Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3904513 A
Publication typeGrant
Publication dateSep 9, 1975
Filing dateMar 19, 1974
Priority dateMar 19, 1974
Publication numberUS 3904513 A, US 3904513A, US-A-3904513, US3904513 A, US3904513A
InventorsFischer Ronald H, Milstein Donald, Peters Alan W
Original AssigneeMobil Oil Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Hydrofinishing of petroleum
US 3904513 A
Abstract
A method of improving the oxidative stability of sulfur and oxygen and/or nitrogen polar material containing lubricating base charge stocks wherein the lubricating base charge stocks are contacted with a nickel-molybdenum on large pore alumina catalyst in the presence of a gas mixture of about 90% hydrogen and 10% hydrogen sulfide under hydrofinishing conditions.
Images(4)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Fischer et al. Sept. 9, 1975 [54] HYDROFINISHING OF PETROLEUM 2,985,580 5/1961 Heinemann 208/264 2,985,586 5/1961 Willson et a] [75] Inventors: Rnald F Donald Mllsten, 3,793,186 2/1974 Guentheretal 208/264 both of Cherry Hill; Alan W. Peters, Moorestown all of Primary Examiner-Herbert Levine [73] Assignee: Mobil Oil Corporation, New York, Attorney, Agent, or FirmCharles A. Huggett;

N.Y. Vincent J Frilette [22] Filed: Mar. 19, 1974 21 Appl. N0: 452,589 [57] ABSTRACT A method of improving the oxidative stability of sulfur and oxygen and/or nitrogen polar material containing 2? g gf lubricating base charge stocks wherein the lubricating E g 264 base charge stocks are contacted with a nickelmolybdenum on large pore alumina catalyst in the presence of a gas mixture of about 90% hydrogen and [56] References Cited 10% hydrogen sulfide under hydrofinishing conditions.

UNITED STATES PATENTS 2,914,470 11/1959 Johnson et al 208/264 8 Clams 4 Drawmg Flgures Lube Hydrofimshmg With N1 M 0/ A1 o K 280 psi 2.5 LHSV E 500 I000 scF/ B y o 1007 H E 2 Percalahon 0 lO/ H S+9O/ H 300 Lube Hydrofinishing C0foly f Mo AI Q 600 I I 280 psi 1; 2.5 LHSV g 1000 50 F/ B v 500 o Cla 0-- I00 H 8 Percolohon o l0 H2 5 90 II Temperature F FATENTED SEP 9 5975 sum 2 [1F 4 FIGURE 2 Arabian Light 2.5 LHSV, 280 PS|G,IOOO SCF/B Charge Stock Sulfun 28% .8

1 9g 8&2 C: E 5 5 L8 I [0% H2 S O lOO/ H2 .8 K-

. 3 5 Charge Stock m Sulfur: .28?o

Temperature, F

HYDROFINISHING F PETROLEUM- BACKGROUND OF THE INVENTION 1. Field of the Invention v This invention concerns the production of a lubricant which has superior oxidative stability.

2. Description of the Prior Art It is well-known that certain types of organic compounds are normally susceptible to deterioration by oxidation through coming into contact with various metal surfaces. For example, it is known that liquid hydrocarbons in the form of fuels or lubricating oils tend to accumulate considerable quantities of water when maintained for long periods of time in storage vessels; and when subsequently brought into contact with metal surfaces in their functional environments, deterioration as a result of oxidation, occurs. As a further example, in modern internal combustion engines and in turbojet engines, lubricants can be attacked by oxygen or air at high temperatures to form acids, heavy viscous sludges, varnish and resins which become deposited on the engine surfaces. As a result, the lubricant cannot perform its required task effectively, and the engine does not operate efficiently. Furthermore, the sludges produced by lubricant deterioration generated by insufficient oxidative stability tend to foul and plug low tolerance hydraulic system components and interconnecting piping and valves. In addition, where such lubricating oils or other oxidation prone materials are incorporated into solid lubricants as in the form of greases, similar results are encountered, thus clearly indicating the necessity for improved methods of treatment which increase the oxidative stability of lubricating oils.

