounted by a clamping arrangement on a vertical rod member 12 of a portable stand 14 adaptable to support an intravenous fluid storage bottle 16 from a hook member 18 disposed at an upper end of the rod member 12.

As seen more clearly in FIG. 2 pump apparatus 10 comprises a housing 20 having a front face member 22, side members 24, top 26 and bottom 28 members and a back plate 30. Front face member 22 may be remov ably secured to housing 20 as by machine screws 32.

Access to the interior of the housing is accomplished by unthreading the screws and removing face member 22 from the housing. I

Face member 22 has imprinted thereon a scale 34 of incremental numbcrs corresponding to a desired .parametcr of operation for pumping of fluid by the appa; ratus. As illustrated. the-scale 34 shows a range of numbers from to 300 and refers to milliliters of fluid pumped per hour. Adjusting knob 36 is keyed in a known manner to an exterior portionof a shaft 38 FIG. 5) hereinafter described in detail disposed within the housing. rotation of the knob 36 serves to set the pump at a predetermined rate of delivery of fluid for infusion into the veins of a patient and the volume of fluid flow is indicated by a fingcr 39 formed integrally withand extending outwardly from knob 36. Adjusting knob 36 must include a friction loaded shaft provision or other means (such as a lock knob) to insure that it will main tain itself in any desired selected position to have the apparatus pump the required flow of fluid. The friction shaft or other provisions are needed to overcome a small tendency of the hereinafter described variable rate mechanism to shift the setting.

A knurled member 42 is located exteriorly of the face 22 and iskeyed to a portion of a shaft 44 (FIG. 5) extensive exteriorly of the housing. The knurled member 44 is effective when rotated to move a magnetic switch 46 assembly (FIGS. 3 and 4) between off and on positions to activate the pump apparatus. Although the switch is preferably of the type shown, the present invention, at least in its broader aspects, contemplates the use of alternative switches such as the conventional toggle switch.

An operation or on light 150 is disposed -in face member 22 and serves to indicate that the apparatus flange62 formed thereon adapted to be securablyand pivotally received by a yoke 64 carved from an exterior end ofa lever member 66 (hereinafter described in detail). The rod member has an inner end formed toprovide a piston (not shown) head or plunger adaptable to move reciprocat'ingly within the body 56 of the syringe 58. i

The upper end of syringe 58 is operatively con n ected. as is well known in the art to a valve arrangement68. (FIGS. 1 and 2) that permits flow offluid therethrough of syringe 58 isa" rodmember 60 having a circular only to the patient and prevents back flow of solution into the bottle 16 when rod member moves upwardly to cause pressure to be exerted in valve arrangement 68. This is preferably a pair of one-way valves permitting flow only from I.V. bottle 16 to syringe 58 and from syringe S8 to the patient-connected line.

Referringnow to FIGS. 3, 4, and 5, it can be seen that of pivot ll2P byfixing the stroke pair of arcuate.grooves 82..Ihefifstleg-7:8A= has its end 84 pivotally connected at 86 to the mounting plate 72.

A first link driving mcmber 90 has a first end 92 'pivotally secured substantially intermediate "the ends of lever 66 and has a second end,94 secured as bypins 96 received in the arcuate grooves 82 of membcr=78. It should be noted that the second end 94 of link 90 may be assumed positions along an arcuate path defined by the grooves 82 formed in the middle portion member A synchronous electrical motor 98 (FIG. 5) is secured to a back side of mounting plate 72 and is adaptable to rotate a drive shaft 100 that extends through a mounting plate aperture 102 having a diameter somewhat larger. than the diameter of the drive shaft. ,The drive shaft 100 is keyed or otherwise affixed to an cecentric member 104. The member 104 has an outboard end that pivotally receives a pin 106 secured in one end of a pivot link 108. Pivot link 108 has secured in its other end a pin 1.10 pivotally received by the aperture formed in the second leg 78B of U.-shaped member 78.

