Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3904389 A
Publication typeGrant
Publication dateSep 9, 1975
Filing dateAug 13, 1974
Priority dateAug 13, 1974
Also published asDE2535105A1
Publication numberUS 3904389 A, US 3904389A, US-A-3904389, US3904389 A, US3904389A
InventorsDavid L Banquy
Original AssigneeDavid L Banquy
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Process for the production of high BTU methane-containing gas
US 3904389 A
A process for the production of high Btu methane containing gases by dividing the effluent, having a substantial CO content, from fossil fuel gasification (preferably at a much higher temperature than 500 DEG C) from which C and S have been removed into a plurality of fractions; subjecting one effluent fraction to shift conversion and CO2 removal; subjecting another effluent fraction to a methanation step; joining the effluents from the shift conversion and methanation steps and subjecting them to a second methanation step, utilizing therein the N2-H2-CH4 mixture from the shift conversion; and separating the excess nitrogen from the product methane gas by cryogenic removal.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Banquy Sept. 9, 1975 PROCESS FOR THE PRODUCTION OF HIGH BTU METHANE-CONTAINING GAS IGASIFICATION SULFUR REMOVAL REACTOR Primary ExaminerR. E. Serwin [57] ABSTRACT A process for the production of high Btu methane containing gases by dividing the effluent, having a sub stantial CO content. from fossil fuel gasification (preferably at a much higher temperature than 500C) from which C and S have been removed into a plurality of fractions; subjecting one effluent fraction to shift conversion and CO removal; subjecting another efflu ent fraction to a methanation step; joining the emuents from the shift conversion and methanation steps and subjecting them to a second methanation step, utilizing therein the N H CH mixture from the shift conversion; and separating the excess nitrogen from the product methane gas by cryogenic removal.

9 Claims, 8 Drawing Figures SHIFT CONVERSION CO2 HIGH atow 2 TEMPERATURE REMOVAL FIRST METHANATION SECOND METHANATION SNG ' PRODUCTION OF SNG BY GASIFICATION OF GAS OIL STREAM NUMBER OF MATERIAL BALANCE PATENTEDSEP 9M5 SHiU 1 BF 4 zwooFzz nrkmwll zoimfiwm 1 T925152 25095 028% 2925152 511 @l 252% 1 "553m EDEEQEP mosmm 1 23 m :9: 00 205E528 Kim mob/mm 7 20.20229 STEAM k FIG. 2



PROCESS FOR THE PRODUCTION OF HIGH BTU METHANE-CONTAINING GAS BACKGROUND OF THE INVENTION The present invention generally relates to the production of high Btu methane-containing gases having a heating value in the range of about 800 to about [(101) Btu/SCF, and more particularly to a process for producing such gases from the gaseous effluent resulting from the gasification of fossil fuels such as gas. oil. etc. By means of this invention. the effluent from gasifica tion. upon removal of carbon and sulfur therefrom. can be divided into a plurality of fractions or streams. whereby. in a first fraction or stream. the hydrogen contained therein is used to methanate part of the CO and CO whereby. another or second effluent fraction or stream is subjected to shift conversion. followed by C0 removal. to result in a H. ,-N- ,CH,, mixture; and whereby the effluents of the first and second fractions or streams can bejoined. with the hydrogen in said mixture serving to methanate the remaining carbon oxides from said first fraction stream. and the excess nitrogen removed from the resulting methane product by cryogenic separation.

Heretofore. those attempting to produce a methane gas product such as substitute natural gas from the effluent of oil or coal gasification have been confronted with the problem of having to convert the rich (0 content thereof(e.g.. 5071 CO) into methane in the face of the fact that said conversion is a highly exothermic one. Traditional solutions to this problem have employed alternate heating and cooling treatments; used extensive recycle streams as a diluent to absorb some of the exothermic heat evolved; and employed other conventional methods. etc.

However. these previous methods have been costly. essentially because the methanation is carried out under conditions which require a high recycle gas rate and/or very large heat removal. which is not the case with respect to the first and second methanation steps of the present invention. Furthermore. in order to get a high Btu value in the final gas. the previous processes have used oxygen in their gasification step. produced in a costly air separation unit, whereas air or oxygen enriched air can be used in the gasification step of the present invention.

