Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3905047 A
Publication typeGrant
Publication dateSep 16, 1975
Filing dateJun 27, 1973
Priority dateJun 27, 1973
Publication numberUS 3905047 A, US 3905047A, US-A-3905047, US3905047 A, US3905047A
InventorsRoger A Long
Original AssigneePosta Jr John J
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Implantable ceramic bone prosthesis
US 3905047 A
Abstract
The improved bone prosthesis of the invention comprises a unitary body containing an eutectic of metal pyrophosphate and refractory oxide. Preferably, the body also contains discrete particles of refractory oxide bonded together by the eutectic which serves as a matrix bonder. Moreover, the particles are preferably of the same refractory oxide, such as alumina, as is present in the eutectic and are of extended surface area for improved strength. The pyrophosphate preferably is calcium pyrophosphate so that the prosthesis is biodegradable. The prosthesis can be prepared, in accordance with the present method, by forming the eutectic, preferably a pourable mixture of the particles and the molten eutectic, and pouring the mixture into and filling a mold of a bone to be duplicated, solidifying the mold and recovering it from the mold. The surface of the prosthesis can be texturized, as by acid etching it, to increase bond ingrowth and/or tissue attachment when implanted.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [1 1 Long [451 Sept. 16, 1975 IMPLANTABLE CERAlVIIC BONE PROSTHESIS [75] Inventor: Roger A. Long, Escondido, Calif.

[73] Assignee: John J. Posta, Jr., Northridge, Calif.

[22] Filed: June 27, 1973 [21] Appl. No.: 373,959

[52] US. Cl 3/1.9; 128/92 C; 106/395; 106/55; 264/43 [51] Int. Cl. A61F 1/24 [58] Field of Search 3/1, 1.9-1.913; 128/92 C, 92 CA, 92 R, 92 G; 32/10 A; 106/395, 55

[56] References Cited UNITED STATES PATENTS 3,314,420 4/1967 Smith et al 128/92 C 3,662,405 5/1972 Bortz et al. 3,787,900 l/1974 McGee 3/1 FOREIGN PATENTS OR APPLICATIONS 2,008,010 8/1971 Germany 3/1 Primary Examiner-Ronald L. Frinks Attorney, Agent, or FirmJohn J. Posta, Jr., Esq.

[57] ABSTRACT The improved bone prosthesis of the invention comprises a unitary body containing an eutectic of metal pyrophosphate and refractory oxide. Preferably, the body also contains discrete particles of refractory oxide bonded together by the eutectic which serves as a matrix bonder. Moreover, the particles are preferably of the same refractory oxide, such as alumina, as is present in the eutectic and are of extended surface area for improved strength. The pyrophosphate preferably is calcium pyrophosphate so that the prosthesis is biodegradable. The prosthesis can be prepared, in accordance with the present method, by forming the eutectic, preferably a pourable mixture of the particles and the molten eutectic, and pouring the mixture into and filling a mold of a bone to be duplicated, solidifying the mold and recovering it from the mold. The surface of the prosthesis can be texturized, as by acid etching it, to increase bond ingrowth and/or tissue attachment when implanted.

10 Claims, 1 Drawing Figure IMPLANTABLE CERAMIC BONE PROSTHESIS BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to prostheses and more particularly to implantable bone prostheses and methods of making the same.

2. Description of Prior Art A bone prosthesis is an artificial device to replace a missing bone in the body. For example, a bone may have to be removed surgically because of extensive in jury thereto, e.g., erosion by disease, crushing by mechanical injury, or the bone may be missing due to a congenital defect or as a result of an explosion or the like. An artificial bone or bone portion (prosthesis) can be implanted in the body to restore the function of the affected body portion and to provide the necessary. cosmetic effect.

Various types of bone prostheses have been employed. In most instances, an attempt is made to simulate the appearance, i.e., size and shape of the missing bone or bone portion for cosmetic purposes and also to provide a durable structural support. Metal prostheses have been widely used in the past because of their high strength. However, the metal used must be carefully selected with due regard to the possibility of corrosion of the metal by body fluids and/or a possible foreign body reaction, i.e., rejection of or reaction to the metal by the body because of toxicity or incompatibility thereto.

More recently, ceramic bone prostheses more com patible with the body than metals have been used with some success. However, such prostheses are usually not very durable, being brittleand so are easily chipped and broken. Moreover, they cannot be rapidly or easily fabricated as by melting and casting into exact duplicates of the bone to be replaced, because of very high temperatures required to melt such ceramics. Instead, other procedures must be employed which takes considerable time and raise their cost. For example, the prostheses can be formed by press and sintering techniques, often with grinding and fitting to size required after initial fabrication.

It has been found that a close mechanical fit between a prosthesis replacing all or a portion of a bone and the adjacent living bone portions when the prosthesis is in place is important in order to stimulate ingrowth of living bone to bridge the gap with the prosthesis and bond the prosthesis tightly to the living bone. Such tight mechanical bonding enables the assembly to function at an early date in the manner of the original unimpaired bone. In order to obtain the required fit, the missing bone or bone portion must be exactly duplicated in situ and then made permanent. Continued exposure of the impaired area first for bone duplication and then for prosthesis fitting, normally involves trauma, so that minimizing the exposure time becomes important in many instances. As pointed out above, conventional, standard size ceramic prostheses normally take considerable time to fabricate and do not meet this requirement.

