Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3904726 A
Publication typeGrant
Publication dateSep 9, 1975
Filing dateJul 13, 1973
Priority dateJul 21, 1972
Also published asCA990058A1, DE2254150A1, DE2254150B2, DE2254150C3
Publication numberUS 3904726 A, US 3904726A, US-A-3904726, US3904726 A, US3904726A
InventorsFournet Jean, Jacquelin Guy
Original AssigneeDes Brevets Granofibre Sebreg
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Methods of manufacturing fibrous granulates
US 3904726 A
Abstract
This invention relates to methods of manufacturing fibrous granulates. Various fibers of animal, vegetable, mineral or synthetic origin can be granulated by a method in accordance with the invention in which the fibers are first intertangled or felted in a dry state and then tightened relative to each other by treatment with a liquid followed by drying. The liquid is used in an amount which is sufficient to form menisci between the fibres. Additional bonding between the fibers can also be effected using bonding agents etc. The present invention enables fibrous granulates to be produced which are coherent, substantially spherical, light, flexible and resilient.
Images(4)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Jacquelin et a1.

Assignee:

METHODS OF MANUFACTURING FIBROUS GRANULATES Inventors: Guy Jacquelin, Grenoble; Jean Fournet, Saint-Romain-en-Gal, both of France Societe d'Exploitation des Brevets Granofibre Sebreg, Ampuis, France Filed: July 13 1973 App]. No.: 378,899

Foreign Application Priority Data July 21, 1972 France 72.26426 References Cited UNITED STATES PATENTS 10/1949 Francis, Jr. 264/122 1/1966 Harrington, Jr. ct al. 264/122 [451 Sept. 9, 1975 3,564,083 2/1971 Foumet ct a1. 264/37;1I7 X 3,589,977 6/1971 Foumet et al. 162/9 Primary IirarriinerMelvin Goldstein Assistant Examiner-Thomas De Benedictis Attorney, Agent. or Firm-Lewis H. Eslinger; Alvin Sinderbrand 57 1 ABSTRACT This invention relates to methods of manufacturing fibrous granulates. Various fibers of animal, vegetable, mineral or synthetic origin can be granulated by a method in accordance with the invention in which the fibers are first intertanglcd or felted in a dry state and then tightened relative to each other by treatment with a liquid followed by drying. The liquid is used in an amount which is sufficient to form menisci between the fibres. Additional bonding between the fibers can also be effected using bonding agents etc. The present invention enables fibrous granulates to be produced which are coherent. substantially spherical. light, flexible and resilient.

1! :Claims, No Drawings METHODS OF MANUFACTURING FIBROUS GRANULATES This invention relates to methods of manufacturing fibrous granulates.

It has hitherto been proposed to manufacture fibrous granulates in two stages, firstly by subjecting the fibres to a dry treatment in which individual fibers assembled loosely in a tunnel having a horizontal axis are stirred by rotation of the tunnel so as to startimbrication of the fibers into groups and to form fibrous aggregates having little cohesion, and then to treat the aggregates with a liquid carrier during whichthe aggregates are suspended in a liquid and agitated with this liquid either by simple rotation or rotation combined with pulsation to consolidate the fibrous aggregates and transform them into granulates having desired properties.

The products of such a method are desirably coherent, substantially spherical, light, flexible and resilient fibrous granulates which are sufficiently solid not to come apart easily, and are relatively inexpensive to produce from the base fibers.

According to the prescntiinvention there is provided a method of manufacturing a fibrous granulate which method comprises agitating natural or synthetic fibers which are dry on their surface and have a moisture content of not more than 55% of the total weight of the fibers under dry conditions in order to initiate their imbrication in groups and form fibrous aggregates having little cohesion; depositing a liquid on the surface of the aggregates so as to form liquid menisci between the surfaces of the fibers of each aggregate and cause tighten ing of the fibers; and evaporating the liquid to intensify the tightening.

The fibers may be of natural origin, for example vegetable fibers such as wood fibers, annual plant fibers e.g. straw, cotton linters or the like; animal fibers such as wool or various hairs; or mineral fibers such as asbestos or various fibrous crystals. The fibers may also be of artificial origin, for example organic fibers such as viscoses or rayons; or mineral fibers such as spun glass or stone or the like. The fibers in addition may be of synthetic origin such as polyvinyl chloride, a polyolefin, a polycarbonate, or one of various copolymers.

As used herein, the word aggregate refers to organised groups of fibers obtained by dry treatment and the word granulate refers to spherules obtained by consolidation of such aggregates.

