Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3906961 A
Publication typeGrant
Publication dateSep 23, 1975
Filing dateAug 30, 1973
Priority dateFeb 17, 1972
Publication numberUS 3906961 A, US 3906961A, US-A-3906961, US3906961 A, US3906961A
InventorsCartmell James H, Rowell Lorne A
Original AssigneeImasco Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Rotary tobacco dryer
US 3906961 A
Abstract
A tobacco dryer is disclosed which comprises a rotating substantially cylindrical drum in which the tobacco is dried. The drum has a first end and a second end and the tobacco which is to be dried enters the first end of the drum and leaves at the second end of the drum. Process air which has a low absolute humidity is introduced into the drum at the second end and flows through the drum in the opposite direction to the flow of tobacco, so as to pick up and remove from the drum, moisture released from the tobacco. A gas fired burner located within the dryer housing produces heating air. This heating air is forced over the exterior surfaces of the rotating drum at a velocity between 500 feet per minute and 3,500 feet per minute so as to increase the heat conductance through the rotating drum. In addition, the dryer is also provided with a controlled water spray which is introduced into the second end of the rotating drum and thereby controls the moisture content of the tobacco leaving the dryer.
Images(2)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 91 Rowell et a1.

1 1 Sept. 23, 1975 1 1 ROTARY TOBACCO DRYER [75] Inventors: Lorne A. Rowell, Lachlne; James H.

Related U.S. Application Data [62] Division of Ser. No. 227,693, Feb. 17, 1972, Pat. No

[52] U.S. C1. 131/135; 34/46; 131/137; 131/140 R; 432/107 [51] Int. Cl. A24B 03/04 [58] Field of Search 131/133 R, 134, 135, 137,

131/138,140'R,136,21,14O A, 140 B, 140 P, 140 C, 139; 34/46, 60, 135, 137,

Wochnowski 131/135 Wellford 34/46 X Primary Examiner-Robert W. Michell Assistant Examiner-John F. Pitrelli [57] ABSTRACT A tobacco dryer is disclosed which comprises a rotating substantially cylindrical drum in which the tobacco is dried. The drum has a first end and a second end and the tobacco which is to be dried enters the first end of the drum and leaves at the second end of the drum. Process air which has a low absolute humidity is introduced into the drum at the second end and flows through the drum in the opposite direction to the flow of tobacco, so as to pick up and remove from the drum, moisture released from the tobacco. A gas fired burner located within the dryer housing produces heating air. This heating air is forced over the exterior surfaces of the rotating drum at a velocity between 500 feet per minute and 3,500 feet per minute so as to increase the heat conductance through the rotating drum. in addition, the dryer is also provided with a controlled water spray which is introduced into the second end of the rotating drum and thereby controls the moisture content of the tobacco leaving the dryer.

4 Claims, 8 Drawing Figures US Patent Sept. 23,1975 Sheet 1 of2 3,906,961

US Patent Sept. 23,1975 Sheet 2 of2 3,906,961

ROTARY TOBACCO DRYER This is a division of application Ser. No. 227,693 filed Feb. l7.l972, now U.S. Pat. No. 3,785,765v

GENERAL DESCRIPTION, DISCUSSION OF PRIOR ART AND OBJECTS OF THE INVENTION The present invention relates to a rotary drum type tobacco drying device and more particularly to a device for drying tobacco while maintaining the moisture content of the outgoing tobacco substantially constant within close tolerances. This novel drying device also exhibits a dynamic operating range which is wider than many known devices by increasing the quantity of heat transferred through the dryer drum surface by moving the heating air over the drums exterior surface at high relative velocities. ln addition, the dryer of the present invention further increases the quantity of heat transferred to the tobacco by forcing heating air at high velocities through hollow paddles which are arranged on the interior of the drying drum.

It is advantageous that tobacco dryers be capable of operating over a wide range of loads. For example, one week a dryer might be required which is capable of drying tobacco at the rate of I0,000 pounds per hour, and that same dryer the next week, might be required to dry tobacco at the rate of 2,500 pounds per hour, representing a loading change on the dryer of approximately 400%. This type of load change can be thought of as a long term load change. A tobacco dryer capable of handling this type of long term load change must necessarily have a wide dynamic range of efficient operation.

