Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3902497 A
Publication typeGrant
Publication dateSep 2, 1975
Filing dateMar 25, 1974
Priority dateMar 25, 1974
Also published asCA1045548A1, DE2513159A1
Publication numberUS 3902497 A, US 3902497A, US-A-3902497, US3902497 A, US3902497A
InventorsDonald James Casey
Original AssigneeAmerican Cyanamid Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Body absorbable sponge and method of making
US 3902497 A
Abstract
A conformable tissue absorbable surgical sponge is formed by dissolving a tissue absorbable polymer in hexafluoroisopropyl alcohol or hexafluoroacetone sesquihydrate, filtering, freezing and subliming off the solvent to give a tissue conformable flexible sponge which rapidly absorbs blood and other body fluids. The sponge may be used to absorb blood or other liquids during a surgical procedure or may be used as a hemostat and allowed to remain in a closed wound with the polymer being absorbed by living tissue.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [1 1 Casey Se t. 2, 1975 [54] BODY ABSORBABLE SPONGE AND 3,705,585 12 1972 Saffro 128/325 METHOD OF MAKING 3,772,136 11/1973 Workman 128/156 3,801,675 4/1974 Russell 128/296 Inventor: Donald James y, g fi 3,825,007 7/1974 Rand 128/296 Conn.

[73] Assignee: American Cyanamid Company, Primary Examiner Lawrence Trapp Stamford Conn Attorney, Agent, or Firm-Samuel Branch Walker [22] Filed: Mar. 25, 1974 [57] ABSTRACT PP A conformable tissue absorbable surgical sponge is formed by dissolving a tissue absorbable polymer in 52 US. Cl 128/296; 260/25 E; 128/325 hexaflumoisopropyl alcohol or hexafluoroacetone [51] Int. 2 A61F 13/00 quihydrate, filtering, freezing and subliming off the [58] Field 61 Search 128/155-157, Solvent to give a Issue conformable flexlble Sponge 2 /290 29 325 334 335 5; E which rapidly absorbs blOOd and Oth6l' body fluids.

The sponge may be used to absorb blood or other liq- [56] References Cited uids during a surgical procedure or may be used as a UNITED STATES PATENTS hemostat and allowed to remam 1n aclos ed wound wlth the polymer belng absorbed by 11v1ng t1ssue. 3,297,033 l/l967 Schmitt et a1..... 128/335.5 3,666,750 5/1972 Briskin et a1 128/325 6 Claims, 6 Drawing Figures PATENTEU SEP 2 YS SHEET 1 BF 3 PATENTS] SE? 2 i 75 SHEET 2 UP 3 BODY ABSORBABLE SPONGE AND METHOD OF MAKING BACKGROUND OF THE INVENTION Surgical sponges find many uses in which an absor bent sponge is desirable to soak up blood, serum, or other body fluids, which sponges are removed and discarded. Cotton gauze sponges are used in many instances. When used internally, there is a problem of part of the sponge coming off and leaving threads or larger portions of the sponge in the wound. Concern over leaving a sponge in a patient complicates operating room practice and involves extremely rigorous counting procedures to insure that no sponge is accidentally left in a closed wound.

In many surgical procedures requiring a hemostat to control bleeding, sutures and tieoffs can be used. In some instances it is highly desirable that additional methods of controlling bleeding be made available. More or less successful efforts have been made to se cure conformable hemostats which can be used to control bleeding and then left in the wound. The problem is well recognized and more acceptable devices are in constant demand.

DESCRIPTION OF THE PRIOR ART The use of polyglycolic acid is disclosed in a series of patents and applications to Schmitt, et a1:

U.S. Pat. No. 3,297,033, Schmitt and Polistina, Jan. 10, 1967, SURGICAL SUTURES, discloses polyhydroxyacetic ester absorbable sutures. The material is also called polyglycolic acid, and is disclosed as permitting small quantities of comonomers to be present, such as dl-lactic acid, its optically active forms, homologs and analogs. A small quantity is recognized by the art as up to as shown by U.S. Pat. No. 2,668,162, Lowe, Feb. 2, 1954, PREPARATION OF HIGH MO LECULAR WEIGHT POLYHYDROXY-ACETIC ES- TER. I

U.S. Pat. No. 3,463,158, Schmitt and Polistina, Aug. 26, 1969, POLYGLYCOLIC ACID PROSTHETIC DEVICES, discloses surgical uses of polyglycolic acid, and incorporates definitions of some terms.