In another area of substitute natural gas production. several known processes are based on the reaction of steam with a light hydrocarbon. in a catalytic reactor operating adiabatically around 500C. The operating temperature is such that enough methane is synthesized in the reactor (exothermic reaction) to supply heat for the endothermic steam reforming reaction. The main drawback of such processes is that the feedstock must not be heavier than naphtha. In order to gasify feedstocks heavier than naphtha. it is recognized that much higher temperatures are needed. even if a catalyst is used. At such higher temperature. however. much less mcthanation is taking place in the reactor. and consequently an additional source of heat is required to supply the heat needed for the steam reforming reaction. In the present invention. however. this can be accomplished by the injection ofair or oxygen enriched air in the reactor. which is also operating adiabaticall Methods relating generally to the production of sub stitute natural gas are well known. For example. US. Pat. No. 3.347.647 discloses a process for the conversion of solid fossil fuel to high Btu pipeline gas which includes a two-stage hydrogasification reactor as well as a hydrogen plant for producing hydrogen from char residue by the so-callcd Texaco partial oxidation process. In this system. coal supplies all process feedstock requirements for the product gas and the reaction hydrogen. and countercurrent flow of the char and hydrogen in combination with dual reaction temperature zones enable the raw feed coal to enter the low temperature end of the reactor and mix with an atmosphere with a relatively high concentration of methane while hydrogen enters the high temperature end of the reactor and reacts with the partially gasified char where the methane concentration is relatively low. thereby pro viding for continuous production of high Btu methane. U.S. Pat. No. 3.347.647, however. is not cognizant of splitting its gasification effluent into a plurality of fractions each of which is subjected to a different treatment (methanation as opposed to shift conversion). whereby the effluents of the different treatments are combined and methanated. and the excess nitrogen removed from the product methane or substitute natural gas. Nor is US. Pat. No. 3.347.647 aware of the benefits to be derived from methanation of its carbon oxides in two separate steps.

Catalytic methanation is disclosed in US. Pat. No. 3.51 1.624 wherein a mixture of carbon oxides. hydrogen. steam and at least 25% volume of methane is passed. in a first stage. over a methanation catalyst after which the steam is partially removed from the mixture and the resulting mixture is passed. in a second stage. over a methanation catalyst which is at a temperature within a range lower than the temperature of the mixture leaving the first stage. However. while US. Pat. No. 3.51 1.624 discloses a two-stage catalytic methanation process. it is to be noted that such stages involve taking a feed gas already containing from 255()'/( methane and 5-207! CO with little CO ((PS /I) present and subjecting it to two consecutive methanation stages. Subjecting such a feed gas to such methanation steps is the means this patent teaches to avoid the vast amount of heat released that aecompanies the exothermic reaction between hydrogen and the carbon oxides of more conventional feed gases which are rich in both of these gases such as the effluents of oil or coal gasification. Thus. the process of US. Pat. No. 3.51 1.624 is totally unlike that of the present invention which is capable of utilizing various feedstocks and which has two non-consecutive methanation steps involving feedstocks of different composition and other distinguishing process features.

Although individual process features or steps of the present invention are perhaps known such as. e.g.. the cryogenic separation of natural gas. as shown. for example. in US. Pat. No. 3.616.652. none of the foregoing patents or the prior art have heretofore been aware of or appreciated the significant advance in the art to be associated with the process of the present invention and its combination and sequential arrangement of process steps.

SUMMARY OF THE INVENTION The present invention relates generally to a process for producing a methane-rich gas or substitute natural gas from any conventional carbon or hydrocarboncontaining feedstock such as oil or coal comprising generating a gas effluent from said feedstock and re moving the carbon solids and sulfur impurities (cg. H- ,S and COS) therefrom; dividing the gas effluent into a plurality of fractions. and methanating one fraction while concurrently shift converting another and removing the CO therefrom; combining or mixing the resulting effluents from methanation and shift conversion and subjecting the consequent mixture to methanation; and separating the excess nitrogen present from the methanerich. or substitute natural gas product.

BRIEF DESCRIPTION OF THE DRAWINGS The process of the present invention is illustrated schematically in the drawings by means of flow diagrams. showing each step or stage of said process. wherein:

FIG. I is a block diagram showing the process steps of the present invention in their proper sequence;

FIG. 2 is a How diagram of the gas generation step;

FIG. 3 is a flow diagram of the sulfur removal step;

FIG. 4 is a flow diagram of the first methanation step.

FIG. 5 is a flow diagram of the shift conversion step;

FIG. I) is a flow diagram of the carbon dioxide removal step;

FIG. 7 is a flow diagram of the second methanation step; and

FIG. 8 is a flow diagram of the cryogenic separation step.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Shown in FIG. 2 are the essential features of the gas generation step. utilizing. as a feedstock. a liquid bydrocarbon. However. any hydrocarbonor carbocontaining material can be used as a feedstock in the present gas generation step provided that such material can react with oxygen or a source of oxygen at high temperatures of u wards of 500C. preferably in the range of (150C to 1000C. to produce a gas mixture containing hydrogen. carbon oxides and methane. Thus. utilizable in the gas generation step are such feedstocks as coal; synthetic polymers such as waste polymeric materials. shale oil; naphtha or heavier hydrocarbon fecdstocks. etc.