Using a method in accordance with the present invention it is possible to reduce the duration of the wet treatment of the aggregates compared with hitherto, the energy consumed in effecting this treatment and the energy in extracting water from the granulates. The cost of the resulting granulates can thereby be reduced considerably;

Apparatus for effecting a method in accordance with the invention can be simpler than that used for hitherto proposed methods and this makes it possible to reduce the amount of capital investment in the apparatus and this influences the cost of the granulates. Furthermore, it is possible to establish profitable small capacity installations near to places where the fibrous granulates are produced.

Where the product is to consist only of fibrous granulates, the fibrous mass resulting from the dry treatment will generally be graded in order to separate the fibrous aggregates of desired size from other components.

These other components can be pulverulent products, fibers that have remained free, and fibrous groups that are loose or are of unsuitable size. The fibrous groups tend to disintegrate and completely free the fibers that consitute them. The free fibers removed during separa' tion and the free fibers produced by disintegration, can be mixed with fresh fibers and subjected to a dry treat ment. The liquid is then only deposited on fibrous aggregates which have been graded.

Fibrous aggregates extracted from the fibrous mass resulting from the dry treatment are preferably spread in a layer of substantially uniform thickness and the liquid atomized on to this layer while the aggregate is being vibrated. I

The liquid may be water which may, if desired, contain a surfactant and/or a binder.

The fibrous granulates are advantageously dried after moistening.

In a practical embodiment of the present invention, the fibers used were distinct from one another, al though in the case of vegetable fibers, the mass of fibers treated contained afew slivers, that is to thick bundles of fibers in which numerous parallel fibers are connected to one another and constitute a group that does not have the form of a fiber.

Irrespective of the origin of the fibers, which maybe animal, vegetable, mineral or synthetic, the fibers were dry. The fibers were not moist on their surfaces at this stage but they could have internal moisture. Thus, in the case of wood fibers, the moisture contentcould be from 3 to 55% of the total weight of the fibers but it should not make them appear damp to the touch.

For the dry treatment, the individual dry fibers were assembled in a tunnel in the form of a body with a horizontal axis of revolution. The tunnel may have partitions. The tunnel was arranged to be driven in rotation about its horizontal axis. The tunnel was filled to more than half its internal volume. Moreover, no liquid was distributed in this tunnel, so that the treatment of the fibers was carried out under really dry conditions.

The fibers were subjected to mechanicalfelting interactions during rotation of the tunnel. The fibers were slightly deformed resiliently and their interlacing was consolidated by the stresses developed by these resilient forces. Fibrous aggregates were thus formed in the moving mass of fibers undergoing treatment.

Most of the resulting cohesive aggregates, which were in the form of spherules, had dimensions which corresponded substantially to the mean length of the fibers and these dimensions varied little even when the treatment was prolonged. Moreover, the fibrous structures that were formed were cohesive only in so far as their dimensions did not greatly exceed the mean length of the fibers. Larger structures had a tendency. to break during sliding of the layers of fibers relative to one another, and when'falling.

The effectiveness of the dry treatment generally depends on the extent to which the tunnelis filled, since the active driving surface must be small with respect to the volume'treated, and on the speed of rotationof the tunnel.

Particularly good results were obtained whenthe. extent of filling of thetunnel was between two thirds and four fifths of the volume of the tunnel.

For example, when 85.0kg. of weed fibers are subjected to the dry treatment in a tunnel 2.5m in diameter and 8m long, the extent of filling is 65%. After 2 hours rotation at a peripheral speed of about 8(lm/min. 80% of the fibrous mass had been transformed into aggregates.

When the grain size of the aggregates had been stabilized, the dry treatment was complete and the wet treatment could begin.

Although not always necessary. it may be found desirable to grade the treated fibrous mass before it is subjected to the wet treatment in order to separate fibrous aggregates of appropriate sizes. fibers that have remained free. fibrous groups that are loose or are of unsuitable size, and pulverulent products and the like.

This grading may be effected by screening. which also makes it possible to eliminate fibrous aggregates of appropriate size which have insufficient cohesion. These latter aggregates tend to fail to withstand the various stresses imposed by the screens, and they break The groups that are loose, or are of unsuitable size. and the remains of aggregates destroyed during screening. are disintegrated. for instance by carding. so that the fibers of which they are made are freed from one another. These fibers. and those that remained free. can be mixed with fibers being used for the first time and subjected to a fresh dry treatment so that fibers that are not aggregated or are badly aggregated are recycled.

The graded fibrous aggregates cannot be used in such a state because their internal cohesion is insufficient.

It is therefore essential to consolidate the aggregates and the wet treatment hereinafter described enables this to be effected.

