Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3901245 A
Publication typeGrant
Publication dateAug 26, 1975
Filing dateMar 15, 1973
Priority dateMar 15, 1973
Publication numberUS 3901245 A, US 3901245A, US-A-3901245, US3901245 A, US3901245A
InventorsBrenz Richard E, Hansford Charles C, Samuelson Gene H, Spitz Eugene B
Original AssigneeBio Medical Res Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Bio-medical pressure control device
US 3901245 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Spitz et al.

[4 1 Aug. 26, 1975 15 BIO-MEDICAL PRESSURE CONTROL DEVICE [75] Inventors: Eugene B. Spitz; Gene H.

Samuelson; Richard E. Brenz, all of Media; Charles C. Hansford, Chester, all of Pa.

[73] Assignee: Bio-Medical Research, Ltd., Lima,

[22] Filed: Mar. 15, 1973 [21] Appl. No.: 341,774

Primary Examiner-Dalton L. Truluck Attorney, Agent, or Firm-Paul Maleson; Morton J. Rosenberg [57] ABSTRACT A cerebrospinal fluid anti-siphoning device for insertion into the human body to provide regulation of fluid being transported from the lateral ventricles to another part of the body. The device includes a fluid housing member through which the cerebrospinal fluid passes. The fluid housing member is adapted to contain a pair of check valves which control fluid flow through the housing member and prevent back flow from a downstream area to an upstream'area. A central chamber within the fluid housing member encloses a fluid control mechanism which provides for termination of fluid flow when the downstream pressure becomes too'low with respect to the upstream pressure. The fluid control mechanism includes a diaphragm which is displaced from a fluid conduit when flow is passing through the fluid housing member and is positioned contiguous to the conduit opening when the downstream pressure is too low, thereby effectively terminating the flow of the cerebrospinal fluid through the fluid housing member. The device includes a mechanism for manually actuating the flow through the outlet area of the housing member even when the antisiphoning device has been implanted within the human body.

14 Claims, 4 Drawing Figures INCORPORATION BY REFERENCE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention pertains to devices for draining cerebrospinal fluid during treatment of hydrocephalus.

2. Prior Art Devices for draining cerebrospinal fluid are known in the art. However, in some prior devices one way check valves are incorporated to promote drainage of the cerebrospinal fluid. Such valves fluidly communicate with the brain area and other parts of the body to which the fluid is being drained. However, a rapid decrease in the pressure of the parts of the body to which the fluid is being drained may cause too much fluid to be transported from the brain in a manner which is too rapid. Such a condition may have diliterious results and possibly cause death of the patient within which the prior devices have been implanted. Such prior devices do not include a mechanism whereby the fluid flow may be terminated when the downstream pressure or pressure of the body to which the fluid is being drained becomes too low with respect to the upstream fluid pressure. Such prior devices do not provide automatic control of the fluid being drained dependent upon the pressure differential experienced by the devices.

SUMMARY OF THE INVENTION A cerebrospinal fluid anti-siphoning device which comprises a fluid housing mechanism having a central chamber. An inlet mechanism is in fluid communication with the central chamber for insertion of the fluid into the chamber. The device includes an outlet mechanism in fluid communication with the central chamber for transport of the fluid from the chamber. Further, the'device includes a mechanism for controlling the flow of the cerebrospinal fluid through the central chamber of the fluid housing mechanism responsive to a predetermined pressure differential between the inlet mechanism and the outlet mechanism.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view of the cerebrospinal fluid antisiphoning device implanted within a human body;

FIG. 2 is a blow out view of the anti-siphoning device; FIG. 3 is a top view of the anti-siphoning device; FIG. 4 is a sectional view of the anti-siphoning device taken along the section lines 4-4 of FIG. 3.

DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIGS. 1, 2, and 3, there is shown cerebrospinal fluid anti-siphoning device 11 for insertion into the human body. Device 11 is provided to control passage of cerebrospinal fluid being transported from an upstream to a downstream area 13, respectively. Device 11 forms a mechanism whereby the fluid pressure differential between upstream and downstream conditions may be effectively monitored, such that when the fluid pressure differential surpasses a predetermined value, the flow of fluid passing through device 11 is terminated. Inv general, the pressure of the fluid entering inlet tube 17 is higher than the pressure of the fluid egressing from device 11 through outlet tube 19. This pressure differential provides for a flow of the fluid from upstream 13 to downstream 15 through device 11. However, it should be understood that where the pressure differential exceeds a predetermined value, excessive drainage of the fluid from the brain area may be encountered. It is the purpose of device 11, as will be described in the following paragraphs, to terminate the flow of the fluid when the pressure differential exceeds the prescribed value.