As an oxidant for use in the present gas generation. suitable oxygen sources such as air per se. air enriched with oxygen. steam. and/or mixtures thereofcan be em ployed. Introduction of air. of course. involves addition of nitrogen to the process. The process step of gas generation should be understood to be applicable to a wide diversity of types. including. e.g.. non-catalytic adiabatic gas generation. catalytic adiabatic gas gener' ation. etc.. and is intended to refer to any process that is able to convert a carboncontaining feedstock into a gas mixture. capable of being processed eventually into a methane-rich gas. preferably of high Btu content. in an adiabatic reactor. with the aid of air or oxygen enriched air. A conventional catalyst can be utilized in the gas generation step. if desired. and such use enables the outlet temperature and corresponding nitrogen content of the exiting gaseous effluent to be lowered.

The gas generation step may also be denoted as partial oxidation; however. should a conventional catalyst be utilized therein. such step would then be generally denoted as air reforming.

The hydrocarbon or carbon-eontaining feedstock can he completely gasified. if desired; however. where heavier feedstocks are used. such as those heavier than gas oil. the feedstock may only be partially gasified; consequently the liquid hydrocarbon mixture would have to be separated by condensation before purifica tion thereof by the subsequent sulfur removal step.

In the present gasitication step, the hydrocarbon feedstock is pumped to the desired operating pressure through pump 1. and then is mixed with steam and preheated in the heater 2 to a temperature as high as possible. preferably in the range indicated above.

Air or oxygen-enriched air. for partial oxidation. or. if a conventional catalyst is used. air reforming. of the carbon or hydrocarbon feedstock, is compressed in a compressor 3 and preheated by means of heating apparatus 4 to a very high temperature that may range between 500C and I000C Alternative means for achieving this high preheat temperature of the air stream include such apparatus as fired heaters. fixed or moving bed pebble type heat exchangers. or heat exchange with the gas effluent. etc.

In an alternative embodiment of gas generation according to the present process. some steam may also be added to the air stream before preheating.

The preheated air or air-oxygen mixture and the preheated steam feedstock mixture are then fed into reactor 5, which is adapted to operate adiabatically. and re acted. Reactor 5 is entirely lined with refractory material and designed to operate at high temperatures. preferably ranging between 650 and 10()0C. This reactor can be an empty vessel such as that used in the socalled Texaco and Shell partial oxidation processes. or the reactor can be filled with a fixed or fluid bed cata lyst.

It is preferred that the operating pressure in the gas generator be as high as is technologically feasible. Preferred pressures are those in the range of 30 to 100 at rnospheres.

The effluent gas mixture leaving reactor 5 contains a substantial amount of CO, as is known in the art. e.g.. amounts generally in the range of 15 to 50%. and is ordinarily at a temperature between 650C and l000C-. hence. it is directed to a waste heat boiler 6. so as to enable the recovery of its evolved heat as high pressure steam for use elsewhere in the present process. and for driving the various plant apparatus. Alternatively. part or all of this heat can be used to preheat the steam feedstock mixture introduced into the gas generator.

In the event that the feedstock has been completely gasified in reactor 5, the effluent gas is further cooled in heat exchanger 7 (for recovery of its heat) and then in final cooler 8.

Since in some gasification processes. however. the feedstock is only partially gasifled. in such cases. after heat recovery in waste heat boiler 6, it is usually preferable to achieve a final cooling in a tower having couter current water and liquid hydrocarbon circulation.

Since the gaseous effluent produced by gasification includes impurities. e.g.. hydrogen sulfide and carbonyl sulfide. these impurities must be removed therefrom in a purification step denoted herein as sulfur removal. A number of feasible alternative means are suitable for this purpose. among these being the use of an absorption stripping system. which is preferred means. As shown in FIG. 3. a sour or impure gaseous effluent obtained from the gasification step shown in FIG. 2 is contacted with a conventional liquid solvent such as NaOH. KOH. diethanolaminc. etc.. in an absorption tower 9. Hydrogen sulfide and other sulfur bearing gases. together with part of the carbon dio\idc. arc absorbed selectively or noirselectivcly by the solvent. Acid gases are recovered from the solvent in a stripping tower 10.

The regenerated liquid solvent is then recycled to the absorption tower 9 through pump II. The regeneration heat, if required. is supplied by a rcboiler (not shown).

Alternatively, regeneration can be effected by flash ing the solvent from the high pressure of absorption tower 9 to the low pressure of stripping tower It). or by using an inert gas for stripping in stripping tower It).

In the event the acid gases leave the stripping tower 10 at a temperature appreciably higher than the absorption temperature in absorption tower 9. it is usually preferable to cool these gases in cooler I2 and con dense the liquid in condenser or heat exchanger 13 for reflux to stripping tower 10. thus obtaining the final concentrated acid gas that can be subsequently treated in a conventional sulfur plant for sulfur recovery.