U.S. Pat. No. 3,620,218, Schmitt and Polistina, Nov. 16, 1971, CYLINDRICAL PROSTHETIC DEVICES OF POLYGLYCOLIC ACID, lists many uses of polyglycolic acid.

U.S. Pat. No. 3,736,646, Schmitt and Epstein, June 5, 1973, METHOD OF ATIACHING SURGICAL NEEDLES TO MULTIFILAMENT POLYGLYCOLIC ACID ABSORBABLE SUTURES, discloses surgical elements of a copolymer containing from 15 to 85 mol percent glycolic acid and 85 to 15 mol percent lactic acid.

U.S. Pat. No. 3,739,773, Schmitt and Polistina, June 19, 1973, POLYGLYCOLIC ACID PROSTHETIC DEVICES, claims particularly bone pins, plates, nails and screws of polyglycolic acid.

U.S. application Ser. No. 365,656, Schmitt and Polistina, May 31, 1973, SURGICAL DRESSINGS OF AB- SORBABLE POLYMERS now U.S. Pat. No. 3,875,937, discloses additional subject matter on surgical dressings of polyglycolic acid.

U.S. Pat. No. 3,739,773, supra, lists a number of U.S. patents on methods for preparing polyglycolic acid and starting materials therefor.

In U.S. Pat. No. 3,620,218, supra, in Column 2 are listed a number of medical uses of polyglycolic acids, including in Column 2; line 52, knitted or woven fibril lar products, including velours, and mentioning specifically in line 53, burn dressings; line 57, felt or sponge for liver hemostasis; line 63, foam as absorbable prosthesis; and in lines 74 and 75, burndressings (in combination withother polymeric films).

U.S. Pat. No. 3,737,440, Schmitt and Bailey, June 5, 1973, POLYGLYCOLIC ACID IN SOLUTIONS, discloses solutions of polyglycolic acid in hexafluoroisopropyl alcohol and hexafluoroacetone sesquihydrate, as well as wet and dry spinning of filaments and casting of films using these solutions.

U.S. Pat. No. 3,783,093, Gallacher, Jan. 1, 1974, F1- BROUS POLYETHYLENE MATERIALS, discloses a fibrillated material, mentioning poly(glycolic acid) among others, in which one resin is mixed and fibrillated with another, and one resin leached out to give the product, a web of oriented, interconnected direc tional fiber-like strands, membranes, ribbons, branched ribbons and fibrils. These can be used as bandages and for other medicalpurposes; Example 15 shows 25 parts of poly(glycolic acid) and 75 parts of poly-(methyl methacrylate) leached with acetone.

U.S. Pat. No. 2,899,362, Sieger, Valentine, and Weidenheimer, Aug. 1 l, 1959, HEMOSTATIC SPONGES AND METHOD OF PREPARING SAME, discloses a whipped starch-gelatin mixture which is aerated and dried to form a sponge which may be used for hemostatic purposes.

U.S. Pat. No. 3,653,383, Wise, Apr. 4, 1972, ALGIN SPONGE AND PROCESS THEREFOR, discloses algin sponges made by freeze-drying aqueous alginate dispersions or gels which can be used for burn dressings, and other surgical purposes. The product after use is water-disintegrative.

Commercially, an oxidized regenerated cellulose is available, as in a gelatin foam distributed in sheet form. Both of these are absorbable in tissues. Under some conditions, the gelatin foam causes bile cysts. It is desirably wetted with saline at the time of use.

The complete disclosures of the above patents and articles are hereby herein incorporated by this reference thereto.

The use of gauzes, felts, and knitted fabrics as a wound dressing is quite conventional. The use of collagenous products as a sponge or pad has been diclosed. The requirements for surgical hemostats are varied and more satisfactory hemostats than presently available are constantly in demand.

