Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3902495 A
Publication typeGrant
Publication dateSep 2, 1975
Filing dateJan 28, 1974
Priority dateJan 28, 1974
Also published asCA1068572A1
Publication numberUS 3902495 A, US 3902495A, US-A-3902495, US3902495 A, US3902495A
InventorsSteven N Weiss, Alan Broadwin
Original AssigneeCavitron Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Flow control system
US 3902495 A
Abstract
A fluidic control system for use in irrigation and aspiration of the anterior chamber of the eye during ultrasonic emulsification of a cataract therein. The system comprises a handpiece with an (ultrasonically vibrated) hollow tip, the hollow tip being connected to the fluid withdrawal or aspirating portion, while an annular passage around the tip is used to introduce fluid for irrigation purposes. The aspirating portion comprises a withdrawal hose attached to the output manifold of the handpiece in fluid communication with the hollow tip, a constant flow pump attached to the other end of the withdrawal hose, and a vacuum relief valve connected to the withdrawal hose intermediate the pump and the handpiece. The irrigation portion comprises a fluid supply bottle at a predetermined height above the eye, and administration set attached to the bottle, and an inflow hose attached to the intake manifold of the handpiece and in fluid communication with the annular passage. All the aforementioned components are in fluid communication with the anterior chamber of the eye during removal of a cataract by insertion of the handpiece tip into the eye chamber.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [1 1 Weiss et al. Sept. 2, 1975 1 FLOW CONTROL SYSTEM [57] ABSTRACT [75] Inventors: Steven N. Weiss, New York; Alan A fluidic control system for use in irrigation and aspi- [73] Assignee: Cavitron Corporation, New York,

[22] Filed: Jan. 28, 1974 [21] Appl. No.: 437,165

[52] US. Cl. 128/276; 128/24 A [51] Int. Cl. A61M U110 [58] Field of Search 128/276, 24 A, 303.1, 305; 137/ 102 [5 6] References Cited UNITED STATES PATENTS 3,693,613 9/1972 Kelman 128/24 A 3,732,858 5/1973 Banko 128/305 X 3,736,938 6/1973 Evvard et al..... 128/24 A X 3,776,238 12/1973 Peyman et a1. 128/305 3,809,093 5/1974 Abraham 128/305 3,812,855 5/1974 Banko 128/276 3,815,604 6/1974 OMalley et al. 128/276 3,818,913 6/1974 Wallach 128/305 Broadwin, Brooklyn, both of NY.

Sperber ration of the anterior chamber of the eye during ultrasonic emulsification of a cataract therein. The system comprises a handpiece with an (ultrasonically vibrated) hollow tip, the hollow tip being connected to the fluid withdrawal or aspirating portion, while an annular passage around the tip is used to introduce fluid for irrigation purposes. The aspirating portion comprises a withdrawal hose attached to the output manifold of the handpiece in fluid communication with the hollow tip, a constant flow pump attached to the other ehd of the withdrawal hose, and a vacuum relief valve connected to the withdrawal hose intermediate the pump and the handpiece. The irrigation portion comchamber of the eye during removal of a cataract by insertion of the handpiece tip into the eye chamber.

12 Claims, 2 Drawing Figures FLOW CONTROL SYSTEM BACKGROUND OF THE INVENTION This application relates to an improvement in the control of fluid flow in a surgical device. More particularly this invention relates to an improvement in the fluid flow systems for a surgical device useful in cataract removal such as that shown by U.S. Pat. No. 3,589,363 issued June 29, 1971 to A. Banko and C. D. Kelman for a Material Removal Apparatus and Method Employing High Frequency Vibrations. The aforesaid patent describes an instrument for breaking apart and removing unwanted tissue and material especially a cataract located in the anterior chamber of the eye by ultrasonically fragmenting the cataract while simultaneously introducing fluid into the eye chamber, and withdrawing the fluid and fragmented cataract particles. Briefly the device described includes a handpiece having an operative tip vibrating in the ultrasonic range which is also hollow and is in turn surrounded by a tubular sleeve. In operation the tip of the handpiece including the surrounding tubular sleeve are inserted into the anterior chamber of the eye. Treatment fluid is introduced through the hollow sleeve at a constant low pressure. This introduction of fluid which is called irrigation is to provide a replacement for fluid withdrawn or lost from the eye chamber. The withdrawl of fluid and suspended material from the anterior chamber is specifically called aspiration and ideally there is no change in fluid content or anterior chamber pressure as a result of irrigation-aspiration. This of course is impossible to achieve since aspiration is intended to remove solids which until broken up sometimes tend to occlude or block the fluid withdrawal openings of the handpiece.

This problem with control of fluid content and pressure within the anterior chamber of the eye during irrigation-aspiration is discussed in detail in U.S. Pat. No. 3,693,613 issued Sept. 26, 1972 to Charles Kelman for a Surgical Handpiece and Flow Control System for Use Therewith, and commonly assigned herewith.