In accordance with the composition of the effluent gas leaving the sulfur removal step. the gas can be split into a plurality of fractions or streams following the criteria previously described. In a preferred embodiment of this invention. the effluent gas is split into two fractions or streams of about 51)) each. (The material balance. set forth in livamplc 1 below. it will be noted. showed a 45-55U split).

A first stream undergoes a mcthanation reaction shown in a schematic flow diagram in FIG. 4. The main purpose of this reaction is to inethanate. as much as possible. the carbon o\idcs contained in the desulfurized gas effluent. by consuming virtually all the hydrogen present, which represents 37); in the particular case of the aforesaid material balance. In view of the fact that the residual carbon oxides content of the effluent from the first methanation step has no appreciable effect on the following step of the process. it is likely that one catalyst bed is sufficient to perform this reaction. but due to the high content of hydrogen and carbon oxides in the methanation feed. it is preferred that this goal he achieved by recycling an appreciable part of the gas effluent from the first methanation. after cooling. The amount of recycled gas can be adjusted in accordance with the gas composition from the sulfur removal step in such a way so as to maintain the maximum temperature in the methanation reactor at a level consistent with a total consumption of hydrogen in the reaction to form methane.

In one embodiment of this invention, some amount of steam may be mixed with the feed gas to the first mcthanation step in order to achieve some degree of shift conversion at the same time as the mcthanation reaction is proceeding. This mode of operation may be desirable in some cases. especially when the catalyst used does not have the proper inhibitors to avoid car bon formation due to the high (0 partial pressure. In fact. it is possible to adjust this steam injection to the rate required for substantially eliminating the presence of carbon monoxide in the effluent of the fist methantation step. thus minimizing the risk of carbon formation. This process variation, although not represented in the aforesaid material balance. is within the spirit of the present invention, and should be taken into considcration for the proper split of the gas fractions after the sulfur removal step.

As shown in FIG. 4, the feed gas from the sulfur re' moval step is first mixed with the gas recycled from compressor 24. and the mixture is preheated in heat ex changer and then fed into the methanation reactor 26. The preferred inlet temperature to the reactor is in the range of 240 to 300C. while the preferred outlet temperature is in the range of 450 to 700C.

The gas leaving the reactor 26 is first cooled in heat exchanger 27 so as to recover the high temperature heat either in generating steam. or in any other way compatible with the other sections ofthe plant. The gas is then cooled in heat exchanger 25 to preheat the reactor feed and finally is further cooled in heat exchanger 28 for heat recovery to a lower level and in cooler 29 to about ambient temperature. The water produced in the methanation reaction is condensed and separated before proceeding to the following stage of the process.

The second desulfurized effluent gas fraction is subjected to shift conversion. so as to convert CO contained in said effluent gas fraction to CO This reaction requires an appreciable amount of steam. whereas the gas effluent from the sulfur removal step is usually at a temperature close to ambient temperature and contains very little or no steam. Thus. for optimum heat recovery around the shift reactor. it is preferred to use a humidifier-dehumidifier system to convey the heat to the shift reactor. in the form of steam. flowing from downstream to upstream.

As shown in FIG. 5. the cold. second desulfurized effiuent gas fraction is first contacted countercurrcntly in the humidifier tower 30 with hot water coming from the dehumidifier tower 31 and then is mixed with an additional amount of steam. and then preheated in heat exchanger 32 to a temperature of between 350 and 4UUC.

The gas then enters the first shift converter (reactor 33) which preferably uses a conventional high temperature shift catalyst to expedite or otherwise render more efficient the shift conversion operation. In one embodiment of this invention. shift conversion can be conducted with two or more catalyst beds within reactor 33. with a quench or heat exchanger in between the beds to achieve a greater part of the conversion duty in said reactor 33. The gas leaving the reactor 33 is cooled in exchanger 34 or quenched to bring down the temperature to a lower level in a second shift converter 35. The catalyst used in the latter can be any conventional low temperature shift catalyst that is operable within the range of 200 to 250C. However. in those instances where the gasification pressure is very high. it would not be possible to use a low temperature shift reactor because of the risk of condensation over such a conventional catalyst. unless a new catalyst were developed to withstand these operating conditions.

The carbon monoxide content of the gas leaving the low temperature shift reactor 35 is in the range of about 0.2 to about 0.8% dry basis. whereas the gas leaving the high temperature shift converter has a residual CO content of between about 2 and about 5%.

The gas leaving the final shift converter can be cooled. if necessary. in heat exchanger 36 before entering the dehumidifier tower 3]. In this tower. the cold water flow coming from humidifier tower 30 is preheated countcrcurrcnt to the hot gas. and the heat thus gained by the water is later released in humidifier tower 30 to the feed gas.