Accordingly, there is a need for a prosthesis which can be made economically, easily and rapidly into the exact duplicate of the bone or bone portion to be replaced and thus reduce exposure time, while providing good body compatibility and high structural strength.

LII

It has also been found that growth of living bone into the prosthesis can be achieved and good mechanical bonding of the prosthesis to adjacent bony parts and to adjacent connecting tissue can be accomplished when the surface porosity of the prosthesis is carefully controlled within certain limits. Metal prostheses normally are smooth and, therefore, are unsuitable from this standpoint without substantial texturizing. Ceramic prosthesis usually also are smooth surfaced and difficult to render porous while retaining their structural integrity.

Certain investigations have been made concerning the possibility of forming ceramic prostheses of material which is resorbable by the body, the prosthesis gradually being replaced by ingrowing bone until the prosthesis is completely or substantially completely substituted by living bone. While such materials can, with some problems, be made porous to stimulate bone ingrowth, they are structually weak and are further weakened during resorption, so that total immobilization of the bony area may be required, even if only minor bone replacement is made, until resorption is complete, a considerable inconvenience. Mechanical working of a structurally weak prosthesis may result in its failure. Moreover, it has been found that movement between the weak prosthesis and adjacent bony parts inhibits the healing process, impairing bone ingrowth.

Accordingly, there is a need for a biodegradable resorbable type of prosthesis which provides improved structural integrity during resorption, which can be made with a surface porosity easily and without weakening the same and which can easily be fabricated to exact dimensions for best initial fit of the part to be replaced.

SUMMARY OF THE INVENTION The improved bone prosthesis of the present inven tion and the novel method of making the same satisfy the foregoing needs. The prosthesis and method are substantially as set forth in the Abstract above. Such prosthesis can be made either permanent or resorbable (biodegradable). Both versions exhibit high structural strength, good impact resistance, controlled surface porosity and compatibility with body fluids, and are capable of economically, rapidly and easily being fabricated by the present method into exact duplicates of the bones and bone portions to be replaced. They stimulate rapid bone ingrowth and can provide a source of material used in formation of living bone. Other advantages are set forth in the following detailed description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS The single FIGURE of the drawings schematically depicts in enlarged cross section one embodiment of a portion of a prosthesis in accordance with the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT As depicted schematically in cross section in the single FIGURE, a portion of a preferred embodiment of the bone prosthesis of the invention is shown. Thus, prosthesis It) is a unitary ceramic body comprising a matrix 12 of an eutectic within which a plurality of discrete particles I4 of refractory oxide are embedded and bonded together. The eutectic is of metal pyrophosphate and refractory oxide.

The metal pyrophosphate, due to its atomic bonding structure, imparts great strength to the ceramic material. It is preferred that calcium pyrophosphate be utilized as the metal pyrophosphate because it has controlled biodegradability and is completely compatible with the body. Calcium pyrophosphate has the general chemical formula Ca P O with a melting point of l356 Ci 2 C. and a stoichiometric composition of 44.1% CaO and 55.9% P It has a density of 3.09 g./cc. in the beta or low temperature (=1140 C.) form. An inversion occurs on heating or cooling of this material and it has been noted that molten calcium pyrophosphate has a tendency to supercool and then freeze rapidly to the beta form, which is more dense than the alpha form.

Calcium pyrophosphate can be made by established chemical procedures. However, in order to obtain the most pure form for use in body implants and the like, it is preferred to calcine dicalcium phosphate at about 900 C. to calcium pyrophosphate as per the following:

Calcium pyrophosphate can be hydrolyzed slowly to the ortho monomolecular form, the rate being dependent on pH and temperature, increasing with acidity and temperature. Calcium pyrophosphate is biodegradable to the ortho monomolecular form in body fluids, assisted by P-O--P splitting body enzymes, so that calcium and phosphate are supplied to the body sera. In turn, the body sera supply calcium and phosphate back to the implant in the formation of normal body bone tissue as a replacement for the absorbed calcium pyrophosphate. It is believed that the living bone building mineral crystalline apatite is supplied in the body through hydrolysis of a less basic calcium phosphate salt. Moreover, residual phosphate salts are known to nucleate apatite. Current theory indicates that in bone, the apatite crystals are small and comprise only a part of the total mineral present, a second mineral being present in the form of a non-crystalline (amorphous) calcium phosphate. Whatever the exact mechanism for the building of living bone involved, it is believed that the availability of a ready supply of calcium and phosphate adjacent to the replacement site stimulates bone ingrowth and rapid replacement of a biodegradable bone implant. Calcium pyrophosphate serves as such a source of supply.

Magnesium pyrophosphate, sodium pyrophosphate and potassium pyrophosphate can also be used a biodegradable metal pyrophosphates, but are less preferred separately since they do not supply calcium for bone building. These pyrophosphates are slowly soluble in water or acidic media and therefore should only be used with a biodegradable or non-biodegradable metal pyrophosphate which is essentially water insoluble, so as to control the rate of degrading of the prosthesis. Their use in combination with the calcium pyrophosphate assists in controlling the hydrolysis reaction.

In the event that it is desired to make the implant non-biodegradable, then an inert metal pyrophosphate such as manganese pyrophosphate, titanium pyrophosphate, iron pyrophosphate, ziconium pyrophosphate or similar inert pyrophosphate, such as is set forth in US. Pat. No. 3,131,073 issued Apr. 28, 1964, can be employed in the present eutectic.

