Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3903340 A
Publication typeGrant
Publication dateSep 2, 1975
Filing dateAug 1, 1973
Priority dateAug 1, 1973
Also published asCA1011920A1
Publication numberUS 3903340 A, US 3903340A, US-A-3903340, US3903340 A, US3903340A
InventorsPhilip B Shepherd
Original AssigneeJohns Manville
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Self-sealing roof shingle and method of providing enhanced separation of shingles from a stack
US 3903340 A
Abstract
A roof shingle of the self-sealing type which includes a self-sealing adhesive stripe on one surface is disclosed herein. The shingle also includes on its opposite surface, in alignment with the self-sealing adhesive stripe, an improved separating medium comprising sheet material, preferably polyester film, which is coated on its exposed surface with a predetermined amount of methyl naphthylene sodium sulfonate. When shingles of this type are positioned in an aligned stack or bundle, which is typical during shipment, the improved separating medium of one shingle covers the self-sealing adhesive stripe of an adjacent shingle for providing satisfactory separation of the shingles from the stack, especially at high ambient temperatures.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Shepherd SELF-SEALING ROOF SHINGLE AND METHOD OF PROVIDING ENHANCED SEPARATION OF SHINGLES FROM A STACK [75] Inventor:

[73] Assignee: Johns-Manville Corporation,

Denver, C010.

22 Filed: Aug. 1, 1973 [211 App]. NO.: 384,779

Philip B. Shepherd, Sedalia, C010.

1111 3,903,340 1 1 Sept. 2, 1975 Dunbar et a1. 117/685 X Estes 117/685 [5 7 ABSTRACT A roof shingle of the self-sealing type which includes a self-sealing adhesive stripe on one surface is disclosed herein. The shingle also includes on its opposite surface, in alignment with the self-sealing adhesive stripe, an improved separating medium comprising sheet material, preferably polyester film, which is coated on its exposed surface with a predetermined amount of methyl naphthylene sodium sulfonate. When shingles of this type are positioned in an aligned stack or bundle, which is typical during shipment, the improved separating medium of one shingle covers the selfsealing adhesive stripe of an adjacent shingle for pro- [56] References Cited viding satisfactory separation of the shingles from the UNITED STATES PATENTS stack, especially at high ambient vtemperatures.

2,107.911 2/1938 Sieglitz 260/505 c 2,463,497 3/1949 Smith ct al 260/505 c 18 Clalms, 3 Drawmg F'gures SELF-SEALING ROOF SI-IINGLE AND METHOD OF PROVIDING ENHANCED SEPARATION OF SHINGLES FROM A STACK BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to self-sealing roof shingles and more particularly to an improved selfsealing roof shingle and method of providing enhanced separation of this type of shingle from an aligned stack.

2. Description of Prior Art Today, the self-sealing roof shingle is of commercial significance in the roofing industry. As is well known, this type of shingle includes a resin adhesive selfsealing stripe in a predetermined location on one surface, i.e., usually the top surface, of the Shingle. Hence, when shingles of this type are applied to a roof in typical overlapping relationship, the adhesive stripe on one shingle adheres to the surface of an adjacent shingle, especially in response to heated ambient surroundings and/or pressure, causing the shingles to seal together.

Typically, roof shingles including those of the selfsealing type are shipped to the field or job site in stacked bundles, i.e., with large numbers of the shingles aligned in a bundle. At the job site, these bundles are generally placed on the roofs to be covered and remain in bundle form throughout the roofing operation, the roofer taking one shingle at a time from the bundles.

A serious problem can result from shipping the selfsealing shingles in the aforedescribed bundles. Specifically, the self-sealing adhesive of one shingle tends to stick to the surface of an adjacent shingle. If the roofer goes to separate the shingles, some or all of the adhesive may be pulled off its associated shingle or the shingles may be inadvertently damaged in this process.