A second type of load change, defined herein as short term load change, is also found in tobacco drying. Short term load change is caused by drying tobacco generally having varying initial characteristics, as for example, tobacco having a varying initial moisture content. A tobacco dryer capable of handling short term variations must be capable of quickly changing its operating conditions so that it can follow" the varying tobacco conditions to yield a final product which exhibits constant characteristics.

Steam drying units are one type of known device for drying tobacco. A steam dryer consists generally of a long rotating jacketed steam heated tubular shaped drum through which is passed the tobacco to be dried. Steam pipes are arranged longitudinally within the steam heated tubular drum to form paddles. Steam is fed through rotary joints and radially extending steam pipes to the steam heated drum and to the pipes making up the paddles, and in this manner heat energy is transferred via the pipes and drum walls to the tobacco tumbling within the drum. The quantity of heat transferred to the tobacco is directly dependent on the surface temperature of the steam system which, of course, is dependent on the temperature of the steam circulating within the system. If the long term load on the dryer changes. the amount of heat energy released by the steam must vary accordingly, to compensate for this load change. In order to change the heat energy output of the steam, its temperature must be varied and this is accomplished by changing the pressure of the steam. The rotating drum and rotating joints must be considered as pressure vessels, carrying with them all of the limitations of pressure vessel design. Present steam drying Units normally operate between 227 and 324F which constitutes a dynamic temperature operating range of approximately 100F. This dynamic temperature operating range represents a steam pressure variation from 5 to psi. In order to increase the dynamic temperature range of the steam tobacco drying unit beyond IOOF it would be necessary to build pressure vessel parts capable of withstanding pressures in excess of 80 psi. Pressures below 5 psi are not practicable.

There are several other disadvantages of the present steam type dryers which are overcome by the forced hot air drum dryer of the present invention. The steam drying system requires a boiler room and pipes interconnecting the boiler room with the drying unit. The boiler room is costly and less efficient compared with the present invention which generates all of the tobacco drying heat within the drying unit itself.

The tobacco dryer of the present invention has a rotating drum which is free of steam pipes, rotatingjoints and radially oriented steam pipes. These obstacles tend to afford places within the dryer where tobacco can hang up, producing gum and over drying the tobacco.

The second most common form of rotary tobacco dryer is known as the Gas Roaster type". The gas roaster type dryer is comprised of a rotating drum having a flue mounted directly above it and a fire situated directly below it. The fire, usually a gas fire, runs the entire length of the drum. The fire heats up the air surrounding the surface of the rotating metal drum thereby transferring heat into the tobacco. The heated air is circulated around the surface of the drum by convection only and as a result, in order to transfer sufficient heat energy through the rotating drum, the air temperature surrounding the drum must be very high. Indeed, in order to obtain a wide dynamic range in the roaster type dryer necessary to efficiently handle wide variations in long term dryer loading, the air temperature surrounding the rotating drum becomes extremely high.

The present invention utilizes the fact that the quantity of heat transferred through a surface is dependent on the velocity of the heated air passing that surface in addition to the temperature of that air. For example, under similar loading conditions, air at a temperature of 445F moving at a velocity of 3,000 feet per minute past a surface, transfers the same quantity of heat through that surface as air at a temperature over 800F travelling at a velocity of 400 feet per minute over the surface. As a result, a tobacco dryer in accordance with the present invention yields an increased dynamic operating range without the necessity of raising the air temperatures surrounding the rotating drum into excessive temperature ranges.

It is well known that the main heating load for any dryer is that required to evaporate water. It is also well known that the amount of water removed from the material being dried can be altered in a rotary drum type dryer by changing the temperature of the heated surfaces. However, the response time to such change is quite long due to the large thermal inertia involved and the length of time that the material takes to travel through the drying drum.