The refractory oxide component of the eutectic preferably comprises any suitable refractory metal oxide such as alumina, zirconia, titania, magnesia, chromia or the like which is insoluble in water and non-toxic to the body. Of the above, it is preferred to use alumina, since it is very inexpensive, readily available, totally inert and non-biodegradable, and it is known, from long term testing, to be completely non-toxic and compatible with the body and its fluids.

A eutectic of the metal pyrophosphate and refractory oxide is formed by any suitable procedure, such as by blending the pyrophosphate with the refractory oxide, both in fine particulate form, e.g., 200 to 300 mesh, and in the proper proportions. The mixture is then melted.

The proper proportion of ingredients for the eutectic is that which just begins to melt and flow at the processing temperature. This can be determined experimentally by utilizing various pyrophosphate-refractory oxide mixtures, varying the concentration of the refractory oxide from mixture to mixture, compacting each mixture, as by pressing up to 10,000 psi, and then heating the mixtures, observing which of the samples just begins to flow, as by rounding of the corners of the sample at the lowest temperature. The test temperature is then lowered while minor Changes are made in the concentration of refractory oxide in new pressed samples containing the pyrophosphate. The lowest temperature at which corner rounding occurs gives a reliable indication of the proper eutectic composition. Such a procedure is set forth in detail in US. Pat. No. 3,131,073, described above.

In the case of a mixture of, by weight 92.5% manganese pyrophosphate (Mn P O and 7.5% alumina (Al- 0 the eutectic temperature is 1,987 F., well below the melting point of the oxide, 3,720 F. It is a characteristic of the eutectic that it melts well below the melting point of its refractory oxide component, so that it can be used to form at lower temperature high strength ceramics. In the case of an eutectic employing calcium pyrophosphate (87.5% by weight) and alumina (12.5% by weight), the eutectic temperature is about2275 F. Such temperature is sufficiently low to permit melting of the eutectic and casting of the same in high temperature resistant molds such as graphite, ceramic, or the like, while the free particles of refractory oxide, e.g., alumina, are maintained.

The eutectic used in the improved bone prosthesis of the invention is highly desirable since it imparts great strength to the prosthesis, acts as a binder for solid particles of refractory oxide when they are dispersed therein and permits melting and casting of exact bone duplicates at temperatures sufficiently low such that conventional molding materials can be used.

Moreover, of considerable importance is the fact that when free particles of refractory oxide are present in the prosthesis and are of the same refractory oxide as that in the eutectic, no substantial degradation of those particles by the eutectic occurs. In other words, the eutectic represents a saturated solution in which the free refractory oxide particles are not dissolved during processing. Accordingly, the concentration and physical structure of such free particles is preserved in processing, leading to a precise prediction of the prosthesis strength, and the size and arrangement of particles, as well as the biodegradability of the prosthesis.

It will be understood that the free refractory oxide particles can be eliminated from the prosthesis, but it usually is much preferred that they be present, since they increase the strength, reduce the brittleness and decrease the shrinkage of the prosthesis. Accordingly, in the preferred embodiment of the invention, the particles are present.

In order to provide proper melting and total bonding of the free refractory oxide particles together by the eutectic, it is preferred to use an initial concentration of the refractory oxide in the eutectic mixture which is very slightly less than that necessary for complete saturation of the eutectic. Accordingly, when the liquid eutectic is formed and the free particles of the refractory oxide are added, a slight melting or dissolving of the outer surface of the particles occurs, assuring their proper bonding together in and with the binder-matric of the eutectic.

The particles of refractory oxide filler particles bonded together by the eutectic usually are of extended surface area, such as high modulus fibers, flakes, or the like, to improve bending strength or stiffness of the prosthesis. Preferably, the particles are of chemically inert refractory metal oxide, such as alumina, zirconia, titania, magnesia or the like. Most preferably, those particles are of the same refractory oxide as is present in the eutectic. Thus, the novel casting method of the invention is impractical to employ when it is desired to use fibers of lengths in excess of about /8 inch. In such instances, either the press and sinter, hot press technique, or similar fabrication can be used or the fibers can be formed into bundles, placed in a mold and then eutectic can be vacuum cast around them.

The novel prosthesis can be fabricated by any suitable method such as conventional slip casting and cold pressing followed by sintering or hot pressing. However, it is preferred to employ the novel method of the present invention, since precisely shaped and sized prostheses can be made rapidly and economically by the novel method. Such method is, however, limited to specific compositions and particle shapes.

ln forming the novel prosthesis in accordance with the present novel method, the eutectic preferably is rendered molten and, preferably, refractory oxide particles are mixed therewith to form a pourable mixture, which is then cast into a mold and solidified therein, as by cooling, after which the mold is separated therefrom and the finished prosthesis recovered.

The pourable mixture usually contains less than by weight of oxide filler particles, with the minimum filler oxide concentration being only that necessary to make a good casting ceramic.

However, when the cold press, slip cast and sintering or hot press technique is employed, the refractory oxide filler particles may be present in a substantially greater concentration by weight, for example, in excess of that of the eutectic binder-matric. Thus, the filler particles in such instances may be present, for example, in a concentration of between about 20 and about 75 percent, by weight of the prosthesis, the eutectic comprising the remainder.

