Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3905507 A
Publication typeGrant
Publication dateSep 16, 1975
Filing dateApr 5, 1974
Priority dateApr 5, 1974
Publication numberUS 3905507 A, US 3905507A, US-A-3905507, US3905507 A, US3905507A
InventorsLyu Seung W
Original AssigneeNat Can Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Profiled bottom wall for containers
US 3905507 A
Abstract
A profiled bottom wall for a drawn and ironed container having a cylindrical side wall and integral bottom wall is disclosed herein. The bottom wall and side wall merge with each other along an annular outwardly directed bead and the bottom wall has an annular inwardly directed bead located within the outwardly directed bead. The adjacent ends of the two beads are interconnected by an arcuate portion that produces a convex surface within the container and the portion of the container bottom wall within the inwardly directed bead is generally flat and merges with the adjacent end of the inwardly directed bead along a further arcuate portion that defines a concave surface within the container.
Images(1)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

Lyu

[451 Sept. 16, 1975 PROFILED BOTTOM WALL FOR CONTAINERS [75] Inventor: Seung W. Lyu, Homewood, Ill. [73] Assignee: National Can Corporation, Chicago,

Ill.

[22] Filed: Apr. 5, 1974' [21] Appl. No.2 458,213

[52] US. Cl. 220/66 [51] Int. Cl. B65D 7/42 [58] Field of Search 220/66, 69, 70

[56] References Cited UNITED STATES PATENTS 2,339,763 1/1944 Calleson et al. 220/70 X 3,409,167 11/1968 Blanchard 3,690,507 9/1972 Gailus et a1 220/66 zlll Primary Examiner-William 1. Price Assistant ExaminerSteven M. Pollard Attorney, Agent, or Firm.1ames E. Anderson 57 ABSTRACT A profiled bottom wall for a drawn and ironed container having a cylindrical side wall and integral bottom wall is disclosed herein. The bottom wall and side wall merge with each other along an annular outwardly directed bead and the bottom wall has an annular inwardly directed bead located within the outwardly directed bead. The adjacent ends of the two beads are interconnected by an arcuate portion that produces a convex surface within the container and the portion of the container bottom wall within the inwardly directed bead is generally flat and merges with the adjacent end of the inwardly directed bead along a further arcuate portion that defines a concave surface within the container.

13 Claims, 2 Drawing Figures 1 PROFILE!) BOTTOM WALL FORCONTAINERS BACKGROUND OF THEINVENTION For many years container manufacturers have been striving to produce what is referredto in the industry as a two-piece container at a competitive price. :The two-piece container consists of a body that has an inte gral botom wall at one end and the opposite end is configured to have a closure secured'the'reto. An early ex ample of such type'of container is disclosed in US. Pat. No. 2,142,743.

In more recent years, many foods and beverages, particularly carbonated beverages, have commonly been packaged in rrietal containers formed of either aluminum or steel.

In the manufacture of drawn and ironed containers for packaging carbonated beverages, it is essential to maintain the body wall and bottom wall of the container as thin as possible so that the container can be marketed at a competitive price. The cost of the container is extremely important since, for many products, the cost of the container approaches or exceeds the cost of the product being packaged therein. As such, any reduction in cost is extremely desirable.

Furthermore, because of the large market for metal containers, particularly those formed of aluminum, a very small savings in the cost of the material for a single can will produce a substantial difference in price in considering a normal order from a packager, which may include hundreds of thousands of containers. Thus, if the container manufacturer can reduce the thickness of the metal utilized in forming the container by even one-thousandth of an inch, the savings in cost can be substantial. I

To meet the competitive market price and manufacture of the most economical drawn and ironed container, one of the most difficult requirements to attain is the buckle resistance of the bottom wall when the container is used for packaging carbonated beer or other beverages while still utilizing a material that is most workable and is the thinnest possible to reduce the cost.

When a carbonated beverage is packaged in a relatively thin drawn and ironed container, the bottom wall of the container tends to buckle outwardly when exposed to normal pressures that are developed within the containers'during normal summer temperatures and during the past 'pasteurizing process.

Quite recently, container manufacturers have been striving to produce a competitively priced container that has sufficient resistance to buckling that may result from the high pressures developed within the container. Examples of these containers are shown in U.S. Pat. No. 3,690,507 and US. Pat. No. 3,760,751. Both wall thickness to be reduced by more than percent of these patents disclose drawn and ironed containers that have specifically designed bottom walls which have improved resistance to outward bulging that may.

result from high pressures in the container.