SUMMARY OF THE INVENTION It has now been found that a hemostat can be made by dissolving a tissue absorbable polymer in the very powerful solvents hexafluoroisopropyl alcohol or hexafluoroacetone sesquihydrate, preferably filtering the solution, freezing, and subliming off the solvent, yielding a sponge which is readily conformable to wound to pography, highly absorbent and versatile. It may be used in procedures in which the foam sponge is to be left in the wound and absorbed by body tissues and also sees great acceptance in sponges which are used to absorb blood, serum or other liquids with the sponge being removed and discarded. Because there is the ever present risk of part of the sponge falling off and being left in the wound or through inadvertence being closed in the wound, it is desirable that tissue absorbable sponges be used for general surgical use, wherever tissue may grow into the sponge.

A sponge should have high absorptive capacity, should absorb fluids, particularly blood, rapidly, should be strong enough to be readily handled in surgical procedures, and conformable enough that it fits into whatever topography and space that is available, and be soft enough so that it does not injure sensitive tissues.

The absorbability of the present sponges by the body reduces the risks from the inadvertent enclosure of portions of a hemostatic sponge in living tissue-because such portions are absorbed and removed by the tissue itself.

Although freeze drying is a well-known technique, it is usually drying of water from frozen compositions in which water is to be removed by sublimation; and the product is usually rather brittle and friable so that it is not readily conformable, and is easily broken.

Here the solvent, which is removed by sublimation, is hexafluoroisopropyl alcohol or hexafluoroacetone sesquihydrate or a mixture of the two. The residual foam is softer and more conformable than products usually secured from aqueous systems. It is, of course, not possible to use an aqueous system with the tissue absorbable polymer of this invention. The polymers are not water soluble.

Because the solvent is volatile, and is sublimed to remove the major portion, and the resulting cake is dried to remove the small remaining portion, the absorbable sponge structure is more readily freed from other components than in a leach technique using a mixture of polymers in which one polymer is leached out, thus requiring elimination of not only the leached polymer, but also the leaching solvent.

Because the term freeze-drying sometimes implies an aqueous system, the term sublimation-drying is used in many places herein to accentuate that it is an organic solvent system which is being sublimed so that it could be called solvent-sublimation for sponge manufacture. Products prepared in an aqueous system are generally friable. Using hexafluoroisopropyl alcohol or hexafiuoroacetone sesquihydrate as a solvent for polyglycolic acid, and other tissue absorbable compositions, yields a product which is readily flexible and tissue conformable.

Because homopolymeric polyglycolic acid is currently being used in sutures, has met with the approval of many government agencies in many countries, is commercially available, and is familiar to chemists, the present invention is primarily described in detail in relation to homopolymeric polyglycolic acid.

Polyglycolic acid containing up to of other units, such as lactic acid units, is considered within the term polyglycolic acid as used hereien unless specified as homopolymeric. Other materials such as poly(N-acetyl-D-glucosamine) and polymers of 3-methyl-l ,4- dioxane-2,5-dione may be used. Poly(N-acetyl-D- glycosamine) is described in US. Ser. No. 441,717, filed on or about Feb. I 1, 1974, Richard Carl Capozza, POLY( N-ACETYL-D-G LUCOSAMINE) PROD- UCTS.

The present invention is particularly useful with tissue absorbable polymers which are insoluble in common organic solvents.

The foam should conform to the surface of the tissue. Conformation comprises an assessment of the suppleness, resiliency, and foams ability to mimic the topography of the wound in such a fashion that there is a minimum gap between the tissue and the foam which minimizes air gaps and pools of liquid. If pools of liquid build up, whether of serum or blood, such pools may become sites for the growth of undesirable microorganisms, particularly for external dressings. If the foam conforms adequately to the surface of the wound, the bodys own defense mechanisms are effective up to the zone of contact with the foam, and bacterial contamination is minimized.

DRAWINGS FIG. 1 shows a scanning electron microscope photomicrograph at 50 diameters magnification of the surface of a frozen and dried sample produced in accordance with Example 1.