It is to be understood that device 11 includes up stream check valve 22 and downstream check valve 24 inserted into upstream and downstream inlet and outlet areas 21 and 23 respectively. Check valves 22 and 24 are similar in construction to those valves shown and described in US. Pat. No. 3,566,875 which is herein incorporated by reference. In general, each of check valves 22, 24 shown and described in the referenced patent includes an inner elastic tubular member within an outer tube. Formed in the region of the downstream end of each inner tubular member is an axially extending slit which forms a valve opening. The valves are designed to automatically open when the pressure within each inner tubular member exceeds the pressure at the exterior thereof by a given slight amount. The referenced slit automatically opens due to this pressure differential while automatically closing when the internal pressure is less than the external pressure of each tubular member by less than that pressure required to open the slit. 5

In general, device 11 is positionally located within the human body adjacent skin area 25. Device 11 is further positioned in the clavicle area of the human body with inlet tube 17 passing to the lateral ventricals within the skull for drainage of the cerebrospinal fluid therefrom. Outlet tube 19 of device 11 passes to another portion of the body such as the peritoneal cavity to permit drainage of the fluid thereto.

Cerebrospinal fluid anti-siphoning device 1 1 includes fluid housing member 27 having central chamber or cavity 29 through which the fluid flows. In a top crosssection, housing member 27 is similar in geometrical contour to a diamond or rhomboid, however, such is not critical to the inventive concept as herein described. Housing member 27 may be formed of medical grade silicone rubber or some like material adapted for insertion into the human body with the only restriction being that such material does not degrade within the environment where it is positioned, as well as contaminate the body or fluid passing therethrough. Inlet area 21 of fluid housing member 27 is connected to inlet tube 17 and is in fluid communication with central chamber or cavity 29 for insertion of the fluid passing from the brain area through inlet tube 17 into chamber 29. In similar fashion, outlet area 23 is connected to outlet tube 19 and is in fluid communication with chamber or cavity 29 for transport of the fluid from chamber 29 through outlet tube 19 to the peritoneal cavity or other area of the body so designated to receive the excessive cerebrospinal fluid being trans ported through device 11. Inlet and outlet tubes l7, 19 may be constructed of polyethylene or some like material which will remain substantially inert with respect to the body environment through which they pass. Located within fluid housing member 27 and, further, within cavity 29 there is fluid control mechanism 31 for controlling or regulating the flow of the cerebrospinal fluid through central chamber 29 responsive to a predetermined pressure differential between inlet or upstream condition 13 and outlet or downstream condition 15.

Fluid control mechanism 31 describes a valve mechanism within chamber 29 for terminating the flow of fluid from inlet area 21 to outlet area 23 when the pressure differential between the inlet and outlet areas 21, 23 exceeds a predetermined value. This valve mechanism includes fluid egress conduit 33 within fluid housing member 27 which is in fluid communication with outlet area 23 for passage of fluid into downstream valve 24. Further, the aforementioned valve mechanism includes flexible diaphragm mechanism 35 which forms a lower surface of central chamber 29 and is positionally located adjacent to fluid conduit 33 as is shown in the figures.

As will be described in the following paragraphs, flexible diaphragm 35 may be displaced away from egress conduit 33 when fluid is passing through device 11 which would result when the pressure differential between the inlet area 21 and outlet area 23 is less than a predetermined value. Further, when the pressure differential exceeds the predetermined amount diaphragm 35 is opposingly drawn into contiguous relation with conduit opening 37 thereby blocking the passage of fluid through conduit 33 into outlet area 23 and downstream valve 24 for displacement through outlet tube 19. In general, fluid conduit 33 is L-shaped in geometrical contour and has a first end 39 which is in fluid communication with outlet area 23 and a second end 41 which has conduit opening 37 for passage of the fluid. The displacement distance between diaphragm 35 and second end 41 of conduit 33 provides a continuous fluid passage opening for transport of the fluid from inlet area 21 through fluid housing member 27 and finally to outlet area 23. As is seen in the figures, second end 41 includes lip section 43 which provides the area of contact when flexible diaphragm 35 is drawn into a blocking mode of operation. Lip section 43, as is seen, provides a slightly flared section and is upturned slightly with respect to the remaining wall section of fluid conduit 33. Diaphragm 35 is mounted within fluid housing 27 either through bonded securement or through insertion in a recess therein provided. In this manner, diaphragm 35 may be movably displaced in an upward or downward direction dependent upon the pressure condition it experiences.