A range defining member 112 has one end 114 pivotally secured to link member 90 and extends to connect its other end in pivotal engagement at IlZP with one end of a rod member 116. The other end of rod member 116 is secured to shaft 38 and rotates coincidentally therewith. As hereinbefore described shaft 38 is connected to and controlled by adjusting knob 36.

Note that the control knob selects or fixes the posi tion of pivot 112? and this in turn controls through range of positions that pivot 96 can travel on arcuate path 82 (considering the relative movement between arcuate means 78 and the pivot 96.) This, however, in accordance with a major feature of the present invention determines the vertical strokc distance of driving linkage 90 and thus.(through arm 66) of the pump stroke the syringe 58. The rate of reciprocating of the syringe plungeris determined by the rotation of the motor 98 which is preferably fixed so that the position determines the average pumpingrate. s

The pump unit as described has bee'nconstructed and tested. Empirical data has established that a near linear relationship can be made to-exist between the setting of knob 36 and-the flow rate and that the average rate of pumping can be precisely controlled over a satisfactory range. y

In order to control the rotation-of shaft 38 between minimum and maximum limit positions. asindicatcd on scale 34, calibration means 1 l8 isprovided comprising a block 120, a first adjustment screws 122 threadably receivable therethrough for establishing a minimum adjustrnent position and-a second adjustment screw I24 threadably receivable by the block for establishing a maximum adjustment position of the shaft 38. It should be noted that either screw when th r caded inwaidly or outawrdly of the block will; upon rotation of shaft 38,

establish a contact point with-either edge of rod member 116 and thereby prevent furtherrotation of shaft 38. Thus. it is possible to adjust the rotation'of shaft 38 between minimum and maximum positions so that-opposite correspondence is I maintained with scale 34 whenknob 36 is turned to rotate shaft 38 and thereby select a desired rate of fluid infusion.

It can be seen that rotation of knurled knob 42 causes a magnetic arm I26 affixied thereto'to rotate therewith throughout an angle of substantially-90 as defined by limit pin 128 protruding from the mounting plate and an exterior side of an enclosed magnetic switch 130 secured as by screws to the mounting plate 72. The pump assembly is inoperative when magnetic arm 126 is engaged with pin 128 and becomes operative when magnetic arm 126 is rotated by knob 42 into contact with magnetic switch 130. Magnetic switch 130 is wired in a known manner. to an insulated terminal assembly 132 (FIGS. 6 and 7) secured to the mounting plate 72.

Referring now to FIG. 6, the Unit 10 is designed to be connected to the commonly available AC power mains (60 hz, 120 v) via a conventional three prong plug 134 which includes a separate ground male prong for connection to ground. Of course, other power sources and double insulation may be employed without departing from the invention. However, the added ground wiring system is commonly used in hospitals in the US. and provides additional protection against electrical shock and leakage currents which could be very dangerous in this environment of use.

The plug 134 has three conductors 134A, 134C and 1346 leading to the unit 10.Conductors 134A and 134C are for the convention AC power and conductor 1346 is connected to the ground prong of plug 134.

The ground wire 134G is connected to a terminal 146 of a terminal block 132. The terminal146 is securely electrically and physically connected to the housing of the unit 10 to ground that housing.

The AC power line 134A is connected through a terminal 133 on block 132 to one side of the switch 130. As best shown in FIG. 6, the switch 130 comprised an insulated sealed envelope housing 130H and a pair of switch blades normally mechanically biased apart switch blades 1308 which are made of magnetic material. When the magnet 126 is moved to the horizontal position the magnetic flux causes the blades to move together and complete the connection through the switch 130.

The other side of switch 130 is connected via a line 136, terminal 138 and line 140 to the motor 98 of the pump assembly. The other side of the motor connects by a wire 142 with a post 144 of the terminal assembly 132 which part is, in turn, connected to the power input line 134C of the power cord.

The indicator light 150 is connected between wires 140 and 142, and is lighted to signal when the motor is running and is off when the motor is shut down.

ln HO. 7 a second preferred embodiment of the invention is illustrated employing, in accordance with a feature of the present invention, means 152 for sensing pressure in the l.V. line to the patient and for automatically shutting off the pump unit 10 in response to a sensed pressure over a selected level.