FIG. 2 is a portion of the same structure at 300 diameters magnification.

FIG. 3 is a photomicrograph similar to FIG. 1 at 50 diameters magnification of the reverse side of the same structure.

FIG. 4 is the same surface as FIG. 3, but at 300 diameters magnification.

FIG. 5 is a razor cut cross section of the same sample as FIG. 1 at 50 diameters magnification.

FIG. 6 is the same razor cut cross section as FIG. 5 at 300 diameters magnification.

A scale on each photomicrograph shows relative sizes.

As exemplified by the drawing, the polyglycolic acid forms ribbons and shows a fibrillar structure with the ribbons, sheets and fibers interconnected with many of the ribbons having considerable greater width than thickness. The thickness in general is within the range of from about I to 5 microns. The dried structure is spongy in character but resilient so as to be conformable to a wound surface and is not friable and brittle as are most frozen-dried solids in which the solids are dried from an aqueous system.

EXAMPLE 1 Polyglycolic Acid in Hexafluoroisopropyl Alcohol 10.3 Grams of low crystallinity homopolymeric polyglycolic acid was dissolved in ISO milliliters of hexa fluoroisopropyl alcohol by stirring at 36 to 37C. until solution resulted (about 3 hours). The resulting solution was freed from dust and inadvertent trace contaminants by filtration through a sintered glass filter, and transferred to a flat bottom dish. An additional milliliters of hexafluoroisopropyl alcohol was used to dilute the solution to about 4% concentration (wt/vol. The dish was surrounded by a solid carbon dioxideacetone mixture until the solution was solidly frozen. The dish in its frozen condition was placed in a resin kettle which was sealed and connected to a high vacuum system. Vacuum was maintained using a solid carbon dioxide acetone cooled trap to protect the vacuum pump for 16 hours during which time the kettle was allowed to warm up with the hexafluoroisopropyl alcohol being maintained in its solid state by evaporative cooling, and with no meltbacks. After the thus formed foam had only a few percent residual hexafluoroisopropyl alcohol therein, the foam cake was removed, cut into /=r inch thick slices and further subjected to vacuum and heat at about 55C. until substantially all of the hexafluoroisopropyl alcohol was removed.

The solvent free foam was placed in strippable packages, sterilized with 12% ethylene oxide in dichlorodifluoromethane and thus kept dry and sterile until time of use.

As a hemostatic sponge, the foam conforms well to a wound and arrests the flow of blood immediately. The initial arresting of bleeding is largely mechanical. Blood then coagulates in the sponge. which both arrests the further flow of blood, and tends to hold the sponge in position. The slices can be cut or broken into a size and shape adapted to cover a particular wound. The foam is usable in a wound which is to be closed, such as, for example, on the surface of the liver with the foam being closed into the abdominal cavity, or it may be used on the surface of the body as protection, and allowed to remain until the wound is healed. The foam may be used as an absorbent to absorb blood and other fluids at the site of a wound to dry the wound for subsequent suturing or closing as required by a particular surgical procedure.

In test animals on sacrifice, the foam is found to be essentially absorbed within 90 days.

EXAMPLE 2 Polyglycolic Acid in Hexafluoroacetone Sesquihydrate 1.9 Grams of homopolymeric polyglycolic acid was dissolved in 45 ml. of hexafluoroacetone sesquihydrate by heating the mixture of 50C. with stirring for three hours, yielding a solution having a concentration of approximately 4.2% (wt./vol.). The solution was filtered through a sintered glass filter and transferred to a flat dish and the clear amber solution was set in a solid carbon dioxide-acetone mixture for about an hour until frozen completely solid.

The dish was then placed in a vacuum chamber and the hexafluoroacetone sesquihydrate was sublimed off at a reduced pressure of about 1 torr. After about 24 hours, the spongelike foam obtained was removed, sliced into Va inch thick slices, and again placed in a closed chamber evacuated at l torr. with heating to about 80C. for several days. The product was then essentially free from solvent. The slices were sealed in strippable packages, sterilized with ethylene oxide and kept dry until time for use, using techniques routinely employed for polyglycolic acid sutures.