In operation, fluid control mechanism 31 may be seen to function in a plurality of states. Assuming that all the pressures in upstream and downstream areas l3, are equal, it is to be understood that diaphragm 35 will lie substantially contiguous with second end 41 of conduit 33. When device 11 is inserted into the human body or otherwise when the pressure of inlet area 21 exceeds outlet area 23 within a predetermined range, flow is initiated through inlet tube 17 into cavity 29. This causes a pressure to be exerted downwardly on diaphragm 35 thus displacing diaphragm 35 away from conduit opening 37. Since the downstream 15 pressure is less then the upstream l3 pressure, fluid flows into conduit opening 37 and through conduit 33 to outlet area 23. However, where the downstream 15 pressure drops to a low level with respect to upstream 13 pressure, diaphragm 35 is pulled upwardly into contiguous contact with section 43 of second end 41 of conduit 33. Once diaphragm 35 is contiguously in relation with sec- 0nd end 41, flow of fluid through egress conduit 33 is effectively blocked and flow is terminated from inlet tube 17 to outlet tube 19. As was the case in the construction of fluid housing member 27, both flexible diaphragm 35 and fluid egress conduit 33 are similarly constructed ofa medical grade silicone rubber or some like material.

As is shown in the figures, fluid housing member 27 includes flexible dome 43 extending above upper surface 45. Dome 43 is mated to housing 27 through insert into a recess, or affixedly secured by bonding or some combination thereof. Dome 43 forms an upper surface of chamber 29 and is hat-shaped in geometrical contour. Dome 43 is further positionally located adjacent outer skin surface 25 when device 11 is implanted within the body. Dome 43 is flexibly constructed of a medical grade silicone rubber or some like material and is adapted to be compressed into chamber 29 for increasing the fluid pressure within chamber 29 thereby allowing manual displacement of diaphragm 35 away from conduit opening 37 to permit transport of the fluid through outlet area 23. In order to give structural support to housing member 27 surface 47 may by interspersed between the area under dome 43 and fluid control mechanism 31. However, in this form, fluid communication is maintained between dome 43 and control mechanism 31 through openings 48 passing through surface 47 and thus, allowing fluid or air to pass therethrough when dome 43 is depressed. Thus, it is seen that where diaphragm 35 is in contiguous relation with conduit opening 37 of egress conduit 33, no flow passes into outlet area 23. This condition may occur through a number of ways, such as the pressure differential between outlet and inlet areas 21, 23 being too great or through possible debris found in the cerebrospinal fluid. Where such is the case and it is desired to flush the system or otherwise to initiate the flow between upstream 13 and downstream 15, dome 43 may be depressed thereby increasing the pressure against flexible diaphragm 35 and displacing it away from fluid egress conduit opening 37. In this case, fluid then begins to flow through conduit 33 through manual actuation of the depression of dome 43.

Device 11 includes diaphragm restraint mechanism 49 secured to fluid housing member 27 below diaphragm 35. Restraint member 49 is displaced from diaphragm 35 through a predetermined amount to permit a flexible movement of diaphragm 35 upwardly or downwardly. Restraint member 49 is secured to housing 27 through fixed securement such as bonding or insertion into a recess, or a combination of such means. In general, restraint member 49 may be a plate element having openings 51 formed therethrough. Plate 49 is constructed or formed of nylon or some like material. As has been described, restraint member 49 may be a plate member having openings 51 or may be formed in a grid type shape. The purpose of plate 49 is to prevent diaphragm 35 from being blown out of housing member 27 when dome 43 is compressed. When dome 43 is depressed a relatively high pressure impinges upon diaphragm 35 and forces it in downward displacement wherein it is restrained through contact or interaction with plate 49. Openings 51 in plate 49 provide for the displacement of any fluid through those openings when diaphragm 35 is downwardly displaced. This insures that diaphragm 35 does not remain rigidly displaced with respect to plate 49 through the damping of the fluid or other material therebetween, and permits free movement of diaphragm 35 responsive to the fluid pressure.