A handpiece described in the aforesaid U.S. Pat. as well as the instrumentation described in U.S. Pat. No. 3,589,363 provides a tool tip insertable in the anterior chamber of the eye with an annular nozzle for supply of fluid for irrigation, a hollow tool tip which is vibrated at about 40,000 cps to provide the energy to break up the cataract and allow fluid withdrawal for aspirating the reduced particles and fluid. When the handpiece is inserted into the eye, it is extremely important to maintain the fluid pressure of the chamber within a certain range and to prevent rapid fluctuations of the pressure and fluid content of the chamber. A collapse of the anterior chamber for lack of sufficient pressure could result in damage to soft tissues of the eye as well as possible damage of the eye posterior capsule itself from contact of the tissues with the vibrating tool tip. This problem of maintaining the proper pressure is a particularly difficult and sensitive one and is one of the problems which the apparatus shown in the aforesaid U.S. Pat. No. 3.693.613 was designed to solve. The system shown therein while satisfactory is quite obviously a rather complex apparatus which requires in terms of control, close and competent operation personnel. Thus as part of the operation to remove a cataract from the anterior chamber of the eye the handpiece is inserted into the chamber through a small incision and the fluid flow adjusted to the desired level principally by the height at which the irrigation fluid source is supported to provide a gravity flow into the eye, and the speed of a constant flow positive displacement pump in the piping from the eye to withdraw the aspirating stream. The surgeon then moves the cataract lens into the anterior chamber, applies the ultrasonic vibration to the tip of the handpiece in contact with the lens and proceeds to break up the lens.

As part of the application of the tip to the lens the opening in the tip through which aspiration proceeds is periodically occluded by lens material. During such occlusion, fluid is prevented from entering the hollow tip, although the constant flow pump continues to operate. The pump operation thus starts drawing a vacuum in the conduit between the handpiece tip and the pump. At the same time, the pressure from the gravity feed of irrigation fluid into the eye remains constant and increases fluid pressure in the anterior chamber of they eye, expanding it somewhat. However once the opening into the handpiece tip is uncapped by fragmentation of the occlusion, the high vacuum existing in the aspirating system tends to quickly withdraw fluid from the anterior chamber. This may rapidly decompress the anterior chamber and draw the enclosing tissues towards the handpiece tip. Besides the danger represented by the ultrasonic vibrations of the handpiece tip on contact with these tissues, the rapid decompression itself may be injurious to the tissues. The apparatus shown by the aforesaid U.S. Pat. No. 3,693,613 of course is designed to eliminate such pertubrations to the eye by monitoring and controlling flow. It would be advantageous to have a system which is not only failsafe by means of being simple rather than complex, but is also more easily regulated and controlled by normal operative personnel rather than trained technicians.

SUMMARY OF THE INVENTION Accordingly we have invented a fluidic flow system for use in the irrigation and aspiration ofa small elastic pressure responsive chamber. The system comprises: a fluid source under substantially constant pressure; fluid inflow means connected to the fluid source for limiting flow of the fluid from the source into the chamber thereby providing irrigation fluid at a predetermined limited flow rate and pressure into the chamber; fluid withdrawal means in fluid communication with the chamber for aspirating fluid from the chamber at a rate to eliminate transient pressure shocks to the chamber; a constant flow pump connected to the other end of the fluid withdrawal means, with the pump acting to draw fluid from the chamber through the withdrawal means; and the withdrawal means including a pressure differential relief valve intermediate the chamber and the pump, the relief valve responsively opening at a predetermined pressure differential which in combination with the parameters of the fluid withdrawal means limits the occurrence of pressure transients communicated to the chamber, whereby flow resistivity of the withdrawal means between the chamber and the valve attenuates the pressure changes transmitted to the chamber when the valve opens in response to the predetermined pressure differential between atmosphere and the pressure in the withdrawal means reaching the predetermined differential pressure. Preferably where the enclosed volume is the anterior chamber of the eye, the relief valve opens to atmosphere in response to a pressure differential of from 10 mm of mercury (Hg) to I mm Hg; the pressure of the fluid source is in the range of from to I00 mm Hg; the flow resistivity of the inflow means is from 0.042 to 18.5 mm Hg per ml per min; the flow resistivity of the fluid withdrawal means is from 0.35 to 21.5 mm Hg per ml per min; and the constant flow volume of the pump is from 5 to 50 ml per min. More particularly the preferred pressure, flow and flow resistivity ranges of the system according to the present invention comprise the following: a fluid source exerting a constant pressure of from 30 to 60 mm Hg; the inflow means having a flow resistivity of from 0.5 to 2.5 mm Hg. ml per min between the fluid source at one end and to the operative volume of the anterior chamber of an eye at the other end; the fluid withdrawal means having a flow resistivity of from 1.33 to 3.0 mm Hg. per ml per min. from the operative volume of the anterior chamber of the eye and to the atmosphere; the constant volume pump having a flow rate of from to ml per min; and the relief valve connected to the flow withdrawal means intermediate the pump and the eye chamber responsively opening the atmosphere at a pressure differential of between about 30 and 50 mm Hg.

It is therefore an object of this invention to provide a fluidic control system for use in irrigating and aspirating a small enclosed elastic volumetric space.

Another object of the present invention is to provide an effective flow control system for irrigating and aspirating the anterior chamber of the eye.

Yet another object of the present invention is to provide a flow control system for effectively limiting the transient pressure and flow changes as felt by the anterior chamber of the eye during irrigation and aspiration thereof.