The gas leaving the dehumidifier tower 31 is further cooled in heat exchanger 37 before being conveyed to the (O removal step The heat recovery in the various heat exchangers 32. 34. 36. 37 can preferably be optimized in each particu lar case for best efficiency by combining the streams either in the shift conversion step itself. or by combin ing such streams with gas or liquid streams from other process steps.

The cftluent gas resulting from the shift conversion of the second gas fraction is subjected to a removal step in order to eliminate virtually all the CO present and thus obtain a hydrogen-rich stream with which to methanate the residual carbon oxides in the first cfflu ent gas stream resulting from first methanation upon combination of the hydrogen-rich stream with said first methanation effluent stream. The hydrogen-rich stream is typically. eg. a hydrogenmitrogen-methane mixture containing small amounts of CO and CO much of the nitrogen having been introduced during gasification.

While there are several conventional means that can be used for the removal of CO from this gas stream, such as by scrubbing with appropriate solvents such as various amines. potassium carbonate. methanol. various other organic solvents. etc.. the means most preferred for the present process would be the one most suited to:

(a) take maximum advantage of the high partial pressure ofCO availablez (b) utilize minimum amounts of heat or other forms of energy for regeneration of the solution: (cl allow. if necessary. a small amount of CO leakage in the gas leaving the scrubber. in view of the fact that it will be further methanated downstream in the second methanation step; and to (d) avoid use of any chemical harmful to the methanation catalyst downstream.

Generally. those carbon dioxide removal processes using absorption and regeneration above ambient temperature operate along the lines indicated in the schematic flow diagram illustrated in FIG. 6.

As shown in FIG. 6, the gas leaving the shift conversion step is scrubbed countercurrent to the regenerated solution in the scrubber 40. and the purified gas leaving the top of the scrubber goes directly to the second met hanation step after being mixed with the effluent gas fraction from the first methanation step.

The rich solvent leaving the bottom of scrubber 40 is flashed to near atmospheric pressure into the regcneration tower 41. preferably after having been preheated by the hot regenerated solvent extracted from the bottom of regeneration tower 41 and pumped by pump 42.

Reboiling heat can be supplied at the bottom of regeneration tower 4l through heat exchanger 43. The gas leaving the top of the regenerator tower 4] is cooled in cooler 44. and the condensed solvent is separated in separator 45 and recycled to the system through pump 46. whereas the concentrated CO stream is evacuated from separator 45 to the atmosphere or for any downstream use desired.

In the second methanation step of the present process. the effluent stream exiting from the CO removal step is combined with the effluent stream exiting from the first methanation step. Thus. the combined gas stream to be subjected to methanation in the second methanation step of the present process has approximately the stoichiometric amount of hydrogen required to methanate all the CO and CO contained therein. It should be recognized. however. that a very slight excess of hydrogen. above the stoichiometric ratio. may be desirablc in the combined gas feed to the second methanation. in order to achieve a complete methanation of the carbon oxides. On the other hand. a deficiency of hydrogen in the second methanation feed will lead to a small amount ofCO and only traces of CO in the second methanation effluent. Either deviation. whether above or below the stoichiometric ratio of hydrogen to carbon oxides. may be justified under certain economic conditions. at the option of the process operator. and although such deviations have not been set forth in the subsequent typical material balance. they are nevertheless within the spirit and scope of the present invention. and should be taken into consideration for the proper split of the gas fractions after the sulfur removal step.

It is preferred that this second step stage methanation be effected in a manner slightly more elaborate than in the first methanation. since the complete elimination of carbon oxides in the product gas is intended. To achieve this goal. it is preferred that the second metha nation step be effected in two stages. as illustrated by the flow diagram contained in FIG. 7. wherein the first stage is conducted in reactor 50 at a very high temperature. with a correspondingly high leakage of carbon oxides; whereas. in the second stage. conducted in reactor 51. the reaction proceeds at a very moderate temperature so as to result in a complete conversion to methane.

Since the content of the carbon oxides in the gas mixture is quite appreciable. it is important that there be a gas recycle through compressor 52 in order to maintain the reaction temperature in reactor 50 within reasonable limits.

The gas mixture from the first methanation and CO removal steps is first mixed with the recycled gas, then preheated in feed product exchanger 53 by the effluent gas from the second reactor 51. and then fed into the first stage of reactor 50 at a temperature of from about 240 to about 300C. The outlet temperature from reactor 50 is kept between about 450 and about 700C. The gas effluent from the first reactor 50 is first cooled in heat exchanger 54. where high temperature heat can be recovered either to produce high pressure steam or to supply heat to other parts or stages of the process.

If desired. the inlet temperature to the second bed can be adjusted by injecting some cold fresh gas bypassing the first reactor 50. This procedure has the advantage of requiring less recycle gas to achieve a given temperature rise in the first reactor. The inlet temperature to the second reactor 53 is preferably adjusted between about 240 and about 300C and the resulting outlet temperature is preferably in the range of about 270 to about 400C.