SUMMARY OF THE INVENTION of the thickness of present day commercially competitive containers for the same product.

The profiled container bottom wallis joined to' the side wall by an outwardly directed bead so that the peripheral edge of the bottom wall is less in diameter than the outside-diameter of the container. The bottom wall consists of a flat circular panel at the center of the container which has an annular spherical portion around the periphery thereof that defines a concave surface inside the container. The annular spherical surface is connected'to the outwardly directed bead through an arcuate portion having compounded radii. This connecting portion consists of an upwardly directed bead having one end connected to the outer end of the spherical. annular section and the opposite end connected to the adjacent end of the bead through an arcuate portion that define a convex surface within the container. I

With the configuration for the bottom wall as described, at least some of the forces that are developed on the container bottom wall by pressure from the product within the container counteract each other so that the actual forces which would tend to bulge the bottom wall outwardly are substantially reduced. Furthermore, the particular configuration of the bottom wall and its connection to the side wall reduces the overall diameter for the bottom wall. The arcuate portion defining the convex surfaces also adds stiffness or rigidity to the container bottom wall to thereby improve the buckling resistance as compared to conventional dome profiles.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF DRAWINGS FIG. 1 shows a fragmentary side elevation view, partly in section, showing the bottom portion of a drawn and ironed container; and

FIG. 2 is an enlarged fragmentary sectional view of the outer periphery of the container bottom wall and a small portion of the side wall.

DETAILED DESCRIPTION trated. The scope of the invention will be pointed out in the appended claims. 1

Generally speaking, the container of the present invention, designated by the reference numeral 10, has a cylindrical side wall 12 and a bottom wall 14 which are joined with each other by an annular outwardly directed bead 16. The container bottom wall 14 has an inverted flat dome profile at the center thereof which is connected to outwardly directed bead or punch nose portion 16 through a portion 20 which has a double curvature between bead 16 and inverted fiat dome l8.

2 The configuration of the bottom wall of the container provides improved buckling resistance to withstand the internal pressures of processing and warehousing while still allowing for considerable latitude for dome-depth control and design of containers particularly adapted larly profiled bottom wall that will allow the container a for packaging carbonated beverages.

More specifically, the bottom wall consists of an arcuate portion 22 that merges at a juncture J1 (FIG. 2) with one end of outwardly directed bead 16, the opposite end of which is connected to side wall 12 through a connecting portion 24. Arcuate portion 22 is joined at its opposite end at a juncture J2 to an inwardly directed bead 26 and the opposite end of bead 26 is integrally joined with a second arcuate portion 28 which defines an annular spherical portion around a central flat portion 30.

Considering now the dimensional aspects of the present invention, it will be noted that an outwardly directed annular bead has a radius R1 which has its center located inside the container while inwardly directed bead 26 has a radius R2 which has its center located outside the container. Also, arcuate portion 22 has a radius R3 which is located outside the container so that a convex surface 29 is formed inside the container. The second arcuate portion 28 has a radius R4 which is located inside the container and therefore defines a concave surface 32 that integrally joins flat panel 30 with the adjacent end of inwardly directed annular bead 26.

Container side wall 12 has an outside diameter D1 which is tapered inwardly slightly along arcuate portion 24 and is joined to arcuate portion 22 by bead 16 having radius R1. This results in having the lowermost edge of bead l6 define a diameter D2 which is smaller than the diameter D1. The uppermost edge of inwardly directed bead 26 defines a diameter D3 while the peripheral edge of flat panel 30 defines a diameter D4.

The particular configuration and radii of the various arcuate sections between container side wall 12 and flat panel 30 result in a vertical dimension H1 between flat panel 30 and the lowermost edge of outwardly directed annular bead 16 and an overall height of bottom wall 14, designated by the reference H2, which is the vertical dimension between the uppermost edge of the inwardly directed annular bead and the lowermost edge of outwardly directed bead 16. The particular dimensions all play some role in determining the rigidity of the container bottom wall which in turn determines the effective resistance to pressure applied to the inside surface of container 10.