Accompanying the deterioration of lubricants by oxidation is the resultant corrosion of the metal surfaces for which such lubricants are designed and supplied. In the oxidation of a lubricant, acids developwhich are corrosive enough to destroy most metals. Moreover, the friction between metal parts increases following lubricant breakdown due to oxidation and leads to excessive metal wear. Increasing demands .on. lubricants, brought about by larger engines operatingvat steadily increasing temperatures and pressures, and often at higher speeds, necessitate a constant search for new methods of hydrocarbon treatment which can provide lubricants with increased oxidation resistance.

Due to the lubricant oxidative stability requirements for such newer and larger engines and other rotating or moving equipment lubrication, feedstocks which were previously suitable for lubricant production are presently unsuitable or at best marginal for such uses. Thus at a time when overall lubricant demands are increasing, the amount of suitable lubricant feedstock material is being diminished due to the oxidative stability requirements of newer and larger machinery.

Various antioxidant additives have been developed to help improve lubricant oxidative stability, see forexample US. Pat. No. 3,399,041 (McCabe). However, such additives are expensive to produce and present metering and mixing problems when added to lubricants.

Accordingly, it is an object of this invention to provide a method whereby the oxidative stability of lubricant chargestocks is improved.

A further object of this invention is to provide for a method of treatment whereby hydrocarbon feedstocks presently of poor or marginal lubricant quality may be 2 upgraded through oxidative stability improvement in order to produce lubricants havingsufficiently high anti-oxidation qualities.

A further object of this invention is to provide for a method of treatment whereby the lubricant produced is enhanced in the response to antioxident additives.

Another object of this invention is to provide for a method of lubricant treatment whereby the lubricant produced has sufficient oxidative stability to substantially reduce metals corrosion and wear when employed as a lubricant for such metals.

Other objects and advantages of this invention will become apparent to those skilled in the art upon reading the entire specification including the following detailed description and claims.

SUMMARY OF THE INVENTION A method of improving the oxidative stability of a sulfur and oxygen and/or nitrogen containing hydrocarbon lubricant base stock has recently been discovered. The method consists of contacting said lubricant base stock with a nickel-molybdenum on large pore alumina catalyst in the presence of a gas mixture of about hydrogen and 10% hydrogen sulfide, said contacting being carried out under hydrofinishin g conditions of at temperature of about 200 to 700F., space velocities of about 0.25 to 10 L.I-I.S.V. and pressures of about to 2,000 p.s.i.g.; and removing said charge stock from said catalyst following said contacting.

In a preferred embodiment the charge stock has a sulfur content of about 0.01 to 2.5 weight percent, and an oxygen and/or nitrogen polar compound concentration of about 0.0001 to 2.0 weight percent, the viscosity of the lubrication base stock is about 100 SSU to 800 SSU at 100F the temperature, space velocity and pressure are 300 to 600F., l to 4 L.H.S.V. and 100 to 500 p.s.i.g. respectively.

EXAMPLES l36 Two catalysts, one a nickel-molybdenum on alumina and the other a molybdenum on alumina, were obtained as meshed through 8 on 16 mesh/inch. The NiMo/Al O catalyst used is more particularly defined as follows:

Surface Area 57 m lg Ni 2.7%

Real Density 4.29 M00; l 1.7%

Particle Density 1.57 Al. ,O 86.2%

Pore Volume .405 cc/g Pore Diameter 284 A Angstrom: 0-50 50l()0 lOO-ZOO 200-300 300 "/1 of Pore Dia. in Range 22 4 33 10 Ill Each catalyst was then sulfided with about 2% H 8 98% H gas of 500 p.s.i.g. and at about 450750F. For each catalyst, the initial sample was obtained with pure H in the circulating gas and the second sample with H gas containing 10% H 8. Temperature was then raised and the third sample obtained with the gas containing 10% H 8 and the fourth with pure H This alternating procedure was carried on for the remainder of the run. In all cases the product was nitrogen stripped of H 5 gas at F. The Rotary Bomb Oxidation Test (RBOT) performed on each of the samples is described in ASTM test D. 2272 67 1972 Annual Book Of ASTM Standards, Part 17 (American Society for Testing and Materials, Phil., Pa. 1972) p. 783.