Other objects and advantages of the system according to the present invention will be apparent from the brief description of the drawings and the preferred embodiment which follows.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 of the drawings is a diagram of the fluidic flow control system of the present invention; and

FIG. 2 of the drawings is an electrical circuit analog of the flow control system of FIG. 1.

DESCRIPTION OF THE PREFERRED EMBODIMENT In the US. Pat. No. 3,589,363 described hereinbefore and which is incorporated herein by reference. apparatus and method for the removal of material by employing high frequency vibration is shown and described. Briefly the aforesaid patent describes an instrument for breaking apart and removing unwanted material such as for surgically removing a cataract from the eye. The apparatus includes a handpiece having an operative tip vibrating at a frequency in the ultrasonic range (preferably about 40.000 cps) with an amplitude controllable up to several thousandths of an inch. The operative tip is itself hollow and is in turn surrounded by a tubular sleeve forming an annular passage. The inflow fluid for irrigating the anterior chamber of the eye is introduced into the chamber through the annular passage and the broken up material. small particles and fluid in the eye, is withdrawn at the same time through the hollow tip to aspirate the chamber.

Referring now to FIG. 1 of the drawings wherein a simplified diagram of a handpiece 12 is shown with an operative tip 14 having a hollow withdrawal means 16, and an annular passage 18 surrounding the tip 14 for introducing fluid into an anterior chamber 20 of an eye undergoing cataract surgery. For a more detailed description of the handpiece 12 described above. reference is made to the handpieces shown in the aforesaid US. Pat. Nos. 3.589.363 and 3.693.613 commonly assigned to the assignee herein.

Irrigation fluid is introduced into the handpiece 12 via an inflow hose 22 which is connected at one end to the handpiece and at the other end to an administration set 23. that is a hose connected to an irrigation fluid supply bottle 24 suspended by an appropriate bracket (not shown) a fixed height I: over the level of the hand piece and eye. The fixed height h at which the fluid supply bottle is suspended acts to apply a fixed fluid pressure to fluid entering the hose 22 from the bottle to the eye. The selected height is such as to apply a pressure of from about l0 mm Hg to about I00 mm Hg to fluid entering the administration set and thereby furnish a fluid source having a constant preselected pressure level in relation to the handpiece.

More preferably the height at which the supply bottle is suspended is such as to apply a pressure head of from 30 mm Hg to 60 mm Hg. According to the present invention, this is the sole means for supplying the pressure head which forces the flow of fluid from the bottle through the administration set 23, the inflow hose 22 and the annular passage of the handpiece into the anterior chamber of the eye.

For purposes of this invention the pressure which is internally applied to the eye is of prime importance. For instance. as described in US Pat. No. 3.693.613. it is very important that pressure of the anterior chamber of the eye be maintained within a certain range of values to prevent damage thereto. A collapse of the anterior chamber due to reduced pressure could result in either the iris. the endothelium layer of the cornea. or the posterior capsule as well as other soft tissue. coming in contact with the operating tip of the handpiece. This problem of maintaining the proper pressure is a particularly difficult and sensitive one in the case of an operative site such as the anterior chamber, which is considerably smaller in volume than the volume of fluid necessary for continuous irrigation and aspirationv The anterior chamber of the eye is. of course, in the same pressure related system as the apparatus of this invention. In a cataract operation, pressure transients are periodically being induced at the tip of the handpiece due to the presence of a particle or part of the cataract. This initially prevents entry of aspirating fluid into the tip with resulting buildup of suction in the tip. and then sudden clearance of the occlusion blocking the handpiece tip. The apparatus shown in the US. Pat. No. 3.693.613 is designed to reduce and overcome this problem and as such is effective though expensive and complicated.

Basically the present invention provides an irrigation system which limits the fluid pressure to which the anterior chamber of the eye is subject by limiting the height at which the irrigation fluid supply is maintained in reference to the eye, and by further limiting the flow rate into the eye utilizing specified inflow means having a specified resistivity to flow. as well as relating the irrigation system to the fluid withdrawal or aspiration system. That portion of the fluidic system comprising the fluid withdrawal means, the constant flow pump and the differential pressure relief valve act in combination to limit fluid flow from the eye, and more importantly prevent sudden pressure changes or pressure transients from occuring by increasing the time period over which the pressure changes occur and by limiting the maximum pressure drop to which theeye would be exposed. This is accomplished by controlling the constant flow rate of the pump; by setting a predetermined limit to the pressure differential, the relief valve will open to atmosphere; and by controlling the flow resistivity of the fluid piping as herein described.