The sponge was an effective absorbent for blood and served as an effective hemostat on wound surfaces.

in accordance with conventional usage in the polymer field, the polymers herein described are named from the monomer or monomers from which the polymers can be considered as formed. For instance, the key polymer, polyglycolic acid, is so named whether made from glycolic acid or glycolide, even though the units in the chain could properly be described as glycolyl linkages. Particularly, when considered with the incorporated cited prior art, and commercial usage in the field, such nomenclature is regarded as historically the most significant and the least ambiguous.

I claim:

1. A method of making a hemostat comprising dissolving a tissue-absorbable polymer in hexafluoroisopropyl alcohol or hexafluoroacetone sesquihydrate, filtering to remove any insoluble contaminants, freezing the solution and subliming off the solvent, whereby an absorbable sponge structure is formed, which is essentially non-directional and is readily conformable to tissue surfaces.

2. The method of claim 1 in which the tissue absorbable polymer comprises glycolic acid, having such a high glycolic acid content that it is insoluble in common organic solvents.

3. The method of claim 2 in which the tissue absorbable polymer is homopolymeric polyglycolic acid.

4. A hemostatic surgical sponge of a tissue absorbable polymer comprising glycolic acid, having at least of the monomer units of glycolic acid, whereby it is insoluble in common organic solvents, in the form of a sheet having interconnected ribbons and ligaments of a single polymer which is essentially non-directional having a network of connecting elements, and which is sufficiently flexible to be readily conformable to a wound surface.