3 Results of these examples are compared with an untreated base stock are shown in Tables 1 1 and FIGS.

While not wishing to be bound by any particular theory of operability, the following analysis of a suggested mechanism is put forward specifically by way of explaining FIGS. 1-4. FIG. 1 shows the variation of differences in the sulfur content of the hydroflnished products. However, the sulfur and nitrogen content of the hydrofinished products obtained using NiMo/Al O with H 8 in the circulation gas is nearly the same as that obtained using Mo/Al O with no H 3, yet there are substantial differences in their respective RBOT values. A possible explanation for these RBOT differences is that the NiMo/Al O catalyst is more selective for removal of stability reducing oxygen polar compounds than Mo/Al O The hypothesis that NiMo/Al O has increased activ ity for oxygen removal is consistent with the observation that the hydrofinished oil has a higher RBOT value than clay percolated oil. Evidence from chromatography and mass spectra indicates that clay percolation is very efficient for removal of stability reducing nitrogen compounds, but is not as efficient for removal of 'oxygen polar compounds. Light Arabian lube stocks have relatively low nitrogen contents. and, therefore, in a very highly furfural treated stock such as the one used in the present study, clay percolation is not as effective as hydrofinishing for RBOT improvement; Therefore, reduced dcsulfurization due to the presence of H 5 in the circulating gas coupled with higher oxygen removal 4 oil having a higher RBOT stability than that obtained from clay percolation;

Tables 3 and 4 and FIGS. 3 and 4 give the results of hydrofmishing of Mid-Continent Sweet lube stock. Such stocks are relatively high in nitrogen polar compounds, and relatively low in oxygen polar compounds. The presence of H 5 or the use of NiMo/Al O shows no advantage perhaps because the more difficult to remove nitrogen compounds in this stock, and not the oxygen polars, are the preponderant factor in controlling stability.

It has been found that polar oxygen andnitrogen containing compounds are detrimental to lube .oil performance in at least some applications, and that some sulfur compounds are beneficial. It is thus desirable to remove the polar materials without removing sulfur, especially in relatively high sulfur stocks. Since hydroprocessing under relatively mild conditions does not normally remove nitrogen containing material, the,

ideal charge stock for hydroprocessing should contain relatively small amounts of nitrogen in the furfural treated and dewaxed oil compared to the total amount of polar material. Typical oils may have from 0.1 to

0.6% polar material (which is the material not eluted by pentane from a Florisil (6% H O) chromatographic column) and a nitrogen content of 10 to 100 ppm. Typically the nitrogen materials represent about 30-5O percent of the total polar material, where 100 ppm nitrogen corresponds to about 0.3 to 0.4% nitrogen containing polar material. The presence of H 8 permits some of the deleterious polar materials to be removed without removing the sulfur compounds. The effectiveness of HgS/HZ hydroprocessing a particular lube stock should therefore increase with a decreasing percentage of nitrogen containing polar material and with increasing sulfur content. A stock such as Arab Light where only about 2030 percent of the polar material contains nitrogen and with about 0.25 to 0.4% sulfur is ideal for this application.

The development of a good low temperature (300600F.) catalyst for nitrogen removal would extend the application of this technique to virtually all potential lube oil'stocks.