Within its controllable range, a dryer in accordance with the present invention is provided with a constant evaporating load. This is accomplished by adding a water spraying system which injects a fine water spray into the tobacco exit end of the drying drum, thereby providing a variable evaporating load. The sum of water evaporated from the tobacco and from the fine water spray remains substantially constant.

Tobacco Moisture (ontcnt Tobacco Moisture Content DESCRIPTION OF THE DRAWINGS The invention will be described hereinbelow with the aid of the following drawings, in which:

FIG. I is a schematic sectional side view of one em- 5 bodiment of a tobacco dryer according to the present invention;

M oisturc Evaporated Entering Dryer Leaning Dryer b Dryer From From Total Tobacco Spray 20.05 16.5% 3.5% U. l x! 3.69 NORMAL I959? I655? 3.0% (1.6% 3.69 H.062 16.5% 2.5% Llfi 3.6%

With this method of ocntrol, the reaction time to short term evaporating load changes is very short and thus lends itself to automatic control.

A further advantage of the water spray technique according to the present invention shows itself in minimizing or eliminating over drying of the tobacco at the beginning and end of the drying operation. The water spray acts as a dummy evaporating load.

Canadian Patent No. 596,376 which issued to John A. Maul on 19 April 1960, discloses a conveyor drying device which varies the moisture content of the tobacco by injecting steam into the dryer. This technique however, does not maintain a constant evaporating load on the dryer because the water introduced has already been evaporated and is accompanied by the heat of vaporization. This extra heat increases the exit temperature of the tobacco which in turn causes more drying to take place in the cooler and automatic control of moisture very difficult.

It is therefore an object of the present invention to provide a tobacco dryer of the rotary drum type which has a wide useful dynamic range of operation capable of being economically used to dry tobacco under a wide range of long term loading conditions.

It is a further object of the present invention to provide a tobacco dryer of the rotary drum type which is capable of maintaining the moisture content of the exiting tobacco to within close tolerances.

It is yet another object of the present invention to provide a rotary drum type tobacco dryer which has a wide dynamic range of efficient operation while maintaining relatively low heating air temperatures by achieving high heat energy conductance through the drum surface by imparting a high velocity to the heating air passing over the heated metal surfaces in contact with the tobacco.

In accordance with the present invention there is provided a tobacco dryer, comprising a rotating substantially cylindrical drum in which the tobacco is dried; said drum having a first end and a second end; means for introducing tobacco at said first end and means for removing tobacco at said second end; means for introducing process air into said drum at said second end and extracting said process air from said drum at said first end so that said process air travels in a direction within said drum opposite to that of said tobacco; heating means for maintaining the temperature of heating air; and means for circulating said heating air at velocity between 500 feet per minute and 3,500 feet per minute over the outer surface of said drum to thereby achieve high heat conductance through said drum.

FIG. 2 is a schematic sectional end view of the embodiment shown in FIG. 1 taken along 22 of FIG. 1; and

FIG. 3 is a schematic sectional end view of the embodiment shown in FIG. 1 taken along 33 of FIG. 1.

DETAILED DESCRIPTION Referring now to FIG. 1, a tobacco drying drum 40, situated within an insulated housing generally indicated at 41 is mounted for rotation on two sets of trunnion wheels 42 and 44 via trunnion rings 46 and 48. An electric motor (not shown) is arranged to drive the drum at a rotational speed of approximately l0 R.P.M. The tobacco 50, which is to be dried, is fed by any conventional conveyor 51 into the tobacco input hopper 52 so that it falls on the screw type conveyor 54 which feeds the tobacco into the drying drum 40. The drum 40 is slightly tilted upwardly at its tobacco input hopper end so that the tobacco entering at that end will eventually move along the drum and exit at the tobacco output hopper end generally indicated at 56. A fan 58 provides process air pressure at the tobacco hopper output end 56. The process air enters the drying drum 40 at its exit end and travels within the drum in a direction as indicated by arrows 60 opposite the direction of travel of the tobacco being dried.