Referring back to FIG. 1 of the drawing the operative tip 14 of the handpiece is hollow and has an internal fluid withdrawal passage 30 constituting part of the fluid withdrawal system of the present invention utilized in aspirating the operative site of the eye. A fluid withdrawal pipe 32 is connected to the handpiece at one end and is in fluid communication with the fluid withdrawal passage. The other end of the fluid withdrawal pipe is connected to a constant flow pump 34 preferably a constant displacement, variable speed, peristaltic pump. The peristaltic feature acts to avoid any contact of the operating parts with the withdrawn fluid suspension. Intermediate the pump 34 and the handpiece, a relief valve 36 is connected by a T joint 38 to the fluid withdrawal pipe and is set to open to atmosphere should the pressure differential in the fluid withdrawal pipe exceed a predetermined pressure, which pressure may be from 30 mm Hg to 50 mm Hg. Preferably the pressure differential at which the relief valve opens is a pressure of about 40 mm Hg. Constant flow capacity of the pump is preferably a flow of from about ml per min to ml per minute. Flow resistivity of the fluid withdrawal means at these preferred conditions is from about l.33 mm Hg to about 3.0 mm Hg. Flow resistivity in the fluid inflow system is on the order of from about 0.5 to about 2.5 mm Hg per ml per min.

We have therefore described an effective, economical system for irrigating and aspirating the anterior chamber of the eye during an operation involving the insertion of a handpiece through a small incision in the eye and during which parts of the eye such as a cataract are reduced by the action of an ultrasonically vibrating tip. With reference to further understanding the operation of our invention reference is now made to FIG. 2 of the drawing which shows the electrical analog circuit which led to the fluidic control system of this invention. it must be further understood that each part of our invention functions in relation to a moderately uncontrollable set of conditions imposed by the needs of the operative site, i.e., anterior chamber of human eye and the size of the operative incision. The conditions in the anterior chamber of the eye are analogized by two electrical elements which are a resistive element 44 to account for flow resistivity through the incision, and a capacitor 45 to correspond to elasticity of the eye chamber, both elements being in parallel and connected to ground at one end and at the other end to the inflow irrigation system and the fluid withdrawal system. The fluid inflow system is analogized by a constant voltage source 46 corresponding to the fluid supply bottle set at a specified height to provide a constant pressure head; administration set resistance 47 corresponding to the flow resistivity thereof; an inflow resistance 48 corresponding to flow resistivity of the inflow hosing, and a resistance 50 corresponding to the flow resistivity of the fluid inflow manifold of the handpiece. For the fluid withdrawal system a pipe resistance 52 corresponds to the resistivity imposed in the fluid withdrawal piping, and of the handpiece by outflow manifold resistance 54.

The relief valve is analogized by a diode 56 and a zener diode 58 back to back in series at one end to the fluid withdrawal pipe and at the other end to ground (or atmosphere). The constant flow pump is analogized by inserting a hypothetical electrical current element 60 acting as a constant current source. In terms of the electrical analogues of the fluid parameters, resistance (R) is equivalent to flow resistance in pressure terms; voltage (V) is equivalent to a pressure source in mm Hg; and current amperes (I) is equivalent to flow in ml per min. Utilizing the above analogy we have been able to-conceive and build our invention and relate various known conditions in determining the operative parameters which are described hereinbefore.

The system is able to accomplish the irrigationaspiration of the anterior chamber of the eye, while at the same time reducing transients introduced by occlusions of the fluid withdrawal or aspirating system. It can by seen be by our invention, we have provided a simplified though quite effective fluidic control system for use in conjunction with the operative system described herein and in the aforesaid U.S. Pat. No. 3,589,363 and which provides the safeguards, effectiveness, ease of use, and operative usefullness desired by the system shown in U.S. Pat. No. 3,693,613.

Our invention may be employed with certain modifications and variations. For instance, the irrigation portion of our system may be employed without the aspiration system. In this mode of employment flow of fluid into the eye is as previously described while flow of fluid out of the anterior chamber of the eye is through the opening or incision made therein for the insertion of the handpiece tip. A modification of the irrigation system is shown in the drawings in solid line, where a pressure means for relief of undue pressure head is employed. The pressure means comprises a pressure relief valve 39 connected to the inflow hose 22 by a tube 40. The pressure relief valve 39 is selected to prevent undue pressure from being applied through the irrigation system to the eye chamber. The analogous components shown in FIG. 2 of the drawings to such a pressure relief means incorporated in the irrigation system comprise a diode 64 connected to the circuit between resistors 48 and 50 and a zener diode 62 connected back to back with the diode 64. The zener diode anode is connected to ground (atmosphere). By this variation we are able to further limit the pressure which can be communicated to the eye chamber through the irrigation system.

Having thus described our preferred embodiment and wishing to cover those aspects of our invention which would be apparent to those skilled in the art, from the invention herein but without departing from either the spirit or scope thereof, we claim:

1. A fluidic flow system for use in irrigationaspiration of a small elastic pressure responsive chamber, said system compising a fluid source at a pressure of from about 10 to mm Hg, fluid inflow means connected to said fluid source and in fluid communication with said chamber for (introducing) conducting from said source into said chamber, thereby providing irrigation, said fluid inflow means having a flow resistivity of from about 0.42 to 18.5 mm. Hg. per ml per min, fluid withdrawal means in fluid communication with said chamber for aspirating fluid from said chamber, said fluid withdrawal means having a flow resistivity of from about 0.35 to 21.5 mm Hg. per ml per min., thereby aspirating said chamber at a rate to limit rapid pressure changes in said chamber, constant flow pump means connected to said fluid withdrawal means at a point remote from said chamber, said pump means having a flow rate of from about to 50 ml per min. and acting to draw fluid from said chamber into said fluid withdrawal means, and

pressure responsive valve means connected to said fluid withdrawal means intermediate said chamber and said pump means, said pressure responsive valve means opening said fluid withdrawal means to atmosphere at a predetermined pressure differential of between about and 100 min Hg. to thereby limit vacuum buildup in said fluid withdrawal means, said flow resistivities, flow rates and pressure differential act in combination to prevent excessive pressure and pressure transients in said chamber.