The wet treatment is preferably applied to fibrous aggregates which have been separated from the rest of the mass that has been subjected to the dry treatment. However. the wet treatment can be applied to the whole of the mass. provided that the product containing the granulate can contain free fibers or loose groups of fibers. and also provided that the proportion of fi brous aggregates in the mass is sufficiently high.

The wet treatment consists of depositing a quantity of a liquid on the surface of the fibrous aggregates which is just sufficient to form liquid menisci between the surfaces of the fibers. These menisci cause tightening of the fibers and this tightening is intensified by evaporation of the liquid.

Advantageously the fibrous aggregates are spread in a layer of substantially uniform thickness on a moving surface and the liquid distributed by atomization. In order to provide uniform moistening, the moving surface is preferably vibrated. The moving surface, which may be horizontal. rising or falling, and may be flat. cylindrical, helical or of some other shape, guides the suitably moistened fibrous aggregates towards a dryer so that the liquid forming the menisci is completely and rapidly removed.

In most cases, and more particularly when the base fibers are of natural origin, the liquid can be water. The mean moisture content of the whole mass is then preferably between 50 and 85% based on the total weight of the moist aggregates.

in certain cases, however, other liquids can be sprayed on. For example, if the base fibers are polyethylene the liquid may be a hydrocarbonor a solvent which moistens the fibers.

To show clearly the transformation which results from the wet treatment. and by which the fibrous ag- 4 gregates having little cohesion become fibrous granulates having better cohesion, two types of tests have been effected.

A first series of tests was designed to measure the diametrical contraction of the fibrous aggregates subjected to wet treatment. Aggregates based on wood fibers were disposed on a motionless plate, and the variation in the diameter of a large number of aggregates was measured by means of a cathctorneter.

Atomization of water was found to be accompanied by a contraction varying from 5 to lO /z. according to the aggregates. and drying was accompanied by a further contraction of about 1%.

A second series of tests was designed to measure the cohesion of the fibrous granulates. Two needles were inserted diametrally into each granulate. Then, by means of a dynamometer, a force tending tomove the needles apart was exerted until the granulate subjected to the test disintegrated. The value of the breaking force. arbitrarily called the cohesion. is significant and was given as a criterion of estimation. The example described hereinafter refers to the results of several tests.

Fibers of conifers such as those which make up wood pulp" paste were subjected to a dry treatment in accordance with the invention. The fibrous aggregates obtained had weak cohesion because the cohesion was between and 12g for a diameter of 8mm.

The aggregates were moistened to 80% with water. and then dried. The cohesion of the fibrous granulates obtained was then between and g.

It may be advantageous to reinforce the effect of moistening, which results in producing a physical and mechanical effect in which the fibers of the aggregates are tightened. by combining the effect of moistening with that of another kind of connection between the fibcrs.

Reinforcing connections can be produced by moistening with the liquid. In this case the liquid serves to swell the surface fibers, and if these fibers have been brought sufficiently close together under the action of the surface tensional forces. connections between fibers appear and these further consolidate the granulates.

For example, if polymer fibers are to be treated, a swelling agent which permits bonding by evaporation may be used in the moistening liquid.

With certain thermoplastic fibers, the granulates can be subjected to a thermal treatment which makes it possible to accelerate evaporation of the moistening liquid and the drying of the granulates. Furthermore, it isthereby possible to soften the surface of the fibers and produce on their surfaces a pasty state similar to that obtained using a swelling agent. The interfacial tension forces than produce local welding by bringing the fibers close together.

For example. 5 to 8mm diameter polyvinyl chloride granulates having a cohesion of a few grammes between needles may attain a cohesion of more than 800g when subjected to thermal treatment for a few minutes at to C.

Fibers which are thermocontractile, and react to an increase in temperature by changing their dimensions can be subjected to a-thermal treatment in the form of a granulate which also makes it possible to accelerate evaporation of the moistening liquid and the drying of the granulate. to produce intensified imbrication and tightening of the fibers.

5 In general. the moistening liquid used with any type of fiber can include a substance capable of consolidating the approach of the fibers towards one another by glued connections. It is possible for this purpose to use various amylaceous materials. various polymers and more generally any product capable of producing a glued connection between the fibers by drying and/or thermal treatment. For example. fibrous aggregates obtained by dry treatment of conifer fibers can be moistened with a 2()g/l suspension of pro-gelled starch in water so that their weight is doubled.

After drying. the cohesion of the fibrous granulates thus obtained can reach a value between 80 and l()()g.

A method in accordance with the invention may be used in most cases in which the fibrous granulates are required to be economical and are not subjected to tensile stresses or are only subjected to weak tensile stresses.