This means 152, in this embodiment, includes a closed housing 152H having a diaphragm 152D which is in pressure communication (via a noncompressive, non-conductive fluid in zone 152A and a flexible diaphragm 1521 with the [.V. line to the patent. When the pressure in the IV chamber 152C rises above a threshold level, it moves diaphragm 152D to break the contact of a switch 168 and disconnect the connection between lines 162 and 164.

A two prong plug 160 is adaptable to be received by receptacle 154 and includes the two wires 162; 164 leading from the pressure sensitive switch 168. A relay switch arrangement 172 is disposed along the wire 158 of the device and includes an indicator light 174 for warning-of an overpressure. It should be noted that in the event pressure sensor 152 reads a pressure considered inimical to the operation of the system, switch 168 will open, causing the light 174 :to light and, more importantly the interruptionof current flow through switch 172 to shut down motor 98 even thoughmagnetic switch 130 remains in a closed position.

In the operation of the present invention, a supply of intravenous fluid is attached to a stand and from the supply conduit means is connected through the pump apparatus 10 to a vein of a patient as is well known. The pump apparatus is set to a desired'flow of fluid by rotating adjusting knob 36 to the selected point as indicated on scale 34. Knob'42 is rotated from the off to on position and the motor will begin operation to cause'the syringe piston to reciprocate in cylinder 56,alternat 'ely drawing fluid into one-way arrangement means '68 on a retraction stroke and forcing fluid out of this means 68 into a vein of apatient on an extension stroke;

The fluid flow setting as accomplished by'rotating knob 36 is translated into a desired volume of fluid flow by varying amplitude of the syringe piston between positions of full retraction and extension. Rotation of knob 36 causes rod 116 to turn between the screws 122, 124 of the calibration means 118 to have indicator arm 39 point to a desired number on scale 34. I v I Rotational movement of rod 1 16 to a desired position between, threadably adjustable screws 122 and 124 forces bar member 112, by virtue of its pinned and articulated relationship with the link 90, to position the link in a desired position along the curvilinear path defined by grooves 82 formed in the member 78. The link 90 having one end positioned in grooves 82 and its other end secured substantially intermediate the ends of lever 66 is effective to move the lever 66 through an acutate angle about its end 70 pivotally secured to mounting plate 72.

It can be seen that rotation of eccentric 104 by the motor causes pivot link 108 to urge the free end 88 of member 78 upwardly and downwardly and thereby define angular displacement about the end 84 of member 78 pivotally secured to the mounting plate. Link 90 positioned in grooves 82 of member 78 and connected to lever 66 causes the lever to rotate about its end 70. The lever in turn translates its angular movement to the rod of the piston syringe 58 and by virtue of its pivotal connection therewith, causes the piston to move rectilinearly and reciprocatingly within the cylinder of the syringe. Thus, it can be seen that the cooperative construction of the present invention makes it possible by interrelated structure to combine in a unique arrangement angular motion with rectilinear motion to establish a desired amplitude of stroke for a piston syringe. It should be noted that positioning the end 94 of link at any desired point along the curvilinear path defined by grooves 82 is effective to change the amplitude of the piston stroke and thereby deliver to a patients vein a highly accurate and closely controlled volume of intravenous fluid.

It is thought that the invention and many of its attendant advantages will be understood from the foregoing description and it will be apparent to those skilled in the art that various changes may be made in the form, construction and arrangement of the component parts without departing from the spirit and scope of the invention or sacrificing all its material advantages, the

form hereinbefore described being merely a preferred embodiment thereof.