The most important aspects of the configuration of the bottom of the container are the fact that (1) the lowermost edge of outwardly directed annular bead 16 (D2) is connected to the uppermost edge of inwardly directed annular bead 26 (D3) by a compound curve which will be described in more detail later, and (2) the flat panel 30 is displaced below the uppermost edge of inwardly directed annular bead 26 by a predetermined dimension. The result is that pressure applied to the portion of the bottom wall which is located above flat panel 30 (the area generally between the difference of H2 and H1) will produce forces which have horizontal components that will act against each other and thereby result in a zero resultant force on the container bottom wall. More specifically, the horizontal components of the forces developed on concave surface 32 and the portion of bead 26 located inside diameter D3 will be counteracted by forces developed in the upper portion of convex surface 29 and the portion of bead 26 which is located outside diameter D3.

Also, the effective diameter of the container bottom wall will be defined by the lowermost edge of the annular bead 16 which is less than the diameter of the container and this acts as an anchor point for bottom wall 18. The result is that the overall area of the container bottom wall 18, defined by diameter D2, is less than the diameter of the container.

This arrangement has a distinct advantage over containers of the type shown in US. Pat. No. 3,690,507. A container designed according to the teachings of this patent will have a tendency to expand at the juncture between the side wall and bottom wall. The result is that the side wall will tend to bulge outwardly or grow" at the lower end which will effectively increase the diameter of the bottom wall. The net result is that the bottom wall will bulge or buckle at a lower pressure.

The rigidity of the container bottom wall is further increased by the convex surface 29 located adjacent the outer peripheral diameter of bottom wall 18. The compound curvature of the section 20 between diameters D2 and D3 is particularly important in producing an extremely rigid bottom wall with metal of minimum thickness.

An inspection of FIG. 2 shows that a line L1 drawn tangent to the juncture J1 between arcuate surface 22 and outwardly directed annular bead l6 defines an angle A with respect to the outer adjacent surface of the container side wall 12, which is represented by the plane P drawn through the center of radius R1. A second tangent line L2 at the juncture between the arcuate portion 22 and inwardly directed annular bead 26 defines an angle B with respect to plane P. It has been determined that the proper relationship of these angles plays an extremely important role in preventing outward deformation of the connecting portion 20 between diameters D2 and D3. Also, the particular radii and diameters as well as the height H1 and H2 can be directly correlated to the outside diameter of container side wall 12 and the thickness (T1) of bottom wall 18. These dimensions have been determined to be within the following ranges:

While not limiting to any specific direct relationship to the various dimensions listed above, a typical example of an acceptable container could have the following dimensions: 1

Summarizing the present invention, the side wall 12 of the drawn and ironed cylindrical container body, which may be formed of either aluminum or steel, is joined to bottom 18 at a reduced diameter portion D2 and bottom wall has a compound curvature between the lowermost edge and the uppermost edge with a partial spherical annular surface inside the uppermost edge which is ultimately connected to an inverted flat panel portion that defines the center of the bottom wall 18.

What is claimed is:

1. A metal container having a cylindrical side wall and an effectively rigid bottom wall integral therewith at the bottom end thereof, said bottom wall and side wall merging along one end of an annular outwardly directed bead, said bead having an end opposite to said one end spaced diametrically inwardly thereof, said bottom wall having an annular inwardly directed bead located within said outwardly directed bead, said inwardly directed bead having opposite ends one of which is adjacent said opposite end of said outwardly directed bead, and an arcuate portion interconnecting the two adjacent ends of the respective beads, said arcuate portion producing a convex surface within said container between said beads, said arcuate portion and said beads providing resistance to outward deformation of said bottom wall when pressure is applied inside said container, said bottom wall further including a generally flat central portion within said inwardly directed bead, said generally flat portion being spaced vertically above the lower end of said outwardly directed bead and vertically below the upper end of said inwardly directed bead, said generally flat portion merging with an adjacent end of said inwardly directed bead along a second arcuate portion defining a concave surface inside said container.

2. A container as defined in claim 1, in which said arcuate portion has a radius in the range of 0.5 to 3.0

7 times the outside diameter of said side wall.

3. A container as defined in claim 1, which a lowermost edge of said outwardly directed bead defines a first diameter which is less than the outside diameter of said side wall and in which said inwardly directed bead has an uppermost edge which defines a second diameter that is in the range of 0.75 to 0.95 times said first diameter.

4. A container as defined in claim 3, in which said first diameter is in the range of 0.85 to 0.95 times the outside diameter of said side wall.

5. A container as defined in claim 2, in which said outwardly directed bead has a second radius which is in the range of 3.0 to 5.0 times the thickness of said bottom wall and said inwardly directed bead has a third radius which is in the range of 4.0 to 6.0 times the thickness of said bottom wall.

rected bead and said arcuate portion defines a first angle less than 15 with respect to the adjacent side wall and a line tangent to the juncture between said inwardly directed bead and said arcuate portion defines an angle of less than 35 with respect to the adjacent side wall of the container.