2. The fluidic flow system according to claim 1 wherein said chamber is the anterior chamber of the eye.

3. The fluid flow system according to claim 2 wherein said fluid supply pressure is about 45 mm Hg, the pressure response means opens at a pressure differential of about 40 mm Hg, said pump has a flow rate of about ml per min, the flow resistivity of said inflow means between said fluid source and said chamber opening is about 1.06 mm Hg per ml per min. and said fluid withdrawal means flow resistivity between said chamber and said pump is about 1.57 mm Hg per ml per min.

4. The fluidic flow system according to claim 1 wherein said fluid source pressure is in the range of from about to 60 mm Hg, said fluid inflow means has a flow resistivity of from about 0.5 to 2.5 mm Hg per ml per min. between said fluid source and said chamber, said fluid withdrawal means has a flow resistivity of from about 1.33 to 3.0 mm Hg per ml per min. between said chamber and said pump, said constant flow pump has a flow rate of from about 20 to 30 ml per min. and said pressure response means opens at a differential pressure between about 30 and 50 mm Hg.

5. The fluidic flow system according to claim 2 which additionally comprises a handpiece having an inflow manifold therethrough connected said fluid inflow means,

a hollow tip mounted on the distal portion of said handpiece, said hollow tip being in fluid communication with said fluid withdrawal means, and capable of being inserted into the chamber of the eye,

a fluid passage mounted adjacent said tip on said handpiece, said fluid passage being in fluid communication with said handpiece inflow manifold, said passage having an opening which is in fluid communication with the anterior chamber of the eye when the tip is inserted in the eye.

6. The fluidic flow system according to claim 5 wherein said hollow tip is ultrasonically vibrated.

7. The fluid flow system according to claim 6 wherein said fluid source is a fluid supply bottle supported at a 5 predetermined height about the level of the eye, thereby establishing a constant pressure, and said fluid inflow means comprises an administration set between said supply bottle and a fluid hose connected to said handpiece fluid inflow manifold.

10 8. The fluidic flow system according to claim 1 wherein said chamber is the anterior chamber of the eye, said eye chamber being characterized by being a small elastic pressure responsive volume, said system being further characterized by said fluid source applying a limited pressure of about mm Hg applied thereto to limit pressure imposed within the chamber of the eye,

9. A method of providing irrigationaspiration to a small elastic pressure responsive chamber, said method comprising,

supplying fluid to a chamber at a pressure of from about 30 to 60 mm Hg and a flow resistivity to said chamber of from about 0.5 to 2.5 mm Hg. per ml per min. pumping fluid from the chamber at a limited rate (into) through a flow withdrawal means at a flow rate of from about 5 to ml per min. subject to a flow resistivity of from about 0.35 to 21.5 mm Hg. per ml per min. responsively opening said flow withdrawal means to ambiant pressure in response to a per determined pressure differential of between about 10 and 100 mm Hg. between pressure on said withdrawal means and pressure. slowing fluid flow from the chamber in order to prevent pressure transmient from occuring between said flow withdrawal means and the chamber immediately after said opening. 10. The method of claim 9 wherein said step of pumping fluid from the chamber comprises applying a flow resistivity in the flow withdrawal means of from about 1.33 to 3.0 mm Hgs per ml per min. at a constant pumping rate of from about 20 to 30 ml per min. while simultaneously limiting 45 the pressure differential between about 30 and 50 mm Hg. 11. The method of claim 9 including the step of supplying fluid to the anterior chamber of the eye.

12. A method of providing irrigation-aspiration to the 50 anterior chamber of the eye, said method comprising, supplying fluid to said chamber at a pressure of about 45 mm Hg. and a flow resistivity to said chamber of 1 mm Hg. per ml per min. pumping fluid from the chamber at a limited rate through a flow withdrawal means at a flow rate of about 25 ml per min.

subject to a flow resistivity of about 1.6 mm Hg. per ml per min.