I claim:

1. Infusion pump apparatus with an adjustable piston stroke amplitude for reciprocating a piston within a syringe to deliver fluid comprising:

a housing;

angulation means pivotally disposed in said housing and operatively connected to said piston to cause said reciprocation of said piston in said syringe; arcuate means pivotally disposed in said housing operatively connected to said angulation means; said arcuate means adaptable to adjustably determine said piston stroke amplitude by varying the displacement of said angulation means: motor means connnected to said arcuate means operable to reciprocate said angulation means through said angular displacement; and

calibration means cooperable with said operative connection between said angulation means and said arcuate means,

said calibration means comprising (a) means for preselecting the fluid flow rate of said infusion pump apparatus by adjusting said displacement of said angulation means, and (b) adjusting means for establishing the minimum and maximum displacement of said angulation means.

2. The infusion pump apparatus of claim 1 wherein said adjusting means comprises a plurality of threadably adjustable screws.

3. The infusion pump apparatus of claim 1 wherein said angulation means comprises lever means having one end pivotally secured within said housing, said arcuate means comprising a substantially Ushaped member having a middle portion shaped to form a portion of an arc and having grooves formed in said middle portion to define a curvilinear path, link means connected between a point substantially intermediate the ends of said lever means and a point adjustably positioned along said curvilinear path of said U-shaped member, said point of position of said link means along the curvilinear path of said U-shaped member being effective to control the angular distance traveled by said lever and thereby control the amplitude of the syringe piston.