The gas efflucnt from reactor 51 is first cooled in the feed product exchanger 53 and in another heat exchanger 55 and then in the final cooler 56. Part of the gas produced is recycled through compressor 52 and the rest is conveyed to the cryogenic stage or step of the present process.

it is preferred that cryogenic separation take place at a very low temperature in order to obtain a liquid methane fraction that is separable from the nitrogen gas stream. Therefore. it is important to separate the traces of water vapor and carbon dioxide that are still present in the gas. This can he done in several ways. For exam ple. a switch exchanger system can be employed at the inlet of the cryogenic separation system. When the deposition of ice and dry ice becomes important in the first feed exchanger to the point where it becomes inoperable. the feed gas is switched to the other parallel exchanger. and the fouled exchanger can then be rendered utilizable during the time the other exchanger is in service. Alternatively, the gas can be treated with molecular sieves which would act as absorbents to remove the traces of water and CO from the gas. As an additional alternative, a chemical treatment can also be employed, whereby the final traces of H and CO can be removed by scrubbing with a suitable solvent such as ethylene glycol.

The drying of the feed gas to the present cryogenic separation step is not shown in the overall schematic flow diagram illustrated in FIGv 8.

As utilized herein. the basic concept underlying the present cryogenic separation is to obtain a methanerieh mixture. while leaving a minimum of methane in the nitrogen stream to be vented to the atmosphere. It should be realized that the particular scheme to be folating pressure ofthe gas production train. The feed gas is cooled by the waste nitrogen stream to the atmosphere and also by the methane-rich gas. Part of the methane contained in the feed gas is condensed in heat exchanger 60. The feed gas and the condensed liquid. together or separately. are then held at a pressure slightly below the partial pressure of the methane in the feed gas, whereby the resultant gas at such pressure in tower 6I undergoes a separation such that there results a liquid methane stream in the bottom and a gas nitro gen stream in the top of tower 61. The latter is again throttled (through valve or expander) into a flash drum 62. wherein the extra liquid methane that has condensed is collected and is pumped through pump 63 to the same pressure as in tower 6], and mixed with the liquid extracted therefrom. The pressure in flash drum 62 is usually that required to meet the requirements of the whole system, depending upon the nitrogen content of the feed gas from the second methanation. Whenlowcd In this cryugcnlc scpllmlion y pp y ever possible, the waste nitrogen stream is recovered at depending on the following variables: a pressure above atmospheric and used to supply power a. the nitrogen content of the feed coming from the whcrevcr d d in th ro through a gas expansecond methanation stage; (13L b. the nitrogen content desired in the final methanc- Th old nit en tre m leaving the to of tower 62 rich gas r u -fi ilu n r g is first reheated in a reflux condenser at the top of c. the efficiencies required in terms of the methane t we (,1 and then m a fcecLproduct exchanger not content of the nitrogen stream vented to the atmoshuwny s here; and

p H Any excess hydrogen or CO present in the gas after d, the available pressure of the feed gas from the sec- 1, the second methanation step. as mentioned above, will ond methanation stage.

. be evacuated with the waste nitrogen stream from the In any event. It is believed prelerable to attain a cryogenic separation. methane concentration in the waste nitrogen stream that is vented to the atmosphere, of between about ()4 In Example I below. there is set forth a typical examand about 1.0% by volume, and a nitrogen concentra ple of the present invention, illustrated by a material tion in the methane-rich product gas of between about 35 balance. obtained by carrying out the present process, l.() and about 8.07! by volume. as illustrated in FIG. 1. The block diagram of FIG. I

In FIG. 8, there is shown a typical cryogenic separarepresents the main process steps, using a gas oil feedtion contemplated for application in the present prostock and air in the gas generator. The material balance cess. In this figure. the feed gas from the second methaof Example I specifically applies to the process streams nation step is fed into a heat exchanger at the full open as numbered on FIG. 1 on the block diagram.

[EXAMPLF l MATERIAL HALANCI: PRODI'CIIGN ()F SNG BY GASII'ICAIION or (ms on. ('isim H was s (H1344 HASH) ON 100 MOLl-ZS or ruan MOI rzs tips on. snaAM AIR oAs H-FL. TOTAL oAs GAS oAs FRACTION FRAcnoN lo to To rRoM AFIFR 'ro H'I'S* 10 HRS! (H-ZNLRA'IOR (iINI RA'IOR oiM-RA'roR (ii-'Nl-RA'IOR st'u-trR AND I. is MI"! HANA'I ION kiaMovAi. l 2 .1 4 s n 7 (ms ()ll mo W m I034 40 lll -t4tt wuss 593,45 f) (17,54 667.54 302.22 365.]: (o 24s IZJRS 55112 M 21 (HI i 672 76 (72.70 31H- 58 36813 H .5 s. 1.44 a