responsively opening said flow withdrawal means to ambiant pressure in response to a predetermined pressure differential of about 40 mm Hg. between pressure on said withdrawal means and ambi nt pressure.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3693613 *Dec 9, 1970Sep 26, 1972Cavitron CorpSurgical handpiece and flow control system for use therewith
US3732858 *Feb 14, 1969May 15, 1973Surgical Design CorpApparatus for removing blood clots, cataracts and other objects from the eye
US3736938 *Nov 15, 1971Jun 5, 1973NasaOphthalmic method and apparatus
US3776238 *Aug 24, 1971Dec 4, 1973Univ CaliforniaOphthalmic instrument
US3809093 *Apr 14, 1972May 7, 1974Abraham SSurgical tool
US3812855 *Dec 15, 1971May 28, 1974Surgical Design CorpSystem for controlling fluid and suction pressure
US3815604 *Jun 19, 1972Jun 11, 1974R HeintzApparatus for intraocular surgery
US3818913 *Aug 30, 1972Jun 25, 1974Wallach MSurgical apparatus for removal of tissue
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4011870 *Mar 5, 1976Mar 15, 1977Michael GoldsteinNeedle instrument
US4014333 *Sep 22, 1975Mar 29, 1977Mcintyre David JInstrument for aspirating and irrigating during ophthalmic surgery
US4033349 *Apr 13, 1976Jul 5, 1977The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationCorneal seal device
US4041947 *Jun 23, 1975Aug 16, 1977Cavitron CorporationFlow control system
US4056855 *Apr 7, 1976Nov 8, 1977Charles KelmanIntraocular lens and method of implanting same
US4136700 *Jun 14, 1976Jan 30, 1979Cavitron CorporationNeurosonic aspirator
US4184491 *Aug 31, 1977Jan 22, 1980The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationIntra-ocular pressure normalization technique and equipment
US4314560 *Nov 28, 1979Feb 9, 1982Helfgott Maxwell APowered handpiece for endophthalmic surgery
US4363326 *Dec 22, 1980Dec 14, 1982Advanced Diagnostic Research CorporationUltrasonic apparatus for needle insertion
US4493694 *May 25, 1984Jan 15, 1985Cooper Lasersonics, Inc.Ultrasonic surgical apparatus
US4504264 *Sep 24, 1982Mar 12, 1985Kelman Charles DSurgical instrument
US4516398 *Jun 5, 1984May 14, 1985Cooper Lasersonics, Inc.Method of use of an ultrasonic surgical pre-aspirator having a orifice by-pass
US4650461 *Feb 18, 1986Mar 17, 1987Woods Randall LExtracapasular cortex irrigation and extraction
US4670006 *Sep 12, 1986Jun 2, 1987Sinnett Kevin BFluid and air infusion device
US4689040 *Apr 29, 1985Aug 25, 1987Thompson Robert JTip for a phacoemulsification needle
US4750488 *Feb 27, 1987Jun 14, 1988Sonomed Technology, Inc.Vibration apparatus preferably for endoscopic ultrasonic aspirator
US4750902 *May 19, 1986Jun 14, 1988Sonomed Technology, Inc.Endoscopic ultrasonic aspirators
US4832685 *Oct 6, 1987May 23, 1989Coopervision, Inc.Fluid flow control system and connecting fitting therefor
US4921476 *May 2, 1988May 1, 1990Cavitron, Inc.Method for preventing clogging of a surgical aspirator
US4921477 *Jun 21, 1989May 1, 1990The Cooper Companies, Inc.Surgical irrigation and aspiration system with dampening device
US4922902 *Dec 16, 1987May 8, 1990Valleylab, Inc.Method for removing cellular material with endoscopic ultrasonic aspirator
US4924851 *Jan 5, 1989May 15, 1990Societe Dite Sinergy S.A.Surgical apparatus
US4935005 *Feb 1, 1989Jun 19, 1990Nestle, S.A.Opthalmic fluid flow control system
US5084012 *Mar 22, 1991Jan 28, 1992Kelman Charles DApparatus and method for irrigation and aspiration of interior regions of the human eye
US5160317 *Jan 3, 1991Nov 3, 1992Costin John AControl system for ultrasonic transducer for operating on the human eye
US5185002 *Jun 28, 1991Feb 9, 1993Alcon Surgical, Inc.For use with a surgical irrigation and aspiration system
US5197947 *Oct 24, 1991Mar 30, 1993University Of New MexicoPowered clysis and clyser
US5279547 *Dec 20, 1991Jan 18, 1994Alcon Surgical Inc.Computer controlled smart phacoemulsification method and apparatus
US5318570 *Jun 11, 1991Jun 7, 1994Advanced Osseous Technologies, Inc.Ultrasonic tool
US5324297 *Mar 5, 1991Jun 28, 1994Advanced Osseous Technologies, Inc.Ultrasonic tool connector
US5328456 *Apr 23, 1993Jul 12, 1994Nidek Co., Ltd.Irrigation and aspiration apparatus
US5334183 *Apr 9, 1992Aug 2, 1994Valleylab, Inc.Endoscopic electrosurgical apparatus
US5370602 *Jul 29, 1993Dec 6, 1994American Cyanamid CompanyPhacoemulsification probe circuit with pulse width Modulating drive