Normal fluid pressure in the brain area is generally equal to or greater than 200 mm. of water. However,

i in the case of hydrocephallus, the fluid pressure in the brain may exceed normal values. For this reason upstream and downstream valves 22 and 24 provide a means whereby fluid may be drained from the brain.

However, where the pressure in the outlet area 23 becomes to low, too much fluid may possibly be drained off and the drainage may be too rapid. Thus device 11,

within which valves 22 and 24 are inserted, may be constructed to terminate the flow of cerebrospinal fluid when the downstream pressure becomes too low.

Through proper construction and positional relationships of diaphragm 35 with respect to conduit opening 37, device 11 can be made to terminate fluid flow throughout a wide range of downstream pressures. Generally, device 11 is constructed to terminate flow when the downstream pressure drops to 20-90 mm. of water. As an example, diaphragm 35 has a thickness approximately within the range of 0.0050.01 inches in thickness and is so constructed as to be displaced from second end 41 approximately 0.0040.02O inches when fluid is flowing therethrough. Further, as an example, plate 49 may have an approximate thickness of 0.050 inches and include an approximate diameter of 0.50 inches. It is to be understood that the foregoing examples of dimension and positional relations are used for illustration only and that control of fluid flow termination may be regulated over a wide range of pressures by changing construction geometries.

What is claimed is:

l. A cerbrospinal fluid anti-syphoning device comprising:

a. fluid housing means having a central chamber, said fluid housing means including a flexible dome forming an upper surface of said central chamber, said flexible dome adapted to be depressable into said central chamber for increasing fluid pressure therein;

b. inlet means in fluid communication with said central chamber for insertion of said fluid into said chamber;

c. outlet means in fluid communication with said central chamber for transport of said fluid from said chamber;

d. fluid egress conduit means extending internal said central chamber and in fluid communication with said outlet means;

. flexible diaphragm means forming a lower continuous surface of said central chamber, said diaphragm means being positionally located adjacent said fluid egress conduit means; said diaphragm means adapted to block flow of said fluid through said fluid egress conduit means when a fluid pressure differential between said inlet and outlet means is less than a predetermined value; and,

. diaphragm restraint means secured to said housing and positioned below said diaphragm means for preventing said flexible diaphragm means from being externally displaced from said housing means when said flexible dome is depressed, said diaphragm restraint means being a plate member having at least one opening passing therethrough.

2. The cerebrospinal fluid anti-siphoning device as recited in claim 1 where said flexible diaphragm means is displaced from said fluid conduit means when said pressure differential between said inlet means and said outlet means is less than a predetermined value and said fluid is being transported through said central chamber.

3. The cerebrospinal fluid anti-siphoning device as recited in claim 1 where said flexible diaphragm means is contiguous to a fluid passage opening of said fluid conduit means when said pressure differential between said inlet means and said outlet means exceeds said predetermined valve thereby blocking flow of said fluid to said outlet means.

4. The cerebrospinal fluid anti-siphoning device as recited in claim 1 where said fluid egress conduit means includes an L-shaped conduit having a first end connected to and in fluid communication with said outlet means and a second end adjacent said diaphragm means forming a fluid passage opening for transport of said fluid within said chamber to said outlet means.

5.'The cerebrospinal fluid anti-siphoning device as recited in claim 4 where said second end of said conduit provides a contact area with said diaphragm means greater than the flow area of said fluid through said conduit.

6. The cerebrospinal fluid anti-siphoning device as recited in claim 1 where said valve means is constructed of silicone.

7. The cerebrospinal fluid anti-siphoning device as recited in claim 1 where said flexible dome is adapted to be compressed into said chamber for increasing the fluid pressure within said chamber thereby displacing said fluid through said outlet means.

8. The cerebrospinal fluid anti-siphoning device as recited in claim 7 where said flexible dome is constructed of silicone rubber.

9. The cerebrospinal fluid anti-siphoning device as recited in claim 1 where said diaphragm restraint means includes a plate member displaced from said diaphragm means, said plate member being fixedly secured to said fluid housing means.

10. The cerebrospinal fluid anti-siphoning device as recited in claim 9 where said plate member includes a plurality of openings passing therethrough.

11. The cerebrospinal fluid anti-siphoning device as recited in claim 10 where said plate member is constructed of nylon.