The process air is extracted via the extractor pump 62 and is exhausted to the atmosphere via exhaust pipe 64. A rotary air outlet screen 68 is situated in the tobacco input hopper 52 to remove small particles of tobacco which may be suspended in the process air. Air dampers 70 and 72 located in the input and output pipes respectively of the process air system control the quantity of process air flowing in the drying drum. The process air entering the tobacco output hopper 56 can optionally be slightly heated to reduce the tendency of condensation on metal parts. However, the degree of heating which the process air receives is only slight and does not upset the loading of the dryer.

The dried tobacco leaving the drying drum enters the tobacco output hopper 56 and is fed via gravity into the metering tube 74. The tobacco upon leaving the metering tube 74 is removed from the dryer assembly via a conveyor 76 which can be of any conventional design. It is important that the speed at which the conveyor 76 removes the dried tobacco be controlled so that the metering tube 74 does not become empty of tobacco. The process air fan 58 provides a positive pressure in the tobacco exit hopper and the tobacco filling the metering tube 74 provides a seal which does not allow the process air to exit via the metering tube. Seals 43 associated with the trunnion rings prevent the escape of process air to the exterior of the drying unit.

Situated on the side of the metering tube 74 is a moistitre content sensing head 78 which can be of any coit- \entional design which provides a continuous output signal Proportional to the moisture content of the tobacco passing through the metering tithe. The output signal of the moisture content sensing head is fed to a moisture content controller 80. The controller 80 adjusts a servo operated water valve 82 so as to control the quantity of water being injected into the output end of the drying drum 40. The water supply no/zle 84 is of a conventional type which provides a fine spray.

When the sensing head 78 senses, for example, a dc crease in the moisture content of the tobacco passing through the metering tube 74, a signal is received at the controller 80. The controller 00 then opens the servo operated water valve 82 so that more water is sprayed into the tobacco exit end of the drying drum 40. In this manner, the moisture content of the dried exiting to bacco can be maintained to within very close tolerances. Since the moisture content of the exiting tobacco is controlled by a water spray, changes in its moisture content may he carried out without changing the temperature of the heating air, provided the latter is within the controllable range. As a result, the moisture content of the exiting tobacco can he maintained at a predetermined desired level by variations taking only a few seconds.

The heat for drying the tobacco is supplied by a burner unit 86 mounted in the housing 4]. The burner can be of any heat energy producing source, but a gas or oil fired burner has been found to be most efficient. The burner 86 heats up the air in the outer section of the insulated housing generally indicated at 88. The heated air in region 88 of the dryer assembly is pumped by fan 90 into a pressurized annular plenum 9| which surrounds the drying drum 40 in its centrev A series of hollow triangularly shaped paddles 98, seen in cross section in FIG. 2, are arranged longitudinally along the interior of the drying drum 40. FIG. 2 shows only four paddles for simplicity, but it can he appreciated that any number of paddles could be employed. Each paddle )8 has a port I00 which communicates the interior of the paddles with the outside of the dryer drum 40 in the region of the plenum 9|. The ends of the paddles 98 also have ports I02 and I04 (I-'I(il l), which colitmunicate the hollow interior ofthe paddles with the region 88 of the dryer assembly. Mounted externally of the dryer drum 40 is a long stationary cylindrical shell 96, which, with the exterior wall of the rotating dryer drum, forms a narrow annular region 94. The extremitics of the shell 96 are arranged to communicate with the region 88 of the dryer assembly in the region of ports I02 and I04 in the paddles 98. A large ring-like port I06 in the shell 96 allows for communication between the plenum 91 and the interior ofthe annular region 94.