US5382251 *Feb 14, 1992Jan 17, 1995Biomet, Inc.Plug pulling method
US5417654 *Feb 2, 1994May 23, 1995Alcon Laboratories, Inc.Elongated curved cavitation-generating tip for disintegrating tissue
US5476448 *Oct 19, 1994Dec 19, 1995Urich; AlexApparatus for suppressing a vacuum surge in eye surgery
US5520633 *Nov 8, 1993May 28, 1996Costin; John A.Computer controlled smart phacoemulsification method and apparatus
US5562612 *Mar 9, 1995Oct 8, 1996Charles D. KelmanApparatus and method for reverse flow irrigation and aspiration of interior regions of the human eye
US5685841 *Aug 14, 1995Nov 11, 1997Mackool; Richard J.Support for fluid infusion tube for use during eye surgery
US5722945 *Apr 1, 1996Mar 3, 1998Aziz Yehia AnisRemoval of tissue
US5827292 *Feb 12, 1996Oct 27, 1998Anis; Aziz YehiaRemoval of tissue
US5921999 *Jun 3, 1997Jul 13, 1999Dileo; FrankSystem and method employing a pie-zoelectric crystal and transverse oscillation to perform a capsulotomy
US5941887 *Sep 3, 1996Aug 24, 1999Bausch & Lomb Surgical, Inc.Sleeve for a surgical instrument
US5984904 *Aug 22, 1996Nov 16, 1999Bausch & Lomb Surgical, Inc.Sleeve for a surgical instrument
US6013048 *Nov 7, 1997Jan 11, 2000Mentor CorporationUltrasonic assisted liposuction system
US6203516Aug 21, 1997Mar 20, 2001Bausch & Lomb Surgical, Inc.Phacoemulsification device and method for using dual loop frequency and power control
US6283937 *Jun 29, 1999Sep 4, 2001Nidek Co. Ltd.Irrigation/aspiration apparatus
US6352519May 18, 2000Mar 5, 2002Aziz Yehia AnisRemoval of tissue
US6599271Apr 13, 2000Jul 29, 2003Syntec, Inc.Ophthalmic flow converter
US6702761Mar 6, 2001Mar 9, 2004Fonar CorporationVibration assisted needle device
US7008383Dec 4, 2003Mar 7, 2006Fonar CorporationMethod of conducting a needle biopsy procedure
US7303566 *Jun 20, 2003Dec 4, 2007Makoto KishimotoDecompression-compensating instrument for ocular surgery, instrument for ocular surgery provided with the same and method of ocular surgery
US7357779Mar 23, 2001Apr 15, 2008Graham David BarrettAspiration flow modulation device
US7572242Aug 19, 2005Aug 11, 2009Alcon, Inc.Method of operating an ultrasound handpiece
US7625388Feb 28, 2005Dec 1, 2009Alcon, Inc.Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US7645255Feb 28, 2005Jan 12, 2010Alcon, Inc.Method of controlling a surgical system based on irrigation flow
US7645256Jul 18, 2005Jan 12, 2010Alcon, Inc.Ultrasound handpiece
US7651490Aug 12, 2004Jan 26, 2010Alcon, Inc.Ultrasonic handpiece
US7713202Jul 26, 2005May 11, 2010Alcon, Inc.Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US7727193Jul 26, 2005Jun 1, 2010Alcon, Inc.Method of controlling a surgical system based on a rate of change of an operating parameter
US7758538Jul 26, 2005Jul 20, 2010Alcon, Inc.Method of controlling a surgical system based on irrigation flow
US7811255Feb 28, 2005Oct 12, 2010Alcon, Inc.Method of controlling a surgical system based on a rate of change of an operating parameter
US8034018Dec 20, 2007Oct 11, 2011Bausch & Lomb IncorporatedSurgical system having means for stopping vacuum pump
US8048020Jun 3, 2010Nov 1, 2011Alcon, Inc.Method of controlling a surgical system based on irrigation flow
US8070711Dec 9, 2009Dec 6, 2011Alcon Research, Ltd.Thermal management algorithm for phacoemulsification system
US8172786Jul 16, 2009May 8, 2012Alcon Research, Ltd.Method of operating an ultrasound handpiece
US8241242Mar 30, 2005Aug 14, 2012Abbott Medical Optics Inc.Phacoaspiration flow restrictor with bypass tube
US8246579Dec 20, 2007Aug 21, 2012Bausch & Lomb IncorporatedSurgical system having means for pressurizing venting valve
US8257307Oct 12, 2009Sep 4, 2012Alcon Research, Ltd.Method of controlling a surgical system based on a load on the cutting tip of a handpiece
US8277830Oct 4, 2011Oct 2, 2012Forsight Vision4, Inc.Posterior segment drug delivery
US8298578Oct 4, 2011Oct 30, 2012Forsight Vision4, Inc.Posterior segment drug delivery
US8303530May 10, 2007Nov 6, 2012Novartis AgMethod of operating an ultrasound handpiece
US8399006Jan 29, 2010Mar 19, 2013Forsight Vision4, Inc.Posterior segment drug delivery
US8403851Jan 22, 2010Mar 26, 2013Novartis AgMethod of controlling a surgical system based on a load on the cutting tip of a handpiece
US8414605Jul 8, 2011Apr 9, 2013Alcon Research, Ltd.Vacuum level control of power for phacoemulsification hand piece