Particularly important applications are the manufacture of light. porous insulating fillers and the manufacture of base products for the production of moulded or extruded parts forming sub-layers of various coatings.

We claim:

1. A method of manufacturing a fibrous granulate. which method comprises the steps of agitating resilient fibers which are dry on their surfaces and which have a moisture content of not mre than 55% of the total weight of the fibers under dry conditions, to initiate imbrication of the fibers in groups and form fibrous aggregates'having relatively low cohesion; thereafter depositing on the surface of the fibrous aggregates a suitable liquid selected. in accordance with the fibers being treated. to form liquid menisci on the fibers; said depositing step comprising the step of spraying only a limited amount of liquid onto the fibrous aggregates which limited amount of liquid is just sufficient to form liquid menisci between the surfaces of the fibers of each aggregate at the crossing points of the fibers, thereby to deform the fibers and cause mechanical tightening and increased mechanical interengagemcnt and cohesion of the fibers; and thence evaporating the liquid to intensify the tightening and increase the mechanical interengagement and cohesion of the fibers.

2. A method according to claim 1, wherein said agitating step comprises agitating the fibers in a rotary tunnel having a substantially horizontal axis, the tunnel being filled with fibers to between two thirds and four fifths of its volume.

3. A method according to claim 1, including the steps of grading the fibrous mass resulting from the dry agi tating step before said depositing step to separate fibrous aggregates of a predetermined size from pulverulent products. fibers that have remained free. loose fiber groups and fiber groups of less than a predetermined size. thereafter disintegrating the fiber groups to free the fibers that constitute them. collecting the free fibers removed during the grading step and the free fibers obtained by said disintegrating step and mixing the collected free" fibers with fresh fibers and subjecting them to the dry agitating step. and depositing said liquid solely on the fibrous aggregates of predetermined size separated during the grading step.

4. A method according to claim 1. wherein said dcpositing step comprises atomizing the liquid on the fibrous aggregates.

5. A method according to claim 3 including the steps of spreading the separated fibrous aggregates in a layer of substantially uniform thickness and vibrating the ag gregates during distribution of the liquid.

*6. A method according to claim 1. including the step ofdrying the fibrous aggregates after distribution of the liquid.

7. A method according to claim 1. wherein the liquid deposited on the fibrous aggregates is water and the mean moisture content thereof after deposition is from 50 to 8571 based on the total weight of the moist aggregates.

8. a mcthodaccording to claim 1. including the step of forming additional connections between the fibers to reinforce the physical and mechanical action of tightening of the fibcrs'due to dampening with the liquid.

9. A method according to claim 8. wherein the fibers are thermoplastic and additional connections are ob tained by subjecting fibers tightened by the liquid to a thermal treatment which produces local welding between the fibers.

10. A method according to claim 8. wherein the fibers are thcrmocontractile and the additional connections are obtained by subjecting the granulates tightened by the liquid to a thermal treatment which intensifies this tightening.