8. A container as defined in claim 1, in which the vertical dimension between the lowermost edge of said container and said flat portion is in the range of 8.0 to 15.0 times the thickness of said bottom wall.

9. A container as defined in claim 8, in which the vertical dimension between the lowermost edge of said container and the uppermost edge of said inwardly directed bead is in the range of 15 to 25 times the thickness of said bottom wall.

10. A metal container having a cylindrical side wall and an integral effectively rigid bottom wall, said bottom wall and side wall merging along an annular outwardly directed bead having one end joined to said side wall and an opposite end spaced diametrically inwardly thereof, said bottom wall having an annular inwardly directed bead located within said outwardly directed bead, said inwardly directed bead having opposite ends one of which is adjacent said opposite end of said outwardly directed bead, said bottom wall having an arcuate portion between adjacent ends of said beads, said portion having a first juncture with said opposite end of said outwardly directed bead and a second juncture with an adjacent end of said inwardly directed bead, a line tangent to said first juncture defining an angle of less than 15 with said side wall and a line tangent to said second juncture defining an angle greater than 20 with said side wall, said arcuate portion producing a convex surface within said container between said beads, said arcuate portion and said beads providing resistance to outward deformation of said bottom wall when pressure is applied inside said container, said bottom wall further including a generally flat portion within said inwardly directed bead, said generally flat portion being spaced vertically about the lower end of said outwardly directed bead and vertically below the upper end of said inwardly directed bead, said generally flat portion merging with said inwardly directed bead along an arcuate portion defining a concave surface inside said container.

11. A container as defined in claim 10, in which said flat portion is vertically positioned to be approximately equally spaced from the uppermost edge of said inwardly directed bead and the lowermost edge of said outwardly directed bead.

12. A container as defined in claim 11, in which said outside diameter of said side wall defines a first diame- 6. A container as defined in claim 5, in which said ter and said lowermost edge of said outwardly directed bead defines a second diameter which is in the range of 0.85 to 0.95 times the first diameter, and in which said uppermost edge of said inwardly directed bead defines a third diameter in the range of 0.75 to 0.95 times the second diameter, and said flat portion has a fourth diameter in the range of 0.65 to 0.85 times the third dimeter.

13. A container as defined in claim 12, in which said portion between adjacent ends of said beads is arcuate and defines a convex surface inside said container, said convex surface having a radiusin the range of 0.5 to 3.0