5. The sponge of claim 4 in which the tissue absorbable polymer is homopolymeric polyglycolic acid.

6. A hemostatic surgical sponge of a tissue absorbable polymer in the form of a sheet having interconnected ribbons and ligaments of a single polymer which is essentially non-directional having a network of connecting elements, and which is sufficiently flexible to be readily conformable to a wound surface; made by the process of dissolving a tissue-absorbable polymer in hexafluoroisopropyl alcohol or hexafluoroacetone sesquihydrate, filtering to remove any insoluble contaminants, freezing the solution and subliming off the solvent, whereby an absorbable sponge structure is formed, which is essentially non-directional and is readily conformable to tissue surfaces.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3297033 *Oct 31, 1963Jan 10, 1967American Cyanamid CoSurgical sutures
US3666750 *Dec 15, 1969May 30, 1972Johnson & JohnsonHemostatic material
US3705585 *Jul 15, 1971Dec 12, 1972Saffro Dennis WPreformed surgical sponge
US3772136 *Apr 20, 1971Nov 13, 1973Gen Mills IncFibrous products from thermoplastic polyamide polymers
US3801675 *May 1, 1972Apr 2, 1974Johnson & JohnsonPolymer blend containing polyacrylic acid,polyvinyl alcohol,and a polyacrylate
US3825007 *Jan 7, 1972Jul 23, 1974R RandPledgets
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4128612 *Nov 3, 1975Dec 5, 1978American Cyanamid CompanyMaking absorbable surgical felt
US4181983 *Aug 29, 1977Jan 8, 1980Kulkarni R KAssimilable hydrophilic prosthesis
US4186448 *Nov 21, 1977Feb 5, 1980Brekke John HDevice and method for treating and healing a newly created bone void
US4744365 *Sep 22, 1987May 17, 1988United States Surgical CorporationTwo-phase compositions for absorbable surgical devices
US4840626 *Sep 29, 1986Jun 20, 1989Johnson & Johnson Patient Care, Inc.Heparin-containing adhesion prevention barrier and process
US4968317 *Dec 29, 1987Nov 6, 1990Toermaelae PerttiSurgical materials and devices
US5124103 *Aug 2, 1990Jun 23, 1992United States Surgical CorporationGlycolide-rich polymer dispersed in matrix of lactide-rich polymer; nonbrittle, tensile strength, high distortion temperature, hot-wet creep resistance
US5354290 *Oct 5, 1993Oct 11, 1994Kimberly-Clark CorporationPorous structure of an absorbent polymer
US5403347 *Mar 2, 1994Apr 4, 1995United States Surgical CorporationBlock copolymer of glycolic acid with 1,4 dioxane-2-one and 1,3 dioxane-2-one; clips, staples, monofilament sutures, pins, screws, prosthetic devices, anastomosis rings and growth matrices
US5403870 *Sep 20, 1993Apr 4, 1995Kimberly-Clark CorporationProcess for forming a porous particle of an absorbent polymer
US5431679 *Mar 10, 1994Jul 11, 1995United States Surgical CorporationAbsorbable block copolymers and surgical articles fabricated therefrom
US5475063 *Dec 14, 1994Dec 12, 1995United States Surgical CorporationBlends of glycolide and/or lactide polymers and caprolactone and/or trimethylene carbonate polymers and absorbable surgical devices made
US5502092 *Feb 18, 1994Mar 26, 1996Minnesota Mining And Manufacturing CompanyBiocompatible porous matrix of bioabsorbable material
US5522841 *Dec 29, 1994Jun 4, 1996United States Surgical CorporationHaving blocks of polyalkylene oxide, glycolic acid ester, 1,4-dioxan-2-one randomly polymerized with 1,3-dioxan-2-one
US5554170 *Jan 26, 1995Sep 10, 1996United States Surgical CorporationPolylactone sutures
US5567612 *Jul 27, 1993Oct 22, 1996Massachusetts Institute Of TechnologyPolymeric matrix provides scaffolding for cell attachment
US5618313 *Oct 11, 1994Apr 8, 1997United States Surgical CorporationAbsorbable polymer and surgical articles fabricated therefrom
US5674286 *Jul 15, 1992Oct 7, 1997United States Surgical CorporationBioabsorbable medical implants
US5709854 *Apr 30, 1993Jan 20, 1998Massachusetts Institute Of TechnologyTissue formation by injecting a cell-polymeric solution that gels in vivo
US5716404 *Dec 16, 1994Feb 10, 1998Massachusetts Institute Of TechnologyBreast tissue engineering
US5741685 *Jun 7, 1995Apr 21, 1998Children's Medical Center CorporationParenchymal cells packaged in immunoprotective tissue for implantation
US5851833 *Aug 7, 1996Dec 22, 1998Children's Medical Center Corp.Neomorphogenesis of urological structures in vivo from cell culture
US5855610 *May 19, 1995Jan 5, 1999Children's Medical Center CorporationEngineering of strong, pliable tissues