TABLE 1 HYDROFINISHING OF ARABlAN LIGHT LUBE BASE STOCK NiMo/A1 O CATALYST Example N Base Stock 1 2 3 4 5 6 7 8 9 10 Temp.,F. 450 450 500 500 550 550 600 600 650 650 LHSV 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 n 2.5 Pressure,psig

Hydrogen 300 252 252 300 300 252 252 300 300 252 Hydlo en 0 28 28 0 0 8 28 0 0 28,

Sulfide Sulfur. Wt W 0.28 0.25 028 0.26 0.20 0.15 0.24 0.17 0,072 0.024 0.074 7(Desulfurimtion l l 0 7 29 46 14 39 74 91 74 Nitrogen, ppm 8.0 7.1 6.0 7.1 7.2 7.2 6.2 6.1 5.6 5.2 5.5 KV at 100F. 28.65 28.14 28.41 28.29 28.14 27.89 28.26 28.14 28.06 27.55 27.61 KV at 210F. 5X 5.02 5.02 5.00 5.01 4.97 5.03 5.02 4.98 4.87 4.98 Aniline 222.3 2232 223.0 223.3 223.8 2239 223.5 223.3 224.7 224.5 222.2 Pour Point.F. 5 5 5 5 5 0 0 0 0 0 0 Total Acid No. 003 0.24 0.09 0.18 0.09 ()04 0.06 0.1 1 005 0.10 0.05 RBOT, Min. 466 440 546 500 375 342 444 375 310 305 328 selectivity of NiMo/Al O may result in a hydrofinished TABLE 2 HYDROFlNlSHlNG OF ARABIAN LIGHT LUBE BASE STOCK Mo/Al O CATALYST Example No. Base Stock ll l2 l3 14 V l6 l7 l8 19 Temp., F. 450 450 500 500 550 550 600 600 650 650 LHSV 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

TABLE 2-continued HYDROFlNlSHlNG OF ARABlAN LIGHT LUBE BASE STOCK Mo/Al O, CATALYST Example No. Base Stock 11 12 13 14 l5 l6 l7 18 19 20 Pressure, psig Hydrogen 280 252 252 280 280 252 252 280 280 252 Hydrogen 28 28 0 0 28 28 0 0 28 Sulfide Sulfur, wt 7? 0.28 0.27 0.28 0.27 0.25 0.22 0.27 0.24 0.18 0.12 0.18 7(Desulfurization 4 0 4 1 l 21 4 I4 36 57 36 Nitrogen, ppm 8.0 6.6 6.2 6.9 5.9 7.9 7.6 7.1 7.5 4.2 6.0 KV at 100F. 28.65 28.48 28.21 28.25 28.32 28.25 27.85 28.18 27.78 27.65 27.84 KV at 210F. 5.03 5.03 5.02 5.01 5.02 5.03 5.01 5.05 4.98 4.97 4.98 Aniline 222.3 222.4 223.0 223.0 223.1 223.3 223.1 223.0 223.3 224.0 223.6 Pour Point,F. 10 0 0 0 0 5 0 0 0 Total Acid No. 0.03 0.09 0.15 0.13 0.1 1 0.02 0.03 0.10 0.07 0.18 0.12 RBOT. Min. 466 458 460 457 407 378 428 390 372 312 368 TABLE 3 (300%/215F) HYDROFINISHING OF MID CONTINENT SWEET LUBE BASE STOCK NiMo/Al O CATALYST Example No. Base Stock 21 22 23 24 25 26 27 28 Temperature. F. 450 450 500 500 550 550 600 600 [.HSV 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Pressure. psig Hydrogen 280 252 252 280 280 252 252 280 Hydrogen Sulfide 0 28 28 0 0 28 28 0 Sulfur. wt "/1 0.12 0.10 0.13 0.12 0.081 0.054 0.10 0.073 0.029

Desulluri'lation 17 0 0 33 55 17 39 76 Nitrogen, ppm 35 32 34 33 31 30 30 28 29 KV at 100F. 33.68 33.37 33.59 32.84 33.27 33.42 33.33 31.17 KV at 210F. 5.51 5.50 5.62 5.53 5.46 5.49 5.50 5.47 5.46 Aniline 226.0 225.5 225.0 225.8 225.5 225.8 225.5 225.7 226.1 Pour Point. F. 30 20 25 25 25 25 25 Total Acid No. 0.17 0.19 0.28 0.16 0.14 0.1 1 0.14 0.15 0.16 RBOT, Min 257 333 251 284 293 284 322 312 272 TABLE 4 HYDROFlNlSHlNG OF MID CONTINENT SWEET LUBE BASE STOCK MolAl O CATALYST Example No. Base Stock 29 31 32 33 34 35 36 Temperature. F. 450 450 500 500 550 550 600 600 l.HSV 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Pressure. psig Hydrogen 280 252 252 280 280 252 252 280 Hydrogen Sulfide 0 28 28 0 0 28 28 0 Sulfur. \vt 0.12 0.11 0.12 0.12 0.11 0.096 0.1 l 0.10 0.077