4. The infusion pump apparatus of claim 1 wherein said motor means comprises a brushless synchronous electric motor, and magnetic switch means for controlling said motor means between on and off positions, said motor means and said magnetic switch means being adaptable to operate safely in an explosive atmosphere when said switch controls said motor in an operable condition or causes said motor to turn on or off. 5. The infusion pump apparatus of claim 3 wherein said motor means comrises a synchronous motor adaptable to operate safely in an explosive atmosphere, an eccentric member keyed to a shaft rotatable by said motor, and a pivot link having one end pivotally connected to said eccentric member and another end pivotally connected to the point of position between said arcuate means and said link means located on the curvilinear path of said U-shaped member.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2000262 *Nov 9, 1931May 7, 1935William JoynerHypodermic injector
US2645224 *Mar 18, 1950Jul 14, 1953Beebe Ward LHypodermic syringe
US3206072 *Sep 22, 1964Sep 14, 1965Calvin R MenckenPipetting machine
US3443521 *Jan 26, 1967May 13, 1969Stender Carl HPumping equipment and operating mechanism
US3559644 *Dec 14, 1967Feb 2, 1971Shaw Robert FLiquid infusion apparatus
US3731679 *Oct 19, 1970May 8, 1973Sherwood Medical Ind IncInfusion system
US3818806 *Jun 9, 1972Jun 25, 1974Fumagalli GPumping device for promoting patients breathing
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3985133 *May 28, 1974Oct 12, 1976Imed CorporationIV pump
US3999542 *Apr 10, 1975Dec 28, 1976Shaw Robert FAnti-clogging liquid administration apparatus and method
US4056333 *Nov 26, 1975Nov 1, 1977ValleylabIntravenous feeding pump failure alarm system
US4067332 *Aug 25, 1976Jan 10, 1978Ivac CorporationSyringe pump drive system and disposable syringe cartridge
US4078562 *Aug 16, 1976Mar 14, 1978Diana W. FriedmanInfusion pump with feedback control
US4091810 *Sep 27, 1976May 30, 1978ValleylabMethod for intravenous feeding of a patient
US4126132 *Jun 30, 1976Nov 21, 1978Andros IncorporatedIntravenous and intra arterial delivery system
US4175474 *Nov 15, 1977Nov 27, 1979Elitex, Koncern Textilniho StrojirenstviVariable displacement pump
US4178927 *Jul 8, 1977Dec 18, 1979ValleylabIntravenous liquid delivery system
US4264281 *May 7, 1979Apr 28, 1981Paul HammelmannPump with an automatically adjusted output rate
US4381006 *Nov 10, 1980Apr 26, 1983Abbott LaboratoriesContinuous low flow rate fluid dispenser
US4382753 *Sep 10, 1980May 10, 1983Avi, Inc.Nonpulsating IV pump and disposable pump chamber
US4391599 *Jun 16, 1981Jul 5, 1983Imed CorporationApparatus for providing a controlled flow of intravenous fluid to a patient
US4391600 *Sep 15, 1980Jul 5, 1983Avi, Inc.Nonpulsating IV pump and disposable pump chamber
US4392847 *May 6, 1981Jul 12, 1983Whitney Douglass GInjection and monitoring system
US4394862 *Aug 25, 1980Jul 26, 1983Baxter Travenol Laboratories, Inc.Metering apparatus with downline pressure monitoring system
US4410322 *Sep 10, 1980Oct 18, 1983Avi, Inc.Nonpulsating TV pump and disposable pump chamber
US4452251 *Nov 5, 1982Jun 5, 1984Medrad, Inc.Syringe content indicating device
US4468222 *Dec 3, 1979Aug 28, 1984ValleylabIntravenous liquid pumping system and method
US4674722 *Nov 18, 1985Jun 23, 1987Critikon, Inc.Medical accessory pole clamp
US4696671 *Jun 11, 1986Sep 29, 1987Omni-Flow, Inc.Infusion system having plural fluid input ports and at least one patient output port
US4816019 *Mar 3, 1987Mar 28, 1989Kamen Dean LInfiltration detection system using pressure measurement
US4828545 *Apr 16, 1987May 9, 1989Omni-Flow, Inc.Pressure responsive multiple input infusion system
US4838860 *Jun 26, 1987Jun 13, 1989Pump Controller CorporationInfusion pump
US4854836 *Feb 18, 1986Aug 8, 1989Baxter International Inc.Collapsible conduit for linear peristaltic pump and method of making the same
US4857048 *Mar 21, 1988Aug 15, 1989Hewlett-Packard CompanyIV pump and disposable flow chamber with flow control
US4898579 *Jun 3, 1988Feb 6, 1990Pump Controller CorporationInfusion pump
US5100380 *May 16, 1989Mar 31, 1992Abbott LaboratoriesRemotely programmable infusion system
US5199852 *Feb 12, 1992Apr 6, 1993Danby Medical LimitedPumping arrangement for intravenous supply of fluids
US5232439 *Nov 2, 1992Aug 3, 1993Infusion Technologies CorporationMethod for pumping fluid from a flexible, variable geometry reservoir
US5304126 *Dec 31, 1990Apr 19, 1994Abbott LaboratoriesInfusion system having plural fluid flow lines