It will be understood that other substances can be added to the prosthesis for certain purposes, i.e., struc tural supports, such as metal sponge or the like, texturizing or pore-forming agents, eutectic temperaturelowering agents, such as sodium phosphate, etc. Such substances usually are present in minor concentrations. In addition, the prosthesis can be made in several parts, e.g., can be provided with a shell or core of the same or different material.

It will also be understood that since the novel prosthesis of the present invention preferably incorporates at least two distinctive components, that is, the eutectic binder-matric of metal pyrophosphate and refractory oxide, plus the filler of refractory oxide particles, it is readily subject to control of the nature, size and extent of its surface pores. Such pores can facilitate live bone ingrowth and locking to or replacement of the prosthesis, and further facilitate the mechanical attachment of adjacent tissue to the prosthesis.

Surface texturizing of the prosthesis can be accomplished by selectively surface etching or leaching out, as by acid or the like, one of the components of the prosthesis, an advantage over single component ceramics. As shown in the single figure, surface pores 16 are present in prosthesis 10, the size and extent depending on the size and shape of filler particles 14 and the nature of any texturizing treatment applied to exterior of prosthesis 10. The nature of the filler and binder-matrix is such that the biodegradability, if any, of the prosthesis 10, as well as its structural strength, impact resistance, and other factors, can easily be controlled by careful selection of the pyrophosphate(s) and the refractory oxide(s) and their relative concentrations, as well as the size and shape of the filler particles. Accordingly, the prosthesis has far greater flexibility in physical and chemical characteristics than conventional ceramic prostheses. Certain further features of the prosthesis of the present invention and the present method are illustrated in the following specific examples:

EXAMPLE I A missing central portion of a human femur is replaced by a bone prosthesis implanted between the two existing end portions of the femur, with a gap therebetween of not in excess of five thousandths of an inch. The prosthesis almost exactly duplicates the missing portion of the femur and is prepared by the following procedure:

A wax impression is made of the missing central portion of the femur by filling in the gap between the two existing femur portions and checking the impression against the cavity defined by the surrounding leg tissue. The wax impression is then removed, a high temperature resistant ceramic mold is formed there around from a dip slurry from which the slurry liquid medium is then removed. The ceramic cast is baked and the wax is then melted, removed from the mold and the mold is then further hardened by firing.

A pourable mixture of a molten eutectic of calcium pyrophosphate and alumina with added solid particles of alumina is then formed. The eutectic has the composition of about 87.5 percent by weight of calcium pyrophosphate and about 12.5 percent by weight of alumina. The eutectic comprises percent by weight of the eutectic mixture with the alumina particles constituting the remainder.

The pourable mixture while at about 2300 F. is poured into the mold to fill the mold and is then allowed to solidify, after which the mold is released and the prosthesis recovered. The total time for forming the impression, manufacture of the mold, and fabrication of the prosthesis is about 60 minutes. The ceramic prosthesis is then inserted into the femur gap and fits substantially perfectly. The surgical opening is then closed and the femur is immobilized, since the two ends of the femur adjacent the prosthesis will need time to solidly fuse with the prosthesis. The prosthesis is biodegradable, its resorption and replacement by living bone occurring over a time period. The prosthesis is economical, hard, durable, of controlled biodegradability, functions very well, cosmetically and structurally knits tightly with the remainder of the femur and stimulates bone ingrowth and bone replacement.

In a parallel test, the eutectic alone is used (without filler oxide) as the pourable mixture and the results are essentially the same. However, it is noted that the ceramic cast body is slightly more brittle and shrinkage is slightly greater.

In a parallel test, titania is substituted for the alumina in the eutectic and as the filler. The eutectic contains about 14 percent by weight of titania and has a melting point of about 2275 F. Comparable results are obtained, since the major eutectic component is biodegradable, while the titania is not, the relative proportions of each determining the rate of biodegradation. The product is strong, of controlled surface porosity, and easy and rapid to make and use.

In an additional parallel test, calcium pyrophosphate eutectic of the first run is used. It is blended with alumina in a ratio of 40 weight percent eutectic to 60 weight percent alumina, to form a dry mixture. This mixture is then pressed into a body at 10,000 psi, and then fired at about 2300 F. for 30 minutes, resulting in a dense ceramic body which is then ground to the desired size and shape to provide a hard, biodegradable prosthesis.

EXAMPLE II The procedure of Example I is followed, except that a non-biodegradable inert prosthesis is fabricated from a molten eutectic of 92.5 percent by weight of manganese pyrophosphate and 7.5 percent by weight of alumina in which alumina particles in a concentration of about percent by weight of the prosthesis are dispersed. The eutectic has a melting point of about 1987 F. and comprises the remainder of the prosthesis. A hard, high structural strength, high impact resistance, chemically inert prosthesis compatible with the body is provided by the economical and rapid casting and molding procedure of Example I. Total time of obtaining the wax impression, making the mold, casting, cool ing and recovering the prosthesis is only about 60 minutes, so that the procedure permits customized fabrica tion of bony parts for substantially immediate emplacement.

In a second parallel run, an eutectic of 87.5 percent by weight of manganese pyrophosphate and 12.5 percent by weight of titania is melted at 1910 F. and mixed with titania flakes in a weight ratio of about 4:1. The molding and casting procedure of Example I is fol lowed, utilizing a casting temperature of about 1950 to 2000 F followed by solidification and recovery of the desired prosthesis. The prosthesis exhibits the improved properties described above for the aluminamanganese pyrophosphate product, including great strength, impact resistance, durability and total inertness to body fluids.