times said first diameter.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2339763 *Mar 21, 1941Jan 25, 1944Crown Cork & Seal CoContainer and method of making same
US3409167 *Mar 24, 1967Nov 5, 1968American Can CoContainer with flexible bottom
US3690507 *Apr 28, 1970Sep 12, 1972Continental Can CoProfiled bottom wall for extruded and wall ironed cans
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3979009 *Oct 17, 1975Sep 7, 1976Kaiser Aluminum & Chemical CorporationContainer bottom structure
US4120419 *Feb 23, 1976Oct 17, 1978National Steel CorporationHigh strength seamless chime can body, sheet metal container for vacuum packs, and manufacture
US4134510 *Feb 9, 1977Jan 16, 1979Owens-Illinois, Inc.Bottle having ribbed bottom
US4177746 *Sep 21, 1978Dec 11, 1979Reynolds Metals CompanyMethod of forming a container
US4222494 *Mar 4, 1977Sep 16, 1980Reynolds Metals CompanyContainer
US4515284 *Aug 21, 1980May 7, 1985Reynolds Metals CompanyCan body bottom configuration
US4685322 *Sep 3, 1985Aug 11, 1987Aluminum Company Of AmericaMethod of forming a drawn and redrawn container body
US4953738 *Feb 19, 1988Sep 4, 1990Stirbis James SOne piece can body with domed bottom
US5014536 *Feb 21, 1986May 14, 1991Weirton Steel CorporationMethod and apparatus for drawing sheet metal can stock
US5105973 *Oct 22, 1990Apr 21, 1992Ball CorporationBeverage container with improved bottom strength
US5217737 *May 20, 1991Jun 8, 1993Abbott LaboratoriesPlastic containers capable of surviving sterilization
US5222385 *Jul 25, 1991Jun 29, 1993American National Can CompanyMethod and apparatus for reforming can bottom to provide improved strength
US5234126 *Jan 3, 1992Aug 10, 1993Abbott LaboratoriesPlastic container
US5325696 *Apr 28, 1993Jul 5, 1994Ball CorporationApparatus and method for strengthening bottom of container
US5351852 *Oct 10, 1991Oct 4, 1994Aluminum Company Of AmericaBase profile for a drawn container
US5394727 *Aug 18, 1993Mar 7, 1995Aluminum Company Of AmericaMethod of forming a metal container body
US5487295 *Mar 3, 1995Jan 30, 1996Aluminum Company Of AmericaMethod of forming a metal container body
US5522248 *Jan 10, 1995Jun 4, 1996Aluminum Company Of AmericaMethod of forming a metal container body
US5524468 *Jun 30, 1994Jun 11, 1996Ball CorporationApparatus and method for strengthening bottom of container
US5540352 *Jul 27, 1992Jul 30, 1996American National Can CompanyMethod and apparatus for reforming can bottom to provide improved strength
US5593063 *Jul 13, 1993Jan 14, 1997Carnaudmetalbox PlcDeformable end wall for a pressure-resistant container
US5680952 *Sep 1, 1995Oct 28, 1997Ball CorporationEnd constructions for containers
US5697242 *Jun 25, 1996Dec 16, 1997American National Can CompanyMethod and apparatus for reforming can bottom to provide improved strength
US5836473 *Aug 29, 1994Nov 17, 1998Ball CorporationBeverage container with increased bottom strength
US6131761 *Jun 3, 1999Oct 17, 2000Crown Cork & Seal Technologies CorporationCan bottom having improved strength and apparatus for making same
US6155451 *Jan 3, 2000Dec 5, 2000J. L. Clark, Inc.Sealed metal container
US6220073Apr 25, 2000Apr 24, 2001Crown Cork & Seal Technologies CorporationCan bottom having improved strength and apparatus for making same
US6398544Dec 27, 2000Jun 4, 2002J. L. Clark, Inc.Formed safety bottom for a candle can
US6439413 *Feb 29, 2000Aug 27, 2002Graham Packaging Company, L.P.Hot-fillable and retortable flat paneled jar
US6543268Apr 2, 2002Apr 8, 2003J. L. Clark, Inc.Deep drawn candle can with formed safety bottom
US6616393Feb 7, 2000Sep 9, 2003Ball CorporationLink coupling apparatus and method for container bottom reformer
US6648631Jan 27, 2003Nov 18, 2003J. L. Clark, Inc.Deep drawn candle can with formed safety bottom
US7247017Feb 17, 2004Jul 24, 2007S.C. Johnson & Son, Inc.Melting plate candles
US7591646Jul 17, 2007Sep 22, 2009S. C. Johnson & Son, Inc.Heat exchange method for melting plate candle
US8960472May 25, 2011Feb 24, 2015Toyo Seikan Kaisha, Ltd.Seamless can body
US9260217Jan 30, 2007Feb 16, 2016Impress Group B.V.Can end for a can and such can
US20090090646 *Feb 5, 2006Apr 9, 2009Willem Leendert Pieter Van DamStackable flat bottomed can
US20100059530 *Jan 30, 2007Mar 11, 2010Impress Group B.V.Can End for a Can and Such Can
USD744861Mar 14, 2013Dec 8, 2015Crown Packaging Technology, Inc.Aerosol can
EP1103470A1 *Dec 25, 1998May 30, 2001Toyo Seikan Kaisya, Ltd.Metal can having a pressure control device
WO1986002026A1 *Sep 30, 1985Apr 10, 1986National Can CorporationDomer assembly for forming container end wall
WO1993012975A1 *Dec 17, 1992Jul 8, 1993Abbott LaboratoriesRetortable plastic container
Classifications
U.S. Classification220/608, 220/606
International ClassificationB65D1/16, B65D8/04, B65D8/00, B65D1/00
Cooperative ClassificationB65D1/165
European ClassificationB65D1/16B
Legal Events
DateCodeEventDescription
Nov 16, 1987ASAssignment
Owner name: AMERICAN NATIONAL CAN CORPORATION, A CORP OF DE.
Free format text: MERGER;ASSIGNORS:AMERICAN CAN PACKAGING INC., A CORP. OF DE.;TRAFALGAR INDUSTRIES INC., (INTO);NATIONAL CAN CORPORATION;REEL/FRAME:004813/0201
Effective date: 19870430