Many members of the roofing industry, recognizing the aforegoing problem, have called for the positioning of a separating medium of, for example, untreated polyester film between adjacent shingles in the bundle. The separating medium is preferably permanently attached to the shingle, usually on its back or underside surface. This method may allow for suitable separation of the shingles from their respective bundles without damaging the self-sealing adhesive or shingles themselves, if the bundles are only exposed to relatively low ambient temperatures. However, with the bundles being exposed to relatively higher ambient temperatures of, for example, 125F, the separation of the shingles from the bundles have been found not to be completely satisfactory, possibly resulting, for example, in damage to the shingles and/or adhesive. To overcome this, members of the roofing industry have coated the polyester film with chemicals, particularly various types of soaps, in the hope of achieving satisfactory shingle separation at higher temperatures. Again, it has been found that shingles with the typically soap coated polyester film do not satisfactorily separate at temperatures of and above 125F. In this regard, it should be kept in mind that bundles of roofing shingles are often subjected to these high temperatures when shipped to hot climates and especially when the shingles are left in bundle form on roofs in hot climates.

BRIEF SUMMARY OF THE INVENTION An object of the present invention is to provide a method of minimizing damage to the self-sealing adhesive on a selfscaling roof shingle and/or damage to the shingle itself upon separation of the shingle from another objeet to which the adhesive might stick prior to the shingles intended use on a roof.

Another object of the present invention is to provide a method of minimizing damage to the self-sealing adhesive on self-sealing roof shingles and/or minimizing damage to the roofing shingles themselves during separation of individual shingles initially aligned in a stack, especially after the stack has been exposed to high ambient temperatures.

A further object of the present invention is to provide a self-sealing roof shingle including improved means for minimizing the aforestated damage to the selfsealing adhesive and/or shingle itself.

The foregoing objects are achieved in accordance with the present invention by providing sheet material, preferably polyester film, one surface of which is coated with a substance containing methyl naphthylene sodium sulfonate. The sheet material is suitably sized and positioned so as to cover the self-sealing adhesive on a self-sealing shingle, with the coated surface of the material facing and in contact with the adhesive. More specifically, when the selfsealing shingles are aligned in a stack, i.e., typical bundles, the self-sealing adhesive on the top surface of one shingle is covered with the coated sheet material so as not to stick to the back surface of an adjacent shingle. The coated sheet material is preferably connected with the back surface of the ad jacent shingle. In accordance with the present invention, the sheet material coated with methyl naphthylene sodium sulfonate minimizes damage to the adhesive and/or shingles themselves upon separating the shingles from the bundle. This has been found to be true even where the bundles have been exposed to temperatures of, for example, F or F.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a plan view illustrating the top surface of a self-sealing roof shingle constructed in accordance with the present invention.

FIG. 2 is a plan view illustrating the back or bottom DETAILED DESCRIPTION AND PREFERRED EMBODIMENTS Turning now to the drawing, wherein like components are designated by like reference numerals throughout the three figures, a self-sealing roof shingle, constructed in accordance with the present invention, is illustrated in FIGS. 1 and 2 and generally designated by the reference numeral 10. Shingle 10 includes a typically somewhat rectangular body 12 including a top surface 14 (FIG. 1) and a back surface 16 (FIG. 2). Body 12 is preferably typically constructed of a felted fibrous material such as asbestos, cellulosic or glass fibrous material which has been saturated and/or coated with a bituminous substance such as asphalt and provided with granules 18 on at least the top surface, all in a conventional fashion. As is the case generally with shingles, body 12 can be separated into two segments, a forward most butt segment 20 and a rearward most head segment 22, each running the lateral extent of shingle body 12. Butt segment 20 may be comprised of a plurality tabs, as illustrated in FIGS. 1 and 2 or the sure and/or heat sensitive self adhering resinous material 26 which are applied to top'surface 14 in a known manner. The resinous material, which may be of differing types, is well known in the art. The segments are spaced across the lateral extent of surfacel4 along the head segment 22 of shingle body 12 to form what "is commonly referred in the roofing industry as a selfsealing adhesive stripe, generally indicated by the reference'numeral 28. While stripe 28 is shown interrupted segments of self-adhering resinous material, it could readily take the form of a single continuous stripe. In any event, the self-sealing stripe provides selfsealing capabilities'wel] known in the art when the shingle is applied on a roof.