In a third parallel run, a prosthesis is fabricated using the components of the second run except the filler, titania flakes, are added in a weight percentage of about 80 percent to the eutectic mixture and blended to-' gether in a rubber-lined ball mill. The mixture is then shape pressed into a body at 10,000 psi, and sintered for 30 minutes at above 1910 F. The body when cooled is then ground to the desired size and shape to provide a hard, durable inert prosthesis. The overall processing time is considerably longer than in the first two runs of this Example, nor are the dimensions of the prosthesis as accurate as those of the first two runs, and the cost is higher.

EXAMPLE III Prostheses identical to those of Example I (first and parallel second and third runs) are surface texturized by contacting the prosthesis in each instance with dilute hydrochloric acid at elevated temperature (about F.) for about 3 minutes, until the calcium pyrophosphate eutectic at the surface of the prosthesis has been eroded to an average depth of about 44 microns, thereby increasing the porosity of that surface and facilitating live bone growth and/or other tissue thereinto. Accordingly, secure attachment of the prosthesis to adjacent femur bone portions is accomplished rapidly and full functioning of the femur is restored at an early date.

The preceding Examples clearly establish that the bone prosthesis of the present invention can be controllably biodegradable or made totally inert to body fluids. It is non-toxic, very strong and durable with good to high impact strength and can be made very easily and rapidly by the present method. The prosthesis can be surface texturized to control its porosity and can be formed in an exact size and shape for substitution for a missing bone or bone portion. The type of bones for which the described prosthesis can be substituted is not limited to the bones described herein, but are applicable to any desired bone in the body. Likewise, the prosthesis can be substituted for either part or all of any particular bone in the body. Likewise, the prosthesis can be substituted for either part or all of any particular bone in the body. Constituents of the prosthesis can stimulate bone ingrowth, due to the calcium and phosphate supplied by the prosthesis to the body sera. Other advantages are as set forth in the foregoing.

Various modifications and changes can be made in the present prosthesis and the components and in the present method, its steps, constituents and parameters. All such changes and modifications as are within the scope of the appended claims form part of the present invention.

What is claimed and desired to be secured by Letters Patent is:

1. An improved implantable bone prosthesis, said prosthesis comprising a unitary ceramic body containing a eutectic of metal pyrophosphate and refractory oxide, wherein said body includes discrete particles of refractory oxide bonded together by said eutectic, whereby said eutectic bonds together the discrete particles of refractory oxide in such a manner that no substantial degradation of said discrete particles by the eutectic occurs.

2. The improved bone prothesis of claim 1 wherein said particles are in the form of fibers.

3. The improved bone prosthesis of claim 1 wherein said particles are in the form of flakes.

4. The improved bone prosthesis of claim 1 wherein said refractory oxide comprises refractory metal oxide.

5. The improved bone prosthesis of claim 1 wherein said particles are of the same refractory oxide as that of said eutectic.

phate and alumina and wherein said particles consist essentially of alumina.

10. The improved bone prosthesis of claim 9 wherein said particles are of extended surface area for improved structural strength, and wherein said eutectic is present in a concentration in excess of about percent, by