US8430838Jan 6, 2010Apr 30, 2013Novartis AgMethod of controlling a surgical system based on irrigation flow
US8486052Dec 27, 2010Jul 16, 2013The Johns Hopkins University School Of MedicineReservoir device for intraocular drug delivery
US8523812Sep 3, 2010Sep 3, 2013Alcon Research, Ltd.Method of controlling a surgical system based on a rate of change of an operating parameter
US8579851Dec 20, 2007Nov 12, 2013Bausch & Lomb IncorporatedSurgical system having means for isolating vacuum pump
US8579929Sep 3, 2010Nov 12, 2013Alcon Research, Ltd.Torsional ultrasound hand piece that eliminates chatter
US8623040Jul 1, 2009Jan 7, 2014Alcon Research, Ltd.Phacoemulsification hook tip
US8623395Aug 5, 2011Jan 7, 2014Forsight Vision4, Inc.Implantable therapeutic device
US8721594Jun 19, 2007May 13, 2014Alcon Research, Ltd.Post-occlusion chamber collapse canceling system for a surgical apparatus and method of use
US8771301Sep 11, 2009Jul 8, 2014Alcon Research, Ltd.Ultrasonic handpiece
US8784357Sep 15, 2010Jul 22, 2014Alcon Research, Ltd.Phacoemulsification hand piece with two independent transducers
US8795712May 7, 2013Aug 5, 2014Forsight Vision4, Inc.Posterior segment drug delivery
US8808727Mar 15, 2013Aug 19, 2014Forsight Vision4, Inc.Posterior segment drug delivery
US8814894Sep 11, 2009Aug 26, 2014Novartis AgUltrasound handpiece
CN101932348BDec 18, 2008Aug 28, 2013博士伦公司Surgical system having means for pressurizing venting valve
WO1992016246A1 *Oct 31, 1991Oct 1, 1992Charles D KelmanApparatus, method for eye irrigation and aspiration
WO2001070152A1 *Mar 23, 2001Sep 27, 2001Barrett Graham DavidAn aspiration flow modulation device
WO2011112291A1 *Jan 28, 2011Sep 15, 2011Atrium Medical CorporationChest drainage systems and methods
Classifications
U.S. Classification604/22, 604/119, 606/128, 604/28
International ClassificationA61M1/00, A61F9/00, A61M3/02
Cooperative ClassificationA61M1/0058, A61M3/0233, A61F9/00, A61M2001/0033, A61M3/0241
European ClassificationA61M1/00K
Legal Events
DateCodeEventDescription
Jul 21, 1989ASAssignment
Owner name: COOPER COMPANIES, INC., THE A CORP. OF DE
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:IRVING TRUST COMPANY;REEL/FRAME:005153/0640
Effective date: 19890202
Owner name: COOPER COMPANIES, INC., THE, CALIFORNIA
Free format text: SECURITY INTEREST;ASSIGNOR:AIG CAPITAL CORP.;REEL/FRAME:005184/0092
Effective date: 19890201
Owner name: UNION BANK
Free format text: SECURITY INTEREST;ASSIGNOR:COOPER COMPANIES, INC., THE, A CORP. OF DE;REEL/FRAME:005224/0559
Owner name: COOPER COMPANIES, INC., THE,CALIFORNIA
Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:IRVING TRUST COMPANY;REEL/FRAME:5153/640
Jan 23, 1989ASAssignment
Owner name: UNION BANK, AS COLLATERAL AGENT
Free format text: SECURITY INTEREST;ASSIGNOR:COOPER COMPANIES, INC., THE;REEL/FRAME:005001/0436
Effective date: 19890115
Jan 17, 1989ASAssignment
Owner name: COOPER COMPANIES, INC., THE
Free format text: LICENSE;ASSIGNOR:DAIWA BANK, LIMITED, LOS ANGELES AGENCY, THE;REEL/FRAME:005023/0532
Effective date: 19890115
Owner name: DAIWA BANK, LIMITED, LOS ANGELES AGENCY, THE, A BA
Free format text: SECURITY INTEREST;ASSIGNOR:COOPER COMPANIES, INC., THE;REEL/FRAME:005023/0501
Effective date: 19881229
Aug 25, 1988ASAssignment
Owner name: AIG CAPITAL CORP.
Free format text: SECURITY INTEREST;ASSIGNOR:COOPER COMPANIES, INC.;REEL/FRAME:004932/0329
Effective date: 19881229
Owner name: COOPER COMPANIES, INC., THE
Free format text: CHANGE OF NAME;ASSIGNOR:COOPERVISION, INC.;REEL/FRAME:004932/0379
Effective date: 19870622
Owner name: IRVING TRUST CO., NEW YORK BANKING CORP.
Free format text: SECURITY INTEREST;ASSIGNOR:COOPER COMPANIES, INC., THE;REEL/FRAME:004932/0263
Effective date: 19880815
Owner name: UNION BANK
Free format text: SECURITY INTEREST;ASSIGNOR:COOPER COMPANIES, INC., THE, A DE. CORP.;REEL/FRAME:004932/0295
Owner name: COOPER COMPANIES, INC., THE,CALIFORNIA
Free format text: CHANGE OF NAME;ASSIGNOR:COOPERVISION, INC.;REEL/FRAME:4932/379
Owner name: COOPER COMPANIES, INC., THE, CALIFORNIA
May 11, 1984ASAssignment
Owner name: COOPERVISION, INC.
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:NORTIVAC, INC.;REEL/FRAME:004269/0756
Effective date: 19840313
May 11, 1984AS02Assignment of assignor's interest
Owner name: COOPERVISION, INC.
Owner name: NORTIVAC, INC.
Effective date: 19840313