1 1. A method according to claim 8, wherein the damping liquid contains a binding agent which causes localised gluing between the fibers when the granulates tightened by this liquid are dried and additional connections are thereby produced.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2483406 *Dec 16, 1947Oct 4, 1949American Viscose CorpProcess and apparatus for producing fibrous materials
US3229008 *Dec 5, 1961Jan 11, 1966Eastman Kodak CoProcess for producing a polypropylene fibrous product bonded with polyethylene
US3564083 *Mar 27, 1969Feb 16, 1971Brevets Granofibre Sebreg SocFormation of fibrous granules
US3589977 *Apr 26, 1968Jun 29, 1971Brevets Granofibre Sebreg SocMethod of and apparatus for imparting combined rotational,pulsatory,and circulatory movements to a suspension of fibers
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4164534 *Mar 13, 1978Aug 14, 1979Central Glass Company, LimitedOrganic or inorganic fibers useful for heat and sound insulation
US4269859 *Apr 19, 1979May 26, 1981Brown CompanyCellulose floc granules and process
US4271115 *Aug 9, 1979Jun 2, 1981Megaloid Chemical CorporationMethod of producing a pre-wet, dust-free form of asbestos short fibers
US4560527 *Apr 24, 1984Dec 24, 1985Kimberly-Clark CorporationMethod of making agglomerated cellulosic particles using a substantially horizontal rotating drum
US5066441 *Jun 6, 1988Nov 19, 1991Rhone-Poulenc Basic Chemicals Co.Process for compacting a calcium phosphate composition
US5269993 *Oct 29, 1992Dec 14, 1993Kawasaki Mining Co. Ltd.Method of making agglomerate of whiskers or short fibers
US5406768 *Sep 1, 1992Apr 18, 1995Andersen CorporationAdvanced polymer and wood fiber composite structural component
US5441801 *Feb 12, 1993Aug 15, 1995Andersen CorporationAdvanced polymer/wood composite pellet process
US5486553 *Apr 7, 1994Jan 23, 1996Andersen CorporationAdvanced polymer/wood composite structural member
US5497594 *Oct 20, 1994Mar 12, 1996Andersen CorporationAdvanced polymer and wood fiber composite structural component
US5518677 *Jan 13, 1995May 21, 1996Andersen CorporationAdvanced polymer/wood composite pellet process
US5539027 *Oct 20, 1994Jul 23, 1996Andersen CorporationPolyvinyl chloride, wood fiber; wood replacements, construction materials
US5622600 *Jun 7, 1995Apr 22, 1997Marcal Paper Mills, Inc.Remocal of fibers from ejection stream of papermaking liquids
US5695874 *Oct 20, 1994Dec 9, 1997Andersen CorporationAdvanced polymer/wood composite pellet process
US5728270 *Nov 18, 1996Mar 17, 1998Marcal Paper Mills, Inc.From waste paper
US5807465 *May 16, 1997Sep 15, 1998Marcal Paper Mills, Inc.Absorber from recovered papermaking wastes
US5827607 *Oct 17, 1995Oct 27, 1998Andersen CorporationAdvanced polymer wood composite
US5847016 *Nov 12, 1996Dec 8, 1998Marley Mouldings Inc.Polymer and wood flour composite extrusion
US5882480 *May 7, 1997Mar 16, 1999Marcal Paper Mills, Inc.Used as agricultural carrier;forming slurry from waste paper containing kaolin, cellulose fibers, screening, cleaning and deinking, cleaning effluent, clarification, dewatering, breaking up filter cake
US5888345 *Sep 15, 1997Mar 30, 1999Marcal Paper Mills, Inc.Absorbent granular product
US5932334 *Nov 13, 1997Aug 3, 1999Andersen CorporationAdvanced polymer wood composite
US5948524 *Jan 8, 1996Sep 7, 1999Andersen CorporationAdvanced engineering resin and wood fiber composite
US5951822 *Jun 19, 1997Sep 14, 1999Marcal Paper Mills, Inc.Apparatus for making granular material
US5951927 *Apr 9, 1998Sep 14, 1999Marley Mouldings Inc.Encapsulating wood flour particles with a resin in an extrudable material of high intensity mixing consists of resin, wood flour, stabilizer, lubricants and process aid, extruding, cutting to form pellets, blowing and compressing
US6004668 *Oct 26, 1998Dec 21, 1999Andersen CorporationPolyvinyl chloride and fiber composite, pellet, wood substitute for doors and windows
US6015611 *Oct 26, 1998Jan 18, 2000Andersen CorporationThermoplastic wood pellets and cylinder extrusion, vinyl chloride and wood composites
US6015612 *May 4, 1999Jan 18, 2000Andersen CorporationPolymer wood composite
US6019873 *Mar 13, 1998Feb 1, 2000Marcal Paper Mills, Inc.Floor absorbent granular product
US6066680 *Apr 15, 1999May 23, 2000Marley Mouldings Inc.Extrudable composite of polymer and wood flour
US6214465Jul 20, 1999Apr 10, 2001Marcel Paper Mills, Inc.Floor absorbent granular product comprising kaokin clay and cellulose fibers
US6280667Apr 19, 1999Aug 28, 2001Andersen CorporationIntroducing biofiber into heated processor to remove water; introducing polyvinyl chloride; heating, shearing and compressing to form fluxed resin; mixing fluxed resin with dried biofiber and compressing and hsering; pressurization
US6344268Apr 3, 1998Feb 5, 2002Certainteed CorporationFoamed polymer-fiber composite
EP0080593A2 *Oct 15, 1982Jun 8, 1983Nitto Boseki Co., Ltd.Method of and apparatus for producing compacted chopped strands
WO1981002521A1 *Mar 10, 1980Sep 17, 1981Herman NPharmaceutical vehicle composition and process of producing same
WO2000029183A1 *Nov 12, 1999May 25, 2000Flz Faserlogistikzentrum GmbhGranulate and method and device for the production thereof
Classifications
U.S. Classification264/117, 264/37.11
International ClassificationD04H1/00, D04H1/22, D04H13/00, D04H1/04, B01J2/12, C08K7/00, D04H1/06
Cooperative ClassificationB01J2/12
European ClassificationB01J2/12