Desulfurization 8 0 0 8 20 8 17 36 Nitrogen. ppm 35 29 26 31 32 32 29 31 30 KV at 100F. 33.68 33.81 33.64 33.61 33.28 33.51 33.49 33.48 33.34 KV at 210F. 5.51 5.51 5.55 5.53 5.48 5.52 5.22 5.51 5.38 Aniline Point 226.0 225.5 225.5 225.5 225.5 225.5 225.0 225.5 225.5 Pour Point. F. 20 25 l0 l0 5 5 20 20 20 Total Acid No. 0.17 0.l5 0.07 0.13 0.10 0.08 0.08 0.1 l 0.13 RBOT. Min. 257 351 260 315 335 332 335 348 310 What is claimed is:

l. A method of improving the oxidative stability of a sulfur-containing hydrocarbon lubricant base stock comprising: contacting said lubricant base stock with a nickelmolybdenum on alumina catalyst having a major fraction of pores at least 100A diameter in the presence of a gas mixture of about 90% hydrogen and 10% hydrogen sulfide, said contacting being carried out under hydrofinishing conditions; and removing said chargestock from said catalyst following said contacting- 2. The method as claimed in claim 1 wherein the sul fur content of said hydrocarbon lubricant base stock is about 0.01 to 2.5 weight percent.

3. The method as claimed in claim 2 wherein the said hydrocarbon lubricant base stock has an oxygen content which is contained in polar compounds and represents about 0.0001 to 2.0 weight percent of said lubricant base stock.

4. The method as claimed in claim 2 wherein said hydrocarbon lubricant base stock has a nitrogen content which is contained in polar compounds and represents about 0.0001 to 2.0 weight percent of said lubricant base stock.