12. The cerebrospinal fluid anti-siphoning device as recited in claim 1 where said diaphragm restraint means includes a grid member mounted to said fluid housing means.

13. The cerebrospinal fluid anti-siphoning device as recited in claim 12 where said grid member is constructed of nylon.

14. The cerebrospinal anti-siphoning device as revalue.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2629399 *Oct 16, 1946Feb 24, 1953Kulick GeorgeSafety valve for regulating and testing light pressures
US3495620 *Feb 9, 1967Feb 17, 1970Weck & Co Inc EdwardMagnetic valve
US3566913 *Nov 14, 1968Mar 2, 1971Us NavyDiaphragm valve
US3756243 *Sep 23, 1971Sep 4, 1973Schulte RFlow control system for physiological drainage
US3768508 *Jan 24, 1972Oct 30, 1973Schulte RValve for controllable release of entrapped body fluids
US3769982 *Sep 24, 1971Nov 6, 1973Schulte RPhysiological drainage system with closure means responsive to downstream suction
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3991768 *Jun 25, 1975Nov 16, 1976Portnoy Harold DShunt system resistant to overdrainage and siphoning and valve therefor
US3999553 *Jun 18, 1975Dec 28, 1976Bio-Medical Research, Ltd.Bio-medical pressure control device
US4364395 *Jun 30, 1981Dec 21, 1982American Heyer-Schulte CorporationLow profile shunt system
US4464168 *Nov 26, 1982Aug 7, 1984American Hospital Supply CorporationLow profile shunt system
US4540400 *Jul 21, 1983Sep 10, 1985Cordis CorporationNon-invasively adjustable valve
US4552553 *Jan 30, 1984Nov 12, 1985Pudenz-Schulte Medical Research Corp.Flow control valve
US4627832 *May 8, 1984Dec 9, 1986Cordis CorporationThree stage intracranial pressure relief valve having single-piece valve stem
US4676772 *Dec 23, 1985Jun 30, 1987Cordis CorporationAdjustable implantable valve having non-invasive position indicator
US4681559 *Dec 23, 1985Jul 21, 1987Cordis CorporationFor controlling the passage of body fluids from location to location
US4714458 *Dec 23, 1985Dec 22, 1987Cordis CorporationFor regulating the flow of fluid from one location to another
US4714459 *Dec 23, 1985Dec 22, 1987Cordis CorporationThree stage intracranial pressure control valve
US4729762 *Dec 23, 1985Mar 8, 1988Cordis CorporationThree stage implantable pressure relief valve with adjustable valve stem members
US4769002 *Feb 28, 1986Sep 6, 1988Cordis CorporationIntercranial pressure regulator valve
US4776838 *Jul 10, 1987Oct 11, 1988Cordis CorporationSurgically implantable valve for controlling cerebrospinal fluid
US4776839 *Oct 21, 1986Oct 11, 1988Cordis CorporationThree stage implantable pressure relief valve with improved valve stem member
US4781672 *Oct 21, 1986Nov 1, 1988Cordis CorporationThree stage implantable flow control valve with improved valve closure member
US4787886 *Mar 14, 1988Nov 29, 1988Cosman Eric RPressure sensor controlled valve
US4795437 *Jan 29, 1987Jan 3, 1989Pudenz-Schulte Medical Research CorporationSiphon control device
US4867741 *Nov 4, 1983Sep 19, 1989Portnoy Harold DPhysiological draining system with differential pressure and compensating valves
US5192265 *Dec 10, 1990Mar 9, 1993Hsc Research & Development Limited PartnershipAdjustable-resistance anti-siphon device
US5304114 *May 15, 1991Apr 19, 1994Cosman Eric RShunt valve system
US8292856 *Apr 18, 2007Oct 23, 2012Medtronic, Inc.Implantable cerebral spinal fluid drainage system
US20080097276 *Apr 18, 2007Apr 24, 2008Medtronic, Inc.Implantable cerebral spinal fluid drainage system
EP0068815A1 *Jun 23, 1982Jan 5, 1983BAXTER INTERNATIONAL INC. (a Delaware corporation)Low profile shunt system
EP0163897A1 *Apr 22, 1985Dec 11, 1985Cordis CorporationThree stage intracranial pressure relief valve having single-piece valve stem
Classifications
U.S. Classification604/10, 137/510
International ClassificationA61M27/00
Cooperative ClassificationA61M27/006
European ClassificationA61M27/00C2