o. 104.7 W c n.1, A 305.3: wsz: .ws :2 17m; 2mm H .o 1171,41 421m [Olfiil llliltll) SUttttl 10691)! 1941?? H3130 161047 mm is DRY -Continued EXAMPLE I MA'IERIAL BALANfl'. PRQDt't'l'lON or SNG BY (BASH-'K'ATION or (iAs on. (15,246 H 19m s (1.0.144 nAsI-LD ()N lHl) MOLE-1S OF FEED MOI is (iAS GAS (jAS (OMBINFD 'rm'Al. (ms

l-RAUI lON FRACl'lON i-RACI'ION Al 'l'iiR m Amt-1R Af-l'l-IR (0 (ms 10 2nd 1'0 NITROGEN FINAL (RYOGENK' l\1l.'l'HANA *HTS ms RLMOYAI. MFTHANA- SlilARA'l'lUN STREAM sNo HON TION s u m l l2 l3 l4 GAS on w H. 7x773 787,73 7x173 (0 17 .24 5.43 5.43 Wlhts' c -u to. sum 352.40 swm c (H, 5M5 3045s Muss sosu llltL75 1 s |1n3.25

H .s w e- A 2 lh 2 J 17:41: Imus 305.22 W522 3mm: 3430 mm! [on n: new]? 12711117 12%.? I5U5M7 302.42 1-18.55 MOI i's DRY H IS high temperature vshift com ersion "I. IS A lo temperature shift com ersiun It should be noted that the split between the two streams. after sulfur removal. is such that the combined gas to the second methanation step contains the stoichiometric ratio of hydrogen to carbon oxides.

While particular embodiments of the present invention have been described. it will be understood. of course. that this invention is not limited thereto since many modifications may be made. and it is, therefore. contemplated to cover by the appended claims any and all such modifications as may fall within the true spirit and scope of this invention What is claimed is:

l. A process for producing a high Btu. methane-rich gas from a suitable carbonor hydrnvearbon-containing feedstock. comprising (a) generating a gaseous effluent having a substantial (0 content from said feedstock and purifying said gaseous effluent to remove the impurities therefrom comprising the residual carbon and sulfur impurities; (b) dividing the resulting gaseous effluent into a plurality of fractions; (c) subjecting a first effluent fraction to methanation; (d) subjecting a second effluent fraction to the successive steps of shift conver sion and CO removal; (e) mixing the resulting effluents from steps (C) and (d) and subjecting the resulting mixture to mcthanation; and (f) separating the excess nitrogen present from the methane-rich product.

2. A process according to claim 1, wherein the feedstock is a fossil fuel.

3. A process according to claim 1, wherein the gener ation of said gaseous effluent is conducted in the presence of an oxidant selected from the group consisting of air and oxygen enriched air and the resulting nitrogen contained in the methane-rich final gas stream is separated therefrom by cryogenic means.

4. A process according to claim 1, wherein the feedstock is one heavier than naphtha and the gaseous effluent from said feedstock is generated at a temperature between about 650C and l()()(lC under adiabatic conditions.

5. A process according to claim 4. wherein the pressure is between 30 and [00 atmospheres.

6. A process according to claim 1 wherein the gas generation step is conducted under adiabatic conditions in the presence of a catalyst.

7. A process according to claim I, wherein at least substantially all the hydrogen in the first effluent fraction is reacted with the carbon oxides present therein.

8. A process according to claim 2, wherein a humidifier-dehumidifier system is used to supply at least a part of the steam required for shift conversion.