5. The method as claimed in claim 1 wherein said lubricant base stock has a viscosity of about to 800 S.U.S. at 100F.

6. The method as claimed in claim 5 wherein said temperature is about200 to 700F.

7. The method as claimed in claim 5 wherein said space velocity is about 0.25 to 10 L.H.S.V.

8. The method as claimed in claim 5 wherein said pressure is about 100 to 2,000 p.s.i.g.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2914470 *Dec 5, 1955Nov 24, 1959Sun Oil CoHydrorefining of petroleum
US2985580 *Feb 17, 1958May 23, 1961Houdry Process CorpRefining of petrolatum
US2985586 *Nov 26, 1958May 23, 1961Exxon Research Engineering CoHydrofining of lubricating oil fractions
US3793186 *Jul 19, 1971Feb 19, 1974Chevron ResLube oil improvement
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4549955 *Nov 30, 1984Oct 29, 1985Mobil Oil CorporationProcess for stabilizing hydroprocessed lubricating oil stocks by the addition of hydrogen sulfide
US4610778 *Jun 3, 1985Sep 9, 1986Mobil Oil CorporationZeolite catalyst, sulfur compound
US4627908 *Oct 24, 1985Dec 9, 1986Chevron Research CompanyProcess for stabilizing lube base stocks derived from bright stock
US4657661 *Dec 11, 1985Apr 14, 1987Chevron Research CompanyProcess for improving the storage stability and bulk oxidation stability of lube base stocks derived from bright stock
US5275718 *Apr 19, 1991Jan 4, 1994Lyondell Petrochemical CompanyNickel molybdenum catalysts for hydrofinishing catalysts for lubricant oils
US6110879 *Oct 15, 1998Aug 29, 2000Chevron U.S.A. Inc.Hydrocracker-derived, highly naphthenic, low viscosity index mineral oil prepared by catalytic dewaxing and hydrofinishing a bottoms fraction; polymethacrylate polymer(s); and performance additives; low and high temperature performance
US6143940 *Dec 30, 1998Nov 7, 2000Chevron U.S.A. Inc.Method for making a heavy wax composition
US6150577 *Dec 30, 1998Nov 21, 2000Chevron U.S.A., Inc.Method for conversion of waste plastics to lube oil
US6187725Oct 15, 1998Feb 13, 2001Chevron U.S.A. Inc.Process for making an automatic transmission fluid composition
US6369286Mar 2, 2000Apr 9, 2002Chevron U.S.A. Inc.Conversion of syngas from Fischer-Tropsch products via olefin metathesis
US6441263Jul 7, 2000Aug 27, 2002Chevrontexaco CorporationEthylene manufacture by use of molecular redistribution on feedstock C3-5 components
US6503956Jan 11, 2001Jan 7, 2003Chevron U.S.A. Inc.Determination of heteroatom content in Fischer-Tropsch wax
US6518473Jan 11, 2001Feb 11, 2003Chevron U.S.A. Inc.Subjecting C5-11 olefin-containing feedstock to dimerization using nickel ZSM-5 catalyst to give first product where majority of olefins in olefinic feed are converted to c10-22 hydrocarbons, subjecting to additional dimerization step
US6531515Feb 20, 2001Mar 11, 2003Chevron U.S.A. Inc.Isolating a methane-rich stream from well gas from a natural gas sources for use in hydrocarbon synthesis in a first separation zone, and treating in hydroconversion reaction zone to remove sulfur compounds
US6562230Dec 22, 1999May 13, 2003Chevron Usa IncMolecular averaging of various feedstocks to form lube oils
US6566411Feb 20, 2001May 20, 2003Chevron U.S.A. Inc.Removing sulfur from hydroprocessed fischer-tropsch products
US6566569Jun 23, 2000May 20, 2003Chevron U.S.A. Inc.Contacting a C5 containing paraffinic feedstock with a hydrogenation/dehydrogenation catalyst and an olefin metathesis catalyst to dehydrogenate the paraffins to olefins, metathesizing, and rehydrogenating
US6635171Jan 11, 2001Oct 21, 2003Chevron U.S.A. Inc.Process for upgrading of Fischer-Tropsch products
US6686511Jan 11, 2001Feb 3, 2004Chevron U.S.A. Inc.Separating an olefinic feedstock into light and medium olefinc fractions, contacting light fraction with oligomerization catalyst to produce first product, contacting medium fraction with second catalyst produce second product