weight, of said prosthesis.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3314420 *Oct 23, 1961Apr 18, 1967Haeger Potteries IncProsthetic parts and methods of making the same
US3662405 *Mar 12, 1969May 16, 1972Iit Res InstReinforced porous ceramic bone prosthesis
US3787900 *Jun 9, 1971Jan 29, 1974Univ Iowa Res FoundArtificial bone or tooth prosthesis material
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4113500 *Jun 2, 1977Sep 12, 1978Asahi Kogaku Kogyo Kabushiki KaishaCalcium magnesium phosphate, prosthetic teeth and bones
US4135935 *Jan 31, 1977Jan 23, 1979Ernst Leitz Wetzlar GmbhSintered composite material, a process of making same, and a method of using same
US4177524 *May 10, 1977Dec 11, 1979Pfaudler-Werke A.G.Medical securement element with abrasive grains on thread surface
US4178686 *Jan 6, 1978Dec 18, 1979Guido ReissPolymer matrix with reabsorbable and non-reabsorbable calcium phosphate, adapted for permanent growth to jawbone
US4355428 *Nov 5, 1979Oct 26, 1982S.A. Benoist Girard & CieSurgical prosthesis with grainy surface
US4366253 *Aug 11, 1980Dec 28, 1982Fuji Photo Film Co., Ltd.Phosphate glass compositions, and glass-ceramic materials, and methods of making the same
US4553272 *Feb 26, 1981Nov 19, 1985University Of PittsburghRegeneration of living tissues by growth of isolated cells in porous implant and product thereof
US4769349 *Dec 3, 1986Sep 6, 1988General Electric CompanyCeramic fiber casting
US4781721 *May 19, 1986Nov 1, 1988S+G ImplantsBone-graft material and method of manufacture
US4793809 *May 21, 1987Dec 27, 1988Myron International, Inc.Fiber filled dental porcelain
US4813965 *Feb 29, 1988Mar 21, 1989Nuclear Metals, Inc.Brazed porous coating and improved method of joining metal with silver material
US5204106 *Apr 19, 1990Apr 20, 1993Fbfc International S.A.Process for restoring an osseous defect or deficiency by filling with osseous tissue
US5217496 *Sep 30, 1992Jun 8, 1993Ab IdeaImplant and method of making it
US5658332 *Jun 30, 1994Aug 19, 1997Orthovita, Inc.Bioactive granules for bone tissue formation
US5741253 *Oct 29, 1992Apr 21, 1998Michelson; Gary KarlinMethod for inserting spinal implants
US5772661 *Feb 27, 1995Jun 30, 1998Michelson; Gary KarlinMethods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5782832 *Oct 1, 1996Jul 21, 1998Surgical Dynamics, Inc.Spinal fusion implant and method of insertion thereof
US5797909 *Jun 7, 1995Aug 25, 1998Michelson; Gary KarlinApparatus for inserting spinal implants
US5860973 *Oct 30, 1996Jan 19, 1999Michelson; Gary KarlinTranslateral spinal implant
US5885299 *Mar 14, 1996Mar 23, 1999Surgical Dynamics, Inc.Apparatus and method for implant insertion
US5965076 *Sep 22, 1997Oct 12, 1999The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod for fabricating soft tissue implants with microscopic surface roughness
US5968098 *Oct 22, 1996Oct 19, 1999Surgical Dynamics, Inc.Apparatus for fusing adjacent bone structures
US6063088 *Mar 24, 1997May 16, 2000United States Surgical CorporationMethod and instrumentation for implant insertion
US6096038 *Jun 7, 1995Aug 1, 2000Michelson; Gary KarlinApparatus for inserting spinal implants
US6102948 *Aug 20, 1997Aug 15, 2000Surgical Dynamics Inc.Spinal fusion device
US6120502 *May 27, 1994Sep 19, 2000Michelson; Gary KarlinApparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US6123705 *Oct 1, 1996Sep 26, 2000Sdgi Holdings, Inc.Interbody spinal fusion implants
US6123912 *Jan 19, 1999Sep 26, 2000National Science CouncilProcess for producing alumina material for artificial skeleton with high strength
US6149650 *May 8, 1998Nov 21, 2000Michelson; Gary KarlinThreaded spinal implant
US6190414Oct 31, 1996Feb 20, 2001Surgical Dynamics Inc.Apparatus for fusion of adjacent bone structures
US6210412Jun 7, 1995Apr 3, 2001Gary Karlin MichelsonMethod for inserting frusto-conical interbody spinal fusion implants
US6224595Apr 20, 1998May 1, 2001Sofamor Danek Holdings, Inc.Method for inserting a spinal implant
US6228386Apr 23, 1999May 8, 2001Unicare Biomedical, Inc.Compositions and methods to repair osseous defects
US6241770Mar 5, 1999Jun 5, 2001Gary K. MichelsonInterbody spinal fusion implant having an anatomically conformed trailing end
US6264656May 8, 1998Jul 24, 2001Gary Karlin MichelsonThreaded spinal implant
US6270498Jun 7, 1995Aug 7, 2001Gary Karlin MichelsonApparatus for inserting spinal implants
US6350283Apr 19, 2000Feb 26, 2002Gary K. MichelsonBone hemi-lumbar interbody spinal implant having an asymmetrical leading end and method of installation thereof
US6482427Mar 15, 2001Nov 19, 2002Unicare Biomedical, Inc.Compositions and methods for repair of osseous defects and accelerated wound healing
US6527810Dec 21, 2000Mar 4, 2003Wright Medical Technology, Inc.Bone substitutes
US6540784 *Jan 19, 2001Apr 1, 2003Board Of Regents, The University Of Texas SystemArtificial bone implants
US6582432Feb 2, 2000Jun 24, 2003Karlin Technology Inc.Cap for use with artificial spinal fusion implant
US6605089Sep 23, 1999Aug 12, 2003Gary Karlin MichelsonApparatus and method for the delivery of electrical current for interbody spinal arthrodesis