The hot air in the plenum is forced through port I06 by the fan 90. Part of the hot drying air travels at a high velocity in a longitudinal direction relative to the exterior wall of the dryer drum 40 and exits into the region 88 in the region of the ports 102 and 104. The remaining part of the hot drying air enters ports I00 and travels longitudinally along the interior of the paddles 98 to exit back into region 88 of the dryer assembly via ports I02 and I04. The circulation of the drying air is generally indicated by the arrows )2 in I"l( i. I. The cross sectional area ol'tlie annular region )4, the cross sectional area of the hollow triangular paddles 98 and the design of the fan )0, are such that the heating air travelling in the annular region )4 and the hollow paddles 98 is maintained at a high velocity. This arrangement tends to transfer a maximum amount of heat energy into the interior of the drum 40. In addition to the increased heat transfer due to the high velocity of the heating air passing over the drum and interior paddle surfaces, the present invention further increases the quantity of heat transferred by increasing the surface area of the heated surfaces by virtue of the lriangularly shaped hollow paddles.

As is shown in FIG. I, a portion of the air re-entering the region 88 of the dryer assembly is reheated and re circulated through the annular region )4 and the paddles 98, while some of the air re entering region 88 is exhausted through the chimney I08. If desired, a heat exchanger (not shown) can be inserted in the region 88 to slightly heat the process air.

FIG. 3 is a sectional end view of the dryer assembly taken in the region of the tobacco exit hopper 56 and shows the process air fan 58, the metering tube 74. the moisture content sensing head 78, the conveyor 76, the water spray nozzle 84 and an access door I10. The water system may he connected to the door with a flexible line (not shown) to allow the door to swing open.

In operation, the heat transferred into the tobacco via the surface of the rotating drum and the paddles drives the water moisture out ofthe tobacco. The process iir entering the drum at the tobacco exit hopper end is relatively free of moisture, but since it is moving in a direction opposite to that of the tobacco the process air quickly picks up the moisture liberated from the tobacco and carries it away Because the tobacco is moving through the dryer in one direction and the process air is moving through the dryer in the opposite direction there exists within the dryer drum a region, situated at the exit end of the drum, where the tobacco is in its driest state. It is in this region that the water spray is injected for controlling the moisture content of the tobacco. In this manner, the moisture content of the tobacco may be controlled without seriously affecting the evaporation loading conditions of the dryer.

In a second embodiment (not shown) vanes are arranged on the rotating drum to cause the heating air travelling in the annular region 94 to follow a helical path.

What we claim as our invention is:

I. A tobacco dryer comprising a rotating substantially cylindrical drum in which the tobacco is dried; said drum having a first end and a second end; means for introducing tobacco at said first end and means for removing tobacco at said second end; means for introducing process air into said drum at said second end and extracting said process air from said drum at said first end so that said process air travels in a direction within said drum opposite to that of said tobacco to pick up and remove from the drum, moisture released from the tobacco; heating means for maintaining the temperature of heating air; means for circulating said heating air at a velocity between 500 fpm and 3,500 fpm over the outer surface of said drum to thereby achieve high heat conductance through said drum, a controllable water spray nozzle for injecting a water spray into said drum at said second end; a sensing means operatively associated with the tobacco leaving said dryer, said sensing means having an output signal which is proportional to the moisture content of said tobacco; and a controller responsive to said output signal for controlling said controllable water spray nozzle so as to maintain the moisture content of said tobacco leaving said dryer at a predetemiined constant level.

2. A tobacco dryer according to claim 1 wherein said water spray, in droplet form, touches either the cylindrical drum or the tobacco.

3. A dryer for tobacco or the like, comprising a rotary structure rotatable about an axis and comprising a rotary drum, means for introducing material to be dried at a first end of said drum and discharging it from a second end, means for generating, for a given set of operating conditions, a substantially fixed quantity of heat energy in a fluid for supplying substantially all the heat energy for effecting removal of moisture from said material, said rotary structure comprising means interposed between said fluid and said material to physically separate said fluid from said material, means for picking-up moisture released from the material and removing said moisture from the drum, said means comprising means for introducing process air into the drum at said second end and discharging it from said first end so that said process air flows counter-current to material passing through the drum, sensing means operatively associated with material being discharged from said drum for sensing the moisture content of said material; and means responsive to said sensing means for introducing water into the second end of said drum such that said water, in droplet form, touches either the material or the drum, the amount of water introduced being controlled by said sensing means to vary the quantity of said substantially fixed heat energy absorbed by the material to maintain the moisture con tent of the dried material at substantially a predetermined constant.