US6706936Jan 11, 2001Mar 16, 2004Chevron U.S.A. Inc.Dehydrogenating paraffinic feedstock to produce an olefinic feedstock, which is catalytically oligomerized to produce a product of higher number average molecular weight than the feedstock, separating the heavy fraction as lube base stock
US6774272Apr 18, 2002Aug 10, 2004Chevron U.S.A. Inc.Process for converting heavy Fischer Tropsch waxy feeds blended with a waste plastic feedstream into high VI lube oils
US6822126Apr 18, 2002Nov 23, 2004Chevron U.S.A. Inc.Pyrolysis, hydrotreating, catalytic isomerization dewaxing and distillation
US6841711Jan 11, 2001Jan 11, 2005Chevron U.S.A. Inc.Process for making a lube base stock from a lower molecular weight feedstock in a catalytic distillation unit
US6864398Dec 28, 2001Mar 8, 2005Chevron U.S.A. Inc.Conversion of syngas to distillate fuels
US6900366Aug 23, 2002May 31, 2005Chevron U.S.A. Inc.Purifying substantially paraffinic product in a purification process to remove oxygen, nitrogen, and other impurities; monitoring nitrogen content of purified product; adjusting the conditions of purification to increase nitrogen removal
US6908543Oct 23, 2000Jun 21, 2005Chevron U.S.A. Inc.Method for retarding fouling of feed heaters in refinery processing
US6939999Apr 29, 2003Sep 6, 2005Syntroleum CorporationIntegrated Fischer-Tropsch process with improved alcohol processing capability
US6962651Mar 10, 2003Nov 8, 2005Chevron U.S.A. Inc.a paraffinic feedstock is hydroisomerized over a medium pore size molecular sieve catalyst under hydroisomerization conditions, separating isomerized product into a heavy and a light fractions, dehazing heavy fraction
US6982355Aug 23, 2004Jan 3, 2006Syntroleum Corporationdehydration of FT synthesis product; isomeric distillation of olefins; dehydrogenation of paraffins; distillation and dehydration of primary alcohols; low temperature, high yield
US7018525Oct 14, 2003Mar 28, 2006Chevron U.S.A. Inc.have low pour points and extremely high viscosity indexes; producing commercial lubricants with the lubricant base oils comprising paraffinic hydrocarbon components with optimized branching from waxy feeds.
US7166643Mar 8, 2004Jan 23, 2007Chevron U.S.A. Inc.Fischer Tropsch process where both hydrocarbons and high purity hydrogen are produced; use of a reverse-selective membrane to provide a hydrogen-containing retentate which is passed through a water gas shift reactor, and hydrogen-containing stream is passed through a pressure swing adsorption unit
US7198710Mar 10, 2003Apr 3, 2007Chevron U.S.A. Inc.Lubricants from catalytic hydroisomerization for oils to get pour point
US7252753Dec 1, 2004Aug 7, 2007Chevron U.S.A. Inc.Dielectric fluids and processes for making same
US7273834May 19, 2004Sep 25, 2007Chevron U.S.A. Inc.Gear oils, low temperature properties
US7374657Dec 23, 2004May 20, 2008Chevron Usa Inc.Production of low sulfur, moderately aromatic distillate fuels by hydrocracking of combined Fischer-Tropsch and petroleum streams
US7384536May 19, 2004Jun 10, 2008Chevron U.S.A. Inc.Blending a Group II and/or III base oil, a pour point depressant and a Fischer-Tropsch derived lubricant base oil containing less than 0.30 weight % aromatics and greater than 5 % molecules with cycloparaffinic functionality; blend has a Brookfield viscosity at -40 degrees C. of less than 100,000 cP.
US7390395Jun 16, 2006Jun 24, 2008Saleh ElomariHydrocarbon conversion using molecular sieve SSZ-56
US7405243May 13, 2004Jul 29, 2008Chevron U.S.A. Inc.Fischer Tropsch process yields both hydrocarbons and high purity hydrogen; involves use of a reverse-selective membrane to provide a hydrogen-containing retentate which is passed through a water gas shift reactor, and hydrogen-containing stream is passed through a pressure swing adsorption unit
US7473345Dec 2, 2004Jan 6, 2009Chevron U.S.A. Inc.Processes for making lubricant blends with low Brookfield viscosities
US7476645Mar 3, 2005Jan 13, 2009Chevron U.S.A. Inc.Synthesizing a Fischer-Tropsch oil containing less than or equal to 6 weight % molecules with monocycloparaffinic fuictionality and less than 0.05 weight % aromatics and blending it with a poly-alpha-olefin lubricant base oil with a kinematic viscosity at 100 degrees C. of 30-150 cSt