US5320503 *Sep 23, 1993Jun 14, 1994Patient Solutions Inc.Infusion device with disposable elements
US5342313 *Nov 2, 1992Aug 30, 1994Infusion Technologies CorporationFluid pump for a flexible, variable geometry reservoir
US5395320 *Nov 9, 1993Mar 7, 1995Sabratek CorporationProgrammable infusion pump with interchangeable tubing
US5462256 *May 13, 1994Oct 31, 1995Abbott LaboratoriesPush button flow stop useable with a disposable infusion pumping chamber cassette
US5464392 *Mar 7, 1994Nov 7, 1995Abbott LaboratoriesInfusion system having plural fluid input ports and at least one patient output port
US5580347 *Sep 15, 1994Dec 3, 1996Mentor Ophthalmics, Inc.Controlling operation of handpieces during ophthalmic surgery
US5584667 *Jun 6, 1995Dec 17, 1996Davis; David L.Method of providing uniform flow from an infusion device
US5609575 *Apr 4, 1995Mar 11, 1997Graseby Medical LimitedInfusion pump and method with dose-rate calculation
US5620312 *Mar 6, 1995Apr 15, 1997Sabratek CorporationInfusion pump with dual-latching mechanism
US5628619 *Mar 6, 1995May 13, 1997Sabratek CorporationInfusion pump having power-saving modes
US5637093 *Mar 6, 1995Jun 10, 1997Sabratek CorporationInfusion pump with selective backlight
US5766155 *Mar 11, 1997Jun 16, 1998Sabratek CorporationInfusion pump with selective backlight
US5788674 *Mar 5, 1996Aug 4, 1998Medication Delivery Devices, Inc.Apparatus and method for limiting free-flow in an infusion system
US5791880 *Feb 18, 1997Aug 11, 1998Sabratek CorporationFor infusing liquid into a patient
US5795327 *Mar 6, 1995Aug 18, 1998Sabratek CorporationFor infusing liquid into a patient
US5803712 *Feb 14, 1995Sep 8, 1998Patient Solutions, Inc.Method of measuring an occlusion in an infusion device with disposable elements
US5816779 *Mar 27, 1997Oct 6, 1998Abbott LaboratoriesDisposable fluid infusion pumping cassette having an interrelated flow control and pressure monitoring arrangement
US5829723 *Jun 28, 1995Nov 3, 1998Medex, Inc.Medical device mounting structure
US5853386 *Jul 25, 1996Dec 29, 1998Alaris Medical Systems, Inc.Infusion device with disposable elements
US5904668 *Mar 6, 1995May 18, 1999Sabratek CorporationCassette for an infusion pump
US5910110 *Jun 7, 1995Jun 8, 1999Mentor Ophthalmics, Inc.Controlling pressure in the eye during surgery
US5951510 *Feb 26, 1998Sep 14, 1999Nestec S.A.Pump system with error detection for clinical nutrition
US5993420 *Jan 22, 1998Nov 30, 1999Sabratek CorporationCassette for an infusion pump
US6110153 *Dec 14, 1998Aug 29, 2000Alaris Medical Systems, Inc.Infusion device with optical sensor
US6146109 *Jun 29, 1998Nov 14, 2000Alaris Medical Systems, Inc.Infusion device with disposable elements
US6312227Mar 30, 1993Nov 6, 2001I-Flow Corp.Infusion device with disposable elements
US6468242Jun 5, 1998Oct 22, 2002Baxter International Inc.Medical apparatus with patient data recording
US6742992Nov 7, 2002Jun 1, 2004I-Flow CorporationInfusion device with disposable elements
US6974438 *Oct 22, 2001Dec 13, 2005L.G. Med Ltd.Method and device for detecting malfunction in a gravity fed intravenous delivery system
US8180434 *Jan 14, 2008May 15, 2012Mallinckrodt LlcPowerhead of a power injection system
US8543416 *Dec 17, 2008Sep 24, 2013Hospira, Inc.Infusion pump with configurable screen settings
US8700421Dec 17, 2008Apr 15, 2014Hospira, Inc.Infusion pump with configurable screen settings
US20090157432 *Dec 17, 2008Jun 18, 2009Hospira, Inc.Infusion pump with configurable screen settings
US20130158469 *Feb 6, 2013Jun 20, 2013Baxter Healthcare S.A.Dialysis machine with electrical insulation for variable voltage input
USRE36871 *Mar 9, 1995Sep 12, 2000Abbott LaboratoriesRemotely programmable infusion system
DE2609699A1 *Mar 6, 1976Sep 15, 1977Imed CorpVolumetrische pumpe
DE2660392C2 *Mar 6, 1976Oct 20, 1983Imed Corp., 92131 San Diego, Calif., UsTitle not available
WO1982000590A1 *Jun 29, 1981Mar 4, 1982Baxter Travenol LabMetering apparatus with downline pressure monitoring system
WO1993002627A1 *Jul 16, 1992Feb 18, 1993Mentor O & O IncControlling operation of handpieces during ophthalmic surgery
WO2002087665A1 *Apr 26, 2002Nov 7, 2002Groening RuedigerPump for the time-controlled, metered administration of medicaments
WO2003035138A2 *Oct 18, 2002May 1, 2003Friedman Mark MMethod and device for detecting malfunction in a gravity fed intravenous delivery system
Classifications
U.S. Classification604/152, 128/DIG.130, 604/118, 604/65, 128/DIG.100, 128/DIG.120, D24/111, 92/13.7
International ClassificationA61M5/142
Cooperative ClassificationY10S128/13, Y10S128/01, A61M5/14216, Y10S128/12
European ClassificationA61M5/142G2