Shingle also includes a separating stripe 30 which, as indica'tedin FIG. 2, is suitably attached to the back surface 16 of shingle body 12 directly behind, that is aligned with, self-sealing stripe 28. Separatingstripe '30 is constructed of sheet material. preferably p'lastic foil and particularly polyester film such as, for examp'le,

MYLAR (polyethylene terephthalate). As will be dis cussed in more detail hereinafter and in accordance with the present invention, the exposed surface of the separating stripe is coated with a predetermined amount of methyl naphthylene sodium sulfonate which substantially improves the ability to separate individual shingles from a stack of aligned shingles.

While separating stripe 30 is illustrated in FIG. 2 as a continuous segment along the back surface 16 of shingle body 12, it could be comprised of interrupted segments in the same manner as self-sealing stripe 28. In any event, it must cover a sufficiently large area so as to at least completely cover the self-sealing stripe 28 of a second similar shingle when the two shingles are aligned together in a stack such that the adhesive stripe of the second shingle is located therebetween. I

As stated above, the exposed surface of separating stripe 30 is uniformly coated with methyl naphthylene sodium sulfonate, hereinafter referred to as methyl. In accordance with an actual working embodimentof the present invention, the separating stripe is coated with between approximately 0.4 and 1.0 grams of methyl per square foot surface area. A lesser amount of this coating would most probably result in a separating stripe-which is not completely suitable for its intended purpose, i.e., as a separating medium. The application of this coating in amounts much-greater than therange specified would most probably result in the transfer of some of the methyl to the self=sealing stripe of an adjacent shingle during separation of the shingles in sufficient amounts to impede the adhesive characteristics of the self-sealing stripe. The exact amount of methyl will depend, in part, on the-adhesive stripe used and, in any event, could be determined in view of the teaching herein.

In accordance with an actual working embodiment of the present invention, the methyl naphthylene sodium sulfonate is coated onto thcMYLAR or other such stripe while in solution form, that is, combined with a liquid, preferably water. The actual coating operation may be carried out by brushing the solution onto the surface of the separating material, by utilizing a rotating wheel or any other suitable manner, thereafter reg th efwatcr from the applied solution by suitable means as the application of heat or allowing the water to evaporate. In order to apply the desired amount of methyl to the surface of stripe 30 in accordance with the working embodiment. it has been found that a solution comprising approximately'90 to 99 parts water and /2 to 10 parts methyl naphthylene sodium sulfonate may be used. In the actual' working embodiment, a solution of 48 to 52 parts water and 48 to 52 parts methyl is first provided with one part of this solution is then combined with water to reach the final solution.

Having described'self-sealing roofing shingle 10, attention is now directed to F IGQ 3 which shows two such shingles aligned together in a stack or bundle. For purposes of illustration, the thickness of the shingles and particularly the thickness of self-sealing stripe 28 and separating stripe 30 have been exaggerated. As indicated in FIG. 3, the separating stripe 30 located on the bottom surface" of the top shingle completely covers and is in contact with the self-sealing stripe 28'on the top surface of the lower shingle. In this manner, the self-sealing stripe is prevented from sticking to other portions of the adjacent shingle and possibly being damaged or causing damage to either of the shingles during separation of the two. The separating stripe is sufficen'tly permanently attached to surface 16 of shingle 10 such that it remains affixed thereto upon shingle separation otherwise, the separation stripe might adhere to the self-sealing stripe and destroy its ultimate function. It should be apparent that the same type of protection would exist with the positioning of additional shingles in the stack shown in FIG. 3.