US7510674Dec 1, 2004Mar 31, 2009Chevron U.S.A. Inc.Dielectric fluids and processes for making same
US7527778Jun 7, 2007May 5, 2009Chevron U.S.A. Inc.Zinc-containing zeolite with IFR framework topology
US7572361Dec 2, 2004Aug 11, 2009Chevron U.S.A. Inc.Lubricant blends with low brookfield viscosities
US7622032Dec 21, 2006Nov 24, 2009Chevron U.S.A. Inc.Hydrocarbon conversion using molecular sieve SSZ-74
US7655605Feb 14, 2006Feb 2, 2010Chevron U.S.A. Inc.Processes for producing extra light hydrocarbon liquids
US7745502Dec 13, 2006Jun 29, 2010Chevron U.S.A. Inc.Hydrogen recovery from hydrocarbon synthesis processes
US7776206Aug 14, 2008Aug 17, 2010Chevron U.S.A. Inc.Separating the heavy petroleum residuum-derived stream into a heavy fraction and a light fraction; hydrocracking the light fraction under lube hydrocracking in the presence of a hydrocracking catalyst and hydrogen; hydrodesulfurization; hydrodenitrogenation; to suitable levels for hydroisomerization
US7951287Dec 23, 2004May 31, 2011Chevron U.S.A. Inc.Production of low sulfur, moderately aromatic distillate fuels by hydrocracking of combined Fischer-Tropsch and petroleum streams
US7981270Feb 14, 2006Jul 19, 2011Chevron U.S.A. Inc.Extra light hydrocarbon liquids
US8088961Dec 27, 2007Jan 3, 2012Chevron U.S.A. Inc.Process for preparing a pour point depressing lubricant base oil component from waste plastic and use thereof
US8409541Jan 21, 2011Apr 2, 2013Shell Oil CompanyProcess for producing a copper thiometallate or a selenometallate material
US8491782Jan 21, 2011Jul 23, 2013Shell Oil CompanyProcess for treating a hydrocarbon-containing feed
US8491783Jan 21, 2011Jul 23, 2013Shell Oil CompanyProcess for treating a hydrocarbon-containing feed
US8491784Jan 21, 2011Jul 23, 2013Shell Oil CompanyProcess for treating a hydrocarbon-containing feed
US8496803Jan 21, 2011Jul 30, 2013Shell Oil CompanyProcess for treating a hydrocarbon-containing feed
US8530370Jan 21, 2011Sep 10, 2013Shell Oil CompanyNano-tetrathiometallate or nano-tetraselenometallate material
US8562817Jan 21, 2011Oct 22, 2013Shell Oil CompanyHydrocarbon composition
US8562818Jan 21, 2011Oct 22, 2013Shell Oil CompanyHydrocarbon composition
US8597496Jan 21, 2011Dec 3, 2013Shell Oil CompanyProcess for treating a hydrocarbon-containing feed
US8597498Jan 21, 2011Dec 3, 2013Shell Oil CompanyProcess for treating a hydrocarbon-containing feed
US8597499Jan 21, 2011Dec 3, 2013Shell Oil CompanyProcess for treating a hydrocarbon-containing feed
US8597608Jan 21, 2011Dec 3, 2013Shell Oil CompanyManganese tetrathiotungstate material
US8679319Jan 21, 2011Mar 25, 2014Shell Oil CompanyHydrocarbon composition
US8840777Dec 8, 2011Sep 23, 2014Shell Oil CompanyProcess for treating a hydrocarbon-containing feed
DE112008003541T5Nov 20, 2008Dec 9, 2010Chevron U.S.A. Inc., San RamonVerfahren zur Herstellung einer Pourpunkt erniedrigenden Schmierbasisölkomponente aus Kunststoffabfall und deren Verwendung
EP1688476A1Jan 31, 2006Aug 9, 2006Chevron Oronite Company LLCLubricating base oil compositions and methods for improving fuel economy in an internal combustion engine using same
EP1927647A1Nov 29, 2007Jun 4, 2008Chevron Oronite Company LLCTraction coefficient reducing lubricating oil composition
WO2002055633A1 *Dec 10, 2001Jul 18, 2002Chevron Usa IncDimerizing olefins to make lube base stocks
WO2012134688A1Feb 28, 2012Oct 4, 2012Exxonmobil Chemical Patents Inc.Polyalphaolefins by oligomerization and isomerization
WO2013154671A1Feb 13, 2013Oct 17, 2013Chevron U.S.A. Inc.Processes using molecular sieve ssz-87
WO2013169367A1Mar 14, 2013Nov 14, 2013Chevron U.S.A. Inc.Process for making high vi lubricating oils
Classifications
U.S. Classification208/264, 208/18
International ClassificationC10G49/00
Cooperative ClassificationC10G49/007
European ClassificationC10G49/00H