US6635086May 30, 2001Oct 21, 2003Blacksheep Technologies IncorporatedImplant for placement between cervical vertebrae
US6666890Aug 28, 2001Dec 23, 2003Gary K. MichelsonBone hemi-lumbar interbody spinal implant having an asymmetrical leading end and method of installation thereof
US6749636Apr 2, 2002Jun 15, 2004Gary K. MichelsonContoured spinal fusion implants made of bone or a bone composite material
US6758849Aug 18, 2000Jul 6, 2004Sdgi Holdings, Inc.Interbody spinal fusion implants
US6770074Nov 17, 2001Aug 3, 2004Gary Karlin MichelsonApparatus for use in inserting spinal implants
US6875213Feb 21, 2003Apr 5, 2005Sdgi Holdings, Inc.Method of inserting spinal implants with the use of imaging
US6890355Apr 2, 2002May 10, 2005Gary K. MichelsonArtificial contoured spinal fusion implants made of a material other than bone
US6899734Mar 23, 2001May 31, 2005Howmedica Osteonics Corp.Modular implant for fusing adjacent bone structure
US6923810Jun 7, 1995Aug 2, 2005Gary Karlin MichelsonFrusto-conical interbody spinal fusion implants
US6977095Nov 15, 1999Dec 20, 2005Wright Medical Technology Inc.Process for producing rigid reticulated articles
US6989031Apr 2, 2002Jan 24, 2006Sdgi Holdings, Inc.Hemi-interbody spinal implant manufactured from a major long bone ring or a bone composite
US7022137Dec 16, 2003Apr 4, 2006Sdgi Holdings, Inc.Bone hemi-lumbar interbody spinal fusion implant having an asymmetrical leading end and method of installation thereof
US7115128Oct 15, 2003Oct 3, 2006Sdgi Holdings, Inc.Method for forming through a guard an implantation space in the human spine
US7156875Nov 7, 2003Jan 2, 2007Warsaw Orthopedic, Inc.Arcuate artificial hemi-lumbar interbody spinal fusion implant having an asymmetrical leading end
US7207991Mar 18, 2002Apr 24, 2007Warsaw Orthopedic, Inc.Method for the endoscopic correction of spinal disease
US7250550Oct 22, 2004Jul 31, 2007Wright Medical Technology, Inc.Synthetic bone substitute material
US7255698Aug 11, 2003Aug 14, 2007Warsaw Orthopedic, Inc.Apparatus and method for anterior spinal stabilization
US7264622Oct 24, 2003Sep 4, 2007Warsaw Orthopedic, Inc.System for radial bone displacement
US7288093Nov 8, 2002Oct 30, 2007Warsaw Orthopedic, Inc.Spinal fusion implant having a curved end
US7291149Oct 4, 1999Nov 6, 2007Warsaw Orthopedic, Inc.Method for inserting interbody spinal fusion implants
US7303584Apr 22, 2005Dec 4, 2007Howmedica Osteonics Corp.Modular implant for fusing adjacent bone structure
US7326214Aug 9, 2003Feb 5, 2008Warsaw Orthopedic, Inc.Bone cutting device having a cutting edge with a non-extending center
US7387643Nov 7, 2003Jun 17, 2008Warsaw Orthopedic, Inc.Method for installation of artificial hemi-lumbar interbody spinal fusion implant having an asymmetrical leading end
US7399303Aug 20, 2002Jul 15, 2008Warsaw Orthopedic, Inc.Bone cutting device and method for use thereof
US7431722Jun 6, 2000Oct 7, 2008Warsaw Orthopedic, Inc.Apparatus including a guard member having a passage with a non-circular cross section for providing protected access to the spine
US7435262Jun 15, 2004Oct 14, 2008Warsaw Orthopedic, Inc.Contoured cortical bone implants
US7452359Jun 7, 1995Nov 18, 2008Warsaw Orthopedic, Inc.Apparatus for inserting spinal implants
US7455672Jul 31, 2003Nov 25, 2008Gary Karlin MichelsonMethod for the delivery of electrical current to promote bone growth between adjacent bone masses
US7455692Mar 24, 2005Nov 25, 2008Warsaw Orthopedic, Inc.Hemi-artificial contoured spinal fusion implants made of a material other than bone
US7462195Apr 19, 2000Dec 9, 2008Warsaw Orthopedic, Inc.Artificial lumbar interbody spinal implant having an asymmetrical leading end
US7491205Jun 7, 1995Feb 17, 2009Warsaw Orthopedic, Inc.Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US7534254Jun 7, 1995May 19, 2009Warsaw Orthopedic, Inc.Threaded frusto-conical interbody spinal fusion implants
US7540882Mar 24, 2005Jun 2, 2009Warsaw Orthopedic, Inc.Artificial spinal fusion implant with asymmetrical leading end
US7569054Nov 8, 2005Aug 4, 2009Warsaw Orthopedic, Inc.Tubular member having a passage and opposed bone contacting extensions
US7608105Jul 20, 2005Oct 27, 2009Howmedica Osteonics Corp.Methods of inserting conically-shaped fusion cages
US7611536Jan 24, 2006Nov 3, 2009Warsaw Orthopedic, Inc.Hemi-interbody spinal fusion implants manufactured from a major long bone ring
US7686805Jul 1, 2004Mar 30, 2010Warsaw Orthopedic, Inc.Methods for distraction of a disc space
US7691148Mar 19, 2005Apr 6, 2010Warsaw Orthopedic, Inc.Frusto-conical spinal implant
US7722619Apr 25, 2006May 25, 2010Warsaw Orthopedic, Inc.Method of maintaining distraction of a spinal disc space
US7740897Oct 6, 2005Jun 22, 2010Wright Medical Technology, Inc.ceramics, useful as bone substitute, formed via coating surfaces of pores structure with ceramic slip comprising zirconia, binder, solvent, fibers and/or whiskers, and hydroxyapatite; pyrolysis
US7754246Sep 8, 2006Jul 13, 2010Wright Medical Technology, Inc.Composite bone graft substitute cement and articles produced therefrom