9. A process according to claim 1. wherein the mixture of effluents from steps (c) and (d) contains a ratio of hydrogen to carbon oxides substantially stoic hiometric to that required for substantially complete methana tion of said carbon oxides.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3511624 *Feb 20, 1967May 12, 1970Gas CouncilProcess for preparing methane-containing gases
US3531267 *Jun 17, 1965Sep 29, 1970Chevron ResProcess for manufacturing fuel gas and synthesis gas
US3728093 *Oct 14, 1971Apr 17, 1973Transcontinental Gas Pipe LineProduction of synthetic pipeline gas
US3740204 *May 18, 1971Jun 19, 1973Texaco IncProcess for the production of methane from carbonaceous fuels
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4091008 *Aug 22, 1975May 23, 1978Linde AktiengesellschaftProduction of a gas rich in methane
US4127392 *Nov 2, 1977Nov 28, 1978Conoco Methanation CompanyMethanation process start-up
US4130575 *Oct 22, 1975Dec 19, 1978Haldor Topsoe A/SProcess for preparing methane rich gases
US4133825 *May 11, 1977Jan 9, 1979British Gas CorporationProduction of substitute natural gas
US4205961 *Jun 23, 1978Jun 3, 1980MetallgesellschaftProcess of producing a natural gas substitute
US4235044 *Dec 21, 1978Nov 25, 1980Union Carbide CorporationSplit stream methanation process
US4549396 *Jan 18, 1982Oct 29, 1985Mobil Oil CorporationConversion of coal to electricity
US4904371 *Oct 13, 1988Feb 27, 1990Conoco Inc.Process for the production of mesophase pitch
US4999030 *Jan 22, 1990Mar 12, 1991Foster Wheeler Usa CorporationProcess for producing a methane-containing fuel gas
US5433760 *May 13, 1993Jul 18, 1995Shell Oil CompanyMethod of quenching synthesis gas
US7849691Aug 30, 2007Dec 14, 2010Air Liquide Process & Construction, Inc.Steam methane reforming with LNG regasification terminal for LNG vaporization
US7955403 *Jun 7, 2011Kellogg Brown & Root LlcSystems and methods for producing substitute natural gas
US8382867 *Apr 21, 2011Feb 26, 2013Kellogg Brown & Root LlcSystems and methods for producing substitute natural gas
US8461216Aug 2, 2010Jun 11, 2013Shell Oil CompanyProcess for the co-production of superheated steam and methane
US8470059Dec 29, 2009Jun 25, 2013Shell Oil CompanyProcess for producing a methane-rich gas
US8530529Apr 20, 2010Sep 10, 2013Haldor Topsoe A/SProcess for the production of substitute natural gas
US8927610Aug 2, 2010Jan 6, 2015Shell Oil CompanyProcess for the production of methane
US9132401Oct 30, 2012Sep 15, 2015Kellog Brown & Root LlcSystems and methods for producing substitute natural gas
US9157042Oct 30, 2012Oct 13, 2015Kellogg Brown & Root LlcSystems and methods for producing substitute natural gas
US9157043Oct 30, 2012Oct 13, 2015Kellogg Brown & Root LlcSystems and methods for producing substitute natural gas
US20060236697 *Jan 13, 2004Oct 26, 2006Ashok RaoConfiguration and process for shift conversion
US20080078177 *Aug 30, 2007Apr 3, 2008Faulkner Jason WSteam methane reforming with lng regasification terminal for lng vaporization
US20100011664 *May 8, 2009Jan 21, 2010Kellogg Brown & Root LlcSystems and methods for producing substitute natural gas
US20100162626 *Dec 29, 2009Jul 1, 2010Clomburg Jr Lloyd AnthonyAdiabatic reactor and a process and a system for producing a methane-rich gas in such adiabatic reactor
US20100162627 *Dec 29, 2009Jul 1, 2010Clomburg Jr Lloyd AnthonyProcess for producing a methane-rich gas
US20100286292 *Nov 11, 2010Christian WixProcess for the production of substitute natural gas
US20120101323 *Apr 21, 2011Apr 26, 2012Kellogg Brown & Root LlcSystems and methods for producing substitute natural gas
US20120222353 *Sep 22, 2010Sep 6, 2012The Regents Of The University Of CaliforniaMethod to Produce Methane Rich Fuel Gas from Carbonaceous Feedstocks Using a Steam Hydrogasification Reactor and a Water Gas Shift Reactor
US20140102943 *Dec 17, 2013Apr 17, 2014Shell Oil CompanyRelating to coal to liquid processes
CN100393854CJan 13, 2004Jun 11, 2008弗劳尔公司Improved configuration and process for shift conversion
CN101880558A *May 7, 2010Nov 10, 2010赫多特普索化工设备公司Process for the production of substitute natural gas
CN101880558BMay 7, 2010Aug 14, 2013赫多特普索化工设备公司Process for the production of substitute natural gas
CN102732349A *Jul 19, 2012Oct 17, 2012中科合成油工程有限公司Method for producing liquefied natural gas
CN103868092A *Mar 31, 2014Jun 18, 2014张志斌Efficient, energy-saving and environment-friendly heat energy utilization method with pulverized coal as fuel and system thereof
CN104119973A *Aug 13, 2014Oct 29, 2014新地能源工程技术有限公司Method for preparing natural gas from coal-bed gas
EP2261308A1 *Apr 7, 2010Dec 15, 2010Haldor Topsøe A/SProcess for the production of natural gas
WO2004062764A2 *Jan 13, 2004Jul 29, 2004Fluor CorporationImproved configuration and process for shift conversion
WO2004062764A3 *Jan 13, 2004Dec 2, 2004Fluor CorpImproved configuration and process for shift conversion
WO2008041076A2 *Sep 25, 2007Apr 10, 2008L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges ClaudeSteam methane reforming with lng regasification terminal for lng vaporization
WO2008041076A3 *Sep 25, 2007Jul 2, 2009Air LiquideSteam methane reforming with lng regasification terminal for lng vaporization
WO2010078256A1Dec 28, 2009Jul 8, 2010Shell Oil CompanyProcess for producing a methane-rich gas