4. Apparatus for drying tobacco to a predetermined moisture content when the moisture content of the tobacco entering the apparatus and the flow rate of the tobacco through the apparatus falls within a predetermined controllable range, said apparatus comprising:

a. a heated rotating drum having an input end and an exit end;

b. means for introducing from the exterior of said drum into the interior of said drum a predetermined quantity of heat energy, including means for forcing a heating medium over substantially the entire exterior of said drum, said drum thus acting to separate said tobacco from said heating medium, said quantity of heat energy supplying substantially all of said heat energy for effecting removal of moisture from said tobacco, said quantity of heat energy being determined by said controllable range;

c. means for introducing water into said exit end of said drum, wherein substantially all of said water, in droplet form, touches either the drum or the tobacco; and

d. means for controlling the quantity of water introduced into said drum so that the sum of the heat energy used to dry said tobacco to said predetermined moisture content and the heat energy used to evaporate the water introduced substantially equals said predetermined quantity of heat energy introduced into said drum.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2746170 *Dec 22, 1953May 22, 1956Proctor And Schwartz IncRotary dryer
US2768629 *Sep 24, 1953Oct 30, 1956American Mach & FoundryMoisture measuring method and apparatus
US3013785 *Mar 24, 1958Dec 19, 1961Phillips Petroleum CoDryer temperature controls
US3269715 *Apr 2, 1964Aug 30, 1966Wellford Jr Walker LKiln furnace controller
US3357436 *Aug 26, 1964Dec 12, 1967Brown & Williamson TobaccoApparatus for drying tobacco
US3386448 *Sep 2, 1966Jun 4, 1968Hauni Werke Koerber & Co KgMethod and apparatus for conditioning tobacco
US3389707 *Jul 15, 1966Jun 25, 1968Hauni Werke Koerber & Co KgMethod and apparatus for expelling moisture from tobacco
US3556111 *Jan 10, 1968Jan 19, 1971Hauni Werke Koerber & Co KgMethod and apparatus for conditioning tobacco or the like
US3614074 *Nov 14, 1969Oct 19, 1971Moore Dry Kiln CoDirect-fired kiln furnace control system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4346524 *May 9, 1979Aug 31, 1982Hauni-Werke Korber & Co. KgMethod and apparatus for conditioning tobacco
US4513759 *Jun 23, 1982Apr 30, 1985Hauni-Werke Korber & Co. KgApparatus for expelling moisture from tobacco or the like
US4729176 *Apr 1, 1987Mar 8, 1988Productization, Inc.Rotary drum dryer and method
US4802288 *Nov 27, 1987Feb 7, 1989Productization, Inc.Rotary drum dryer and method
US4984374 *Feb 13, 1989Jan 15, 1991Gbe International PlcRotary drier control by adjustment of air flow or air humidity
US4984587 *Mar 17, 1989Jan 15, 1991Gbe International PlcRotary cylinder dryer and method of drying tobacco products
US5103842 *Aug 14, 1990Apr 14, 1992Philip Morris IncorporatedConditioning cylinder with flights, backmixing baffles, conditioning nozzles and air recirculation
US6880814 *Apr 10, 2002Apr 19, 2005British American Tobacco (Germany Gmbh)Process gas conditioning for tobacco dryers
US6931758 *Aug 23, 2004Aug 23, 2005Japan Tobacco, Inc.Method of controlling moisture of material and apparatus therefore
US6988501 *Jun 25, 2002Jan 24, 2006Garbuio S.P.A.Tobacco processing machine
CN100561090CJul 3, 2008Nov 18, 2009中国农业大学Gas jet impact type revolving drum drying and curing integrated machine
WO1989008407A1 *Mar 17, 1989Sep 21, 1989Gbe International PlcRotary cylinder drier
Classifications
U.S. Classification131/303, 432/107, 34/542
International ClassificationA24B3/04, A24B3/00
Cooperative ClassificationA24B3/04
European ClassificationA24B3/04