US7758896 *Apr 15, 2005Jul 20, 2010University Of MassachusettsPorous calcium phosphate networks for synthetic bone material
US7766972Jul 2, 2007Aug 3, 2010Wright Medical Technology, Inc.Replacement for cancellous bone in a bone graft; an aqueous mixing solution, calcium sulfate, a plasticizer, demineralized bone matrix, and granules of a reticulated framework of interconnecting bioceramic struts defining an interconnecting interstitial void;promotes healing
US7789914Aug 26, 2004Sep 7, 2010Warsaw Orthopedic, Inc.Implant having arcuate upper and lower bearing surfaces along a longitudinal axis
US7828800May 18, 2009Nov 9, 2010Warsaw Orthopedic, Inc.Threaded frusto-conical interbody spinal fusion implants
US7879367 *Jul 17, 1998Feb 1, 2011Alfons FischerStent is magnesium and/or iron alloy; biodegradable, eliminates need for permanent implants within blood vessels; mechanical properties
US7887565Feb 18, 2006Feb 15, 2011Warsaw Orthopedic, Inc.Apparatus and method for sequential distraction
US7914530Apr 25, 2006Mar 29, 2011Warsaw Orthopedic, Inc.Tissue dilator and method for performing a spinal procedure
US7914554Mar 15, 2002Mar 29, 2011Warsaw Orthopedic, Inc.Spinal implant containing multiple bone growth promoting materials
US7935116Nov 25, 2008May 3, 2011Gary Karlin MichelsonImplant for the delivery of electrical current to promote bone growth between adjacent bone masses
US7935149Jun 2, 2009May 3, 2011Warsaw Orthopedic, Inc.Spinal fusion implant with bone screws
US7942933Apr 3, 2010May 17, 2011Warsaw Orthopedic, Inc.Frusto-conical spinal implant
US7976566Mar 25, 2002Jul 12, 2011Warsaw Orthopedic, Inc.Apparatus for insertion into an implantation space
US7993347Jul 27, 2000Aug 9, 2011Warsaw Orthopedic, Inc.Guard for use in performing human interbody spinal surgery
US8021430Sep 7, 2010Sep 20, 2011Warsaw Orthopedic, Inc.Anatomic spinal implant having anatomic bearing surfaces
US8025903Feb 13, 2007Sep 27, 2011Wright Medical Technology, Inc.Composite bone graft substitute cement and articles produced therefrom
US8057475Nov 9, 2010Nov 15, 2011Warsaw Orthopedic, Inc.Threaded interbody spinal fusion implant
US8066705Feb 21, 2003Nov 29, 2011Warsaw Orthopedic, Inc.Instrumentation for the endoscopic correction of spinal disease
US8137403Oct 2, 2009Mar 20, 2012Warsaw Orthopedic, Inc.Hemi-interbody spinal fusion implants manufactured from a major long bone ring
US8206387Apr 21, 2011Jun 26, 2012Michelson Gary KInterbody spinal implant inductively coupled to an external power supply
US8226652Nov 14, 2011Jul 24, 2012Warsaw Orthopedic, Inc.Threaded frusto-conical spinal implants
US8251997Nov 29, 2011Aug 28, 2012Warsaw Orthopedic, Inc.Method for inserting an artificial implant between two adjacent vertebrae along a coronal plane
US8292957Apr 3, 2006Oct 23, 2012Warsaw Orthopedic, Inc.Bone hemi-lumbar arcuate interbody spinal fusion implant having an asymmetrical leading end
US8323340Dec 9, 2008Dec 4, 2012Warsaw Orthopedic, Inc.Artificial hemi-lumbar interbody spinal implant having an asymmetrical leading end
US8337559Jun 1, 2010Dec 25, 2012Globus Medical, Inc.Expandable vertebral prosthesis
US8343188Apr 23, 2012Jan 1, 2013Warsaw Orthopedic, Inc.Device and method for locking a screw with a bendable plate portion
US8343220Feb 3, 2010Jan 1, 2013Warsaw Orthopedic, Inc.Nested interbody spinal fusion implants
US8353909Apr 25, 2006Jan 15, 2013Warsaw Orthopedic, Inc.Surgical instrument for distracting a spinal disc space
US8409292May 17, 2011Apr 2, 2013Warsaw Orthopedic, Inc.Spinal fusion implant
US8444696Sep 19, 2011May 21, 2013Warsaw Orthopedic, Inc.Anatomic spinal implant having anatomic bearing surfaces
US8673004Sep 30, 2003Mar 18, 2014Warsaw Orthopedic, Inc.Method for inserting an interbody spinal fusion implant having an anatomically conformed trailing end
US8679118Jul 23, 2012Mar 25, 2014Warsaw Orthopedic, Inc.Spinal implants
US8685464Jan 18, 2007Apr 1, 2014Agnovos Healthcare, LlcComposite bone graft substitute cement and articles produced therefrom
US8685465Aug 29, 2011Apr 1, 2014Agnovos Healthcare, LlcComposite bone graft substitute cement and articles produced therefrom
US8721723Jan 12, 2009May 13, 2014Globus Medical, Inc.Expandable vertebral prosthesis
US8734447Jun 27, 2000May 27, 2014Warsaw Orthopedic, Inc.Apparatus and method of inserting spinal implants
US8758344Aug 28, 2012Jun 24, 2014Warsaw Orthopedic, Inc.Spinal implant and instruments
US20100009103 *Mar 16, 2007Jan 14, 2010Hi-Lex CorporationMedical material
US20110248417 *Apr 6, 2011Oct 13, 2011Kaohsiung Medical UniversityMethod for preparing composition comprising porous ceramic with thermo-response hydrogel
DE2620907A1 *May 12, 1976Nov 17, 1977Battelle Institut E VVerankerung fuer hochbelastete endoprothesen
EP0116298A1 *Jan 12, 1984Aug 22, 1984Johannes Friedrich Prof. Dr. OsbornCeramic bone-substitute material and process for its production
Classifications
U.S. Classification623/23.56, 501/153, 606/76, 264/43
International ClassificationA61F2/00, A61F2/30, A61L27/42, A61F2/02
Cooperative ClassificationA61F2/30767, A61F2210/0004, A61L27/425, A61F2310/00203, A61F2002/30062
European ClassificationA61L27/42E, A61F2/30L