As stated above, the purpose for V the separating stripes 30 is to minimize damage to the self-sealing adhesive stripes and/or to the shingles themselves during separation of the shingles from typically provided bundles, especially where the bundles are subjected to relatively high ambient temperatures, for example. in the range of to F. Also as stated above, this type of damage is minimized to the point of acceptability when,in accordance with the present invention, the separating'stripe'is coated with the proper amount of methyl naphthylene sodium sulfonate, as set forth hereinabove. In this regard, a test was run comparing the separation characteristics of self-sealin g shingle stripes adhered to an untreated MYLAR separating stripe, a MYLAR separating stripe coated with calicum palmitate (a soap typically used heretofore) and a MYLAR separating stripe coated in accordance with the present invention, i.e., coated with the 'required amount of methyl naphthylene sodium sulfonate.

Each of these MYLAR stripes was adhered to a typical self-sealing adhesive stripe 12 inches long and inch wide, thereby simulating what happens when 'shingles are stacked in the foregoing manner. The first group including all three MYLAR stripes was subjected to an ambient temperature of 125F for approximately 2 hours. A second group, omitting the untreated MYLAR stripe, was subjected to an ambient temperature of I35F for approximately 2 hours. In addition, as a third test, thecombination methyl coated stripe adhesive stripe was subjected to an ambient temperature of l45F for approximately 2 hours. After being subjected to these temperatures, the MYLAR stripes were separated from the self-sealing adhesive stripes and the percentage of adhesive transferring from each self-sealing stripe to a corresponding MYLAR stripe Temperature Percent Transfer At l25F Untreated MYLAR stripe 23% Calcium palmitate coated stripe 18% Methyl coated stripe 37! At I35F Calcium palmitate coated stripe 3371 Methyl coated stripe 8% At 145F Methyl coated stripe 1371 From the foregoing, it should be apparent that substantially more than adhesive transfers during separation of the untreated MYLAR stripe and the MYLAR stripe treated with calcium palmitate at 125 and that this is the case for the calcium palmitate treated stripe at 135F. On the other hand, only 3% and 8% of the adhesive respectively transfers during separation of the MYLAR stripes treated with methyl naphthylene sodium sulfonate at temperatures of 125F and 135F. At only 145F did more than 10% of the adhesive transfer to the MYLAR stripe of the present invention.

In the foregoing comparisons, it is to be noted that the stripes of the present invention were coated with an amount of methyl within the aforestated range. In this regard, it is to be understood that the foregoing comparisons are for exemplary purposes and are not intended to limit the present invention.

What is claimed is:

1. A method of minimizing damage to a roofing shingle of the self-sealing type which includes a self-sealing adhesive on one surface, comprising:

a. providing sheet material which is of sufficient size to cover said self-sealing adhesive;

b. coating one surface of said material with a substance containing methyl naphthylene sodium sulfonate, and

c. covering said adhesive on said shingle with said material with the coated surface of said material facing and in contact with said adhesive.

2. A method according to claim 1 wherein said sheet material is plastic foil.

3. A method according to claim 2 wherein said plastic foil is polyester film.

4. A method according to claim 1 wherein said coating step includes:

a. preparing a solution of 90 to 99 /2 parts water and V2 to 10 parts of said methyl naphthylene sodium sulfonate;

b. applying said solution to said one surface of said sheet material; and

c. removing the water from said applied solution.

of this type when the two shingles are aligned in a stack with the adhesive of said first shingle thercbetween, comprising: ajproviding sheet material which is of sufficient size to cover the self-sealing adhesive on said first shin gle; b. coating one surface of said material with a substance containing methyl naphthylene sodium sulfonate; and i c. locating said coated sheet material in a fixed position relative to one of said shingles such that, when said shingles are aligned in said stack, the coated material is positioned therebetween and the coated surface of said sheet material faces and covers the adhesive on said first shingle.

6. A method according to claim 5 wherein said locating step includes attaching said coated sheet material to the surface of said second shingle which would face the adhesive of said first shingle if said shingles were aligned in said stack.