US5856367 *Dec 19, 1995Jan 5, 1999Minnesota Mining And Manufacturing CompanyDissolving polymer in volumetric orientation aid, solidifying molten solution
US5904717 *Jan 9, 1995May 18, 1999Thm Biomedical, Inc.Method and device for reconstruction of articular cartilage
US5935127 *Dec 17, 1997Aug 10, 1999Biomet, Inc.Apparatus and method for treatment of a fracture in a long bone
US5935594 *Apr 6, 1998Aug 10, 1999Thm Biomedical, Inc.Employing a surfactant for efficiently incorporating a bioactive agent into the interstices of a porous and biodegradable polylactic acid body, wherein the bioactive agent is deposited on the internal surface
US5948829 *Nov 25, 1997Sep 7, 1999Kimberly-Clark Worldwide, Inc.Forming a solution of a polymer in a solvent, freezing the solution at a relatively slow cooling rate to a temperature below the freezing point of the solvent, removing the solvent from the frozen solution, and recovering the polymer to form a
US5981825 *May 13, 1994Nov 9, 1999Thm Biomedical, Inc.Device and methods for in vivo culturing of diverse tissue cells
US5985434 *Nov 25, 1997Nov 16, 1999Kimberly-Clark Worldwide, Inc.Absorbent foam
US5997568 *Jan 17, 1997Dec 7, 1999United States Surgical CorporationAbsorbable polymer blends and surgical articles fabricated therefrom
US6007565 *Sep 5, 1997Dec 28, 1999United States SurgicalAbsorbable block copolymers and surgical articles fabricated therefrom
US6129761 *Jun 7, 1995Oct 10, 2000Reprogenesis, Inc.Mixing dissociated cells with solution comprising biocompatible hyaluronic acid, alginate polymer capable of crosslinking to form hydrogel, forming suspension, implanting into animal, crosslinking to form hydrogel matrix
US6136018 *Aug 2, 1999Oct 24, 2000United States Surgical CorporationAbsorbable block copolymers and surgical articles fabricated therefrom
US6191236Oct 10, 1997Feb 20, 2001United States Surgical CorporationCopolymerizing a mixture of 1,4 dioxane-2-one and 1,3 dioxane-2-one to the point where all the 1,3 dioxane-2-one is incorporated in a polymer but residual 1,4-dioxane-2-one monomer remains, adding glycolide, then block copolymerizing
US6206908May 3, 1999Mar 27, 2001United States Surgical CorporationAbsorbable polymer and surgical articles fabricated therefrom
US6228954Nov 1, 1994May 8, 2001United States Surgical CorporationImpact resistance and improved cyclic flex
US6264701Dec 7, 1998Jul 24, 2001Kensey Nash CorporationDevice and methods for in vivo culturing of diverse tissue cells
US6277927Nov 23, 1998Aug 21, 2001United States Surgical CorporationComprising blocks consisting of randomly repeating units of lactide and glycolide, wherein the second block contains a larger percentage of lactide units; increased in vivo strength with no decrease in rate of bioabsorption; sutures; fibers
US6309635Nov 28, 1994Oct 30, 2001Children's Medical Center Corp.Seeding parenchymal cells into compression resistant porous scaffold after vascularizing in vivo
US6348069Nov 3, 1998Feb 19, 2002Children's Medical Center CorporationEngineering of strong, pliable tissues
US6546188Jan 13, 1999Apr 8, 2003Sony CorporationEditing system and editing method
US6783529Oct 19, 2001Aug 31, 2004Depuy Orthopaedics, Inc.Non-metal inserts for bone support assembly
US6786908Aug 2, 2001Sep 7, 2004Depuy Orthopaedics, Inc.Bone fracture support implant with non-metal spacers
US6808527Mar 25, 2002Oct 26, 2004Depuy Orthopaedics, Inc.Intramedullary nail with snap-in window insert
US6840962Sep 25, 2000Jan 11, 2005Massachusetts Institute Of TechnologyTissue engineered tendons and ligaments
US6863924Dec 23, 2002Mar 8, 2005Kimberly-Clark Worldwide, Inc.Method of making an absorbent composite
US7097907Jul 30, 2003Aug 29, 2006United States Surgical Corporationpolydioxanone star polymers used as as fiber coatings, bioadhesives, tissue growth substrate or bone fusion devices
US7321008Aug 28, 2006Jan 22, 2008United States Surgical CorporationBioabsorbable branched polymers end-capped with diketene acetals
US7371403Dec 23, 2003May 13, 2008Providence Health System-Oregonhemostatic dressings with strength and durability; resists dissolution during use; compressed sponge for hemorrhage control; hydrophilic polymer; alginate, chitosan, polyamine, a chitosan, polylysine, polyethylenimine, xanthan, carrageenan, chondroitin sulfate, starch, dextran, hyaluronan, cellulose
US7410488Feb 18, 2005Aug 12, 2008Smith & Nephew, Inc.Hindfoot nail