7. A method according to claim 6 wherein said coated sheet material is sufficiently permanently attached to said second shingle such that, upon separating said shingles from said stack, said coated sheet material remains fixed to said second shingle.

8. A method according to claim 7 including attaching coated sheet material similar to said coated sheet material to the surface of said first shingle opposite the surface of said first shingle which includes said adhesive.

9. A method according to claim 8 wherein said sheet material is plastic foil.

5. A meethod of minimizing damage to a first roofing i said separating medium is plastic foil.

shingle of the self-sealing type which includes a selfsealing adhesive on one surface during separation of said first shingle from the surface of a second shingle 10. A method according to claim 9 wherein said plastic foil is polyester film.

11. A method according to claim 5 wherein said coating step includes:

a. preparing a solution of to 99 /2 parts water and /z to 10 parts of said methyl naphthylene sodium sulfonate;

b. applying said solution to said one surface of said sheet material; and

c. removing the water from said applied solution.

12. A roofing shingle of the self-sealing type, comprising:

a. a shingle body having opposite first and second surfaces;

b. a self-sealing adhesive applied to the first surface of said shingle body at a specific position on said first surface;

c. a separating medium comprising sheet material which is sufficiently large to cover said adhesive and which is coated on one surface with methyl naphthylene sodium sulfonate; and

d. said separating medium being attached with the second surface of said shingle body with its coated surface facing away from said second surface, said separating medium being attached at a specific position on said second surface such that its coated surface is adapted to cover the self-sealing adhesive on a second similar roofing shingle if said roofing shingle and said second similar roofing shingle were aligned in a stack with the adhesive of the second shingle therebetween.

13. A roofing shingle according to claim 12 wherein 14. A roofing shingle according to claim 13 wherein said plastic foil is polyester film.

of said shingle body in alignment with said interruptcd' sections of adhesive. 17. A roofing shingle according to claim 16 wherein said stripe of sheet material comprises polyester film. 18. A roofing shingle according to claim 12 wherein approximately 0.4 to 1.0 grams of said methyl naphthylene sodium sulfonate is on said one surface of said separating medium per square foot surface area.

l l l l l UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION PATENTNO. I 3,903,340 [)ATED September 2, 1975 lN\/ ENTOR(S) Philip B. Shepherd It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

' Column 3, line 25, "film" has been left out, should follow after (polyethylene terephthalate 'film) Column 4 line 2, "such" has been left out, should follow after suitable means such-- Column 4, line 6, "99" should read 99 l/2-- Column 4, line 10, "with" should read and---- Column 5, line 64, "meethod" should read method Signed and Scaled this sixth D y of January 1976 [SEAL] Attest:

RUTH C. MASON MARSHALL DANN Atresling Officer (ummissimwr ufPatenIs and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2107911 *Jul 6, 1936Feb 8, 1938Gen Aniline Works IncProcess of preparing 1-methyl naphthalene-7-sulphonic acid and 1-methyl-7-hydroxynahpthalene
US2463497 *Feb 23, 1946Mar 1, 1949Socony Vacuum Oil Co IncWetting agents
US2935416 *Jun 10, 1957May 3, 1960Franklin Res CompanySelf-sealing asphalt shingle and process for making same
US3690924 *Oct 5, 1970Sep 12, 1972Grace W R & CoPressure sensitive adhesive articles having a release coating
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4041200 *Dec 11, 1975Aug 9, 1977Gaf CorporationStack of tiles which have a release layer on one major face and an adhesive layer on the opposed major face does not require disposable release interlayers
US4317853 *May 5, 1980Mar 2, 1982Isola Fabrikker A/SRoofing shingle
US4466226 *Nov 18, 1982Aug 21, 1984Rohner Nicholas JMethods of applying roofing shingles
US4587785 *Jun 25, 1984May 13, 1986Rohner Nicholas JRoofing shingles
US4636414 *Aug 31, 1984Jan 13, 1987Tajima Roofing Co., Ltd.Waterproofing
US4637191 *Dec 3, 1984Jan 20, 1987Smith Robert LStarter shingle
US4672790 *Oct 11, 1985Jun 16, 1987Bennie FreiborgMulti-piece asphalt composition roofing system
US4757652 *Aug 5, 1987Jul 19, 1988Tarmac Roofing Systems, Inc.Roofing product
US4768318 *Dec 11, 1986Sep 6, 1988Bennie FreiborgAsphalt composition starter and flashing
US4856251 *Jun 25, 1987Aug 15, 1989Buck Donald ASelf-gauging, anti-ice damming, double sealed shingle system
US5037685 *Nov 27, 1989Aug 6, 1991Kenneth R. O'Leary, Sr.Vinyl shingle roofing product
US5428931 *Sep 21, 1992Jul 4, 1995Ragsdale; James J.Laminated construction modular system
US5615523 *Apr 24, 1995Apr 1, 1997Owens-Corning Fiberglas Technology, Inc.Roof having resinous shingles
US5711126 *May 13, 1996Jan 27, 1998Owens-Corning Fiberglass Technology, Inc.Resinous angled shingles for roof ridge lines
US5799459 *Mar 6, 1997Sep 1, 1998Covert; Roger C.Roofing shingles and shingling method
US5822943 *Jul 10, 1996Oct 20, 1998Tamko Roofing Products, Inc.Hurricane resistant shingle
US6021611 *Jul 2, 1997Feb 8, 2000Wells; James R.Shingle having ribs and a cavity on its underside
US6044592 *May 13, 1998Apr 4, 2000Kentuckiana Curb CompanyNest of curbs
US6112492 *Apr 30, 1998Sep 5, 2000Owens Corning Fiberglas Technology, Inc.Shingle having ribs and cavity on its underside
US6378259 *Dec 1, 1999Apr 30, 2002Douglas CarlsonRoofing felt with adhesive on front and rear faces
US6968662Dec 4, 2002Nov 29, 2005Building Materials Investment CorporaionSealing courses of shingles
US7000360 *Feb 16, 2000Feb 21, 2006Bfs Diversified Products, LlcSelf-adhering walkway pads for roofing membranes and method for the application thereof to roofs
US7140153Feb 10, 2003Nov 28, 2006Davinci Roofscapes, LlcSynthetic roofing shingles
US7204063 *Nov 12, 2003Apr 17, 2007EMCO Building Products Corp.Roofing shingle with headlap seal and improved coverage
US7331150Mar 11, 2005Feb 19, 2008Davinci Roofscapes, LlcShingle with interlocking water diverter tabs
US7520098Jan 18, 2005Apr 21, 2009Davinci Roofscapes, LlcStepped tile shingle
US7563478Feb 17, 2005Jul 21, 2009Davinci Roofscapes, LlcSynthetic roofing shingles
US7845141Dec 20, 2007Dec 7, 2010Davinci Roofscapes, LlcShingle with interlocking water diverter tabs
US8136322Aug 25, 2009Mar 20, 2012Tamko Building Products, Inc.Composite shingle
US8572921Mar 29, 2010Nov 5, 2013Davinci Roofscapes, LlcOne piece hip and ridge shingle
CN101736386BNov 27, 2008Nov 16, 2011比亚迪股份有限公司Aluminium alloy sealing agent
DE2815983A1 *Apr 13, 1978Oct 26, 1978Isola Fabrikker AsAbdeckelement, insbesondere fuer daecher
EP0006081A1 *May 31, 1979Dec 12, 1979Isola Fabrikker A/SRoofing shingle
WO1994006978A1 *Sep 21, 1993Mar 31, 1994James J RagsdaleLaminated construction modular system
Classifications
U.S. Classification428/77, 428/143, 52/DIG.160, 562/89, D25/139, 427/208, 206/324, 206/813, 52/518, 52/420, 428/343, 156/289, 428/195.1
International ClassificationE04D1/26
Cooperative ClassificationE04D1/26, Y10S206/813, Y10S52/16
European ClassificationE04D1/26