US7482503Jun 14, 2002Jan 27, 2009Providence Health System-OregonChitosan hemorrhage control material; accelerates and reinforces clot formation; adheres to and seals injury site
US7534452Jan 22, 2008May 19, 2009Rubicor Medical, Inc.Multilayer insert; radiopaque element, core, shell; controlling porosity of matrix
US7537788Oct 16, 2003May 26, 2009Rubicor Medical, Inc.Multilayer insert; radiopaque element, core, shell; controlling porosity of matrix
US7655009Nov 30, 2004Feb 2, 2010Smith & Nephew, Inc.Humeral nail
US7744852Feb 9, 2007Jun 29, 2010Rubicor Medical, LlcDevice for marking a cavity in a breast for subsequent visualization including a delivery opening, first and second markers movable through opening, visualized by ultrasound and radiopacity; percutaneous minimally invasive large intact tissue sample collection; inserts; positioning;
US7780948Oct 23, 2008Aug 24, 2010Rubicor Medical, Llcimplanting post-procedure cavity implant into cavity through incision and through access path, and closing incision, wherein implanted post-procedure cavity implant swells within biological fluid environment of cavity to a post-implantation state and no longer fits through the access path
US7807150Mar 8, 2004Oct 5, 2010Massachusetts Institute Of TechnologyInjectable composition containing crosslinkable material and cells for forming animal tissue
US7820872Oct 31, 2007Oct 26, 2010Providence Health System-OregonChitosan biomaterial frozen in aqueous solution to form a frozen chitosan structure from which water is removed forming a sponge-like structure; adhesion strength and resistance to dissolution in high blood flow bleeding situations
US7897832Oct 28, 2005Mar 1, 2011Hemcon Medical Technologies, Inc.Compositions, assemblies, and methods applied during or after a dental procedure to ameliorate fluid loss and/or promote healing, using a hydrophilic polymer sponge structure such as chitosan
US7914579Feb 9, 2006Mar 29, 2011Children's Medical Center CorporationTissue engineered tendons and ligaments
US8092779Aug 23, 2010Jan 10, 2012Rubicor Medical, LlcPost-biopsy cavity treatment implants and methods
US8269058Jul 16, 2008Sep 18, 2012Hemcon Medical Technologies, Inc.Absorbable tissue dressing assemblies, systems, and methods formed from hydrophilic polymer sponge structures such as chitosan
US8313474Dec 17, 2007Nov 20, 2012Hemcon Medical Technologies, Inc.Method for preparing a compressed wound dressing
US8491630Aug 1, 2012Jul 23, 2013Encapsule Medical, LLC.Post-biopsy cavity treatment implants and methods
US8668924Oct 18, 2010Mar 11, 2014Providence Health System—OregonWound dressing and method for controlling severe, life-threatening bleeding
US8734409 *Dec 29, 2009May 27, 2014Kci Licensing, Inc.Systems for providing fluid flow to tissues
US8741335Jul 13, 2006Jun 3, 2014Hemcon Medical Technologies, Inc.Hemostatic compositions, assemblies, systems, and methods employing particulate hemostatic agents formed from hydrophilic polymer foam such as Chitosan
US20100168689 *Dec 29, 2009Jul 1, 2010Swain Larry DSystems for providing fluid flow to tissues
USRE42479Feb 19, 2004Jun 21, 2011Children's Medical Center CorporationEngineering of strong, pliable tissues
USRE42575Sep 28, 2006Jul 26, 2011Children's Medical Center CorporationEngineering of strong, pliable tissues
USRE44501Aug 12, 2010Sep 17, 2013Smith & Nephew, Inc.Hindfoot nail
CN102264432BDec 29, 2009Oct 23, 2013凯希特许有限公司Systems for providing fluid flow to tissues
EP0786259A2Jan 17, 1997Jul 30, 1997United States Surgical CorporationAbsorbable polymer blends and surgical articles fabricated therefrom
EP1547547A1May 15, 1995Jun 29, 2005Kensey Nash CorporationDevice and method for in vivo culturing of diverse tissue cells
EP2036582A1Jul 21, 1995Mar 18, 2009United States Surgical CorporationBiobsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
EP2301597A1Jul 21, 1995Mar 30, 2011United States Surgical CorporationBioabsorbable branched polymers containing units derived from dioxanone and medical/surgical devices manufactured therefrom
WO2005062889A2 *Dec 23, 2004Jul 14, 2005Campbell Todd DWound dressing and method for controlling severe, life- threatening bleeding
Classifications
U.S. Classification604/369, 606/154, 521/87, 521/88, 521/97
International ClassificationA61L15/42, A61L15/64, A61L15/16
Cooperative ClassificationA61L15/425, A61L2400/04, A61L15/64
European ClassificationA61L15/42E, A61L15/64