Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3907504 A
Publication typeGrant
Publication dateSep 23, 1975
Filing dateApr 6, 1973
Priority dateApr 6, 1973
Also published asCA1006709A1, DE2415528A1
Publication numberUS 3907504 A, US 3907504A, US-A-3907504, US3907504 A, US3907504A
InventorsGary W Hammond, Donald R Ingenito, Gunnar E Walmet
Original AssigneeGen Electric
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Blood oxygenation system including automatic means for stabilizing the flow rate of blood therethrough
US 3907504 A
Abstract
An apparatus for sensing and signaling changes in the pressure and volume of a fluid passing therethrough, the apparatus comprising: (a) a hollow chamber; (b) a compliant reservoir for holding the fluid, the reservoir being located in the hollow chamber and being fitted with inlets and outlets for the fluid; and (c) a motion actuated means in the chamber for signaling changes in the size of the compliant reservoir. In one embodiment, the apparatus is used in an extracorporeal circuit to sense changes in the pressure and volume of blood and to signal the speed controller on a blood transfer pump in the blood circuit.
Images(5)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Hammond et a1.

[ Sept. 23, 1975 Donald R. Ingenito, Scotia; Gunnar E. Walmet, Schenectady, all of NY.

[73] Assignee: General Electric Company,

Milwaukee, Wis.

[22] Filed: Apr. 6, 1973 [21] Appl. No.: 348,711

[52] US. Cl. 23/258.5; 128/DIG. 3; 137/565; 417/36; 417/37; 417/43 [51] Int. Cl. A6lM 1/03 [58] Field of Search 23/258.5; 128/D1G. 3; 417/43, 36, 37; 137/565 [56] References Cited UNITED STATES PATENTS 2,659,368 11/1953 Gibbon et a1. 23/258.5 3,332,746 7/1967 Claff et a1. 23/258.5 3,374,066 3/1968 Farrant 23/258.5 3,413,095 11/1968 Bramson 23/258.5

3,484,211 12/1969 Mon et a1. 23/258.5 3,513,845 5/1970 Chestnut et a1 23/258.5 X 3,533,408 10/1970 Paoli 23/258.5 X 3,717,174 2/1973 DeWall..... 23/258.5 X 3,827,828 8/1974 Edwards 417/43 3,833,013 9/1974 Leonard 23/258.5 X

OTHER PUBLICATIONS General Electric Dialing Instruction Manual; Publication No. 46A209535; Nov. 1972; Sections 4.1.1 to

C. T. Drake et 211.; The Effect of Low During Extracorporeal Circulation; J. Thoracic & Cardiovas. Surg.; Vol. 42; No. 6; 12-61; pp. 735-742.

F. .1. Lewis et al.; Semiautomatic Control Blood Pump; .1. Thoracic & Cardiovas. Surg.; Vol. 43; No. 3; 362; pp. 392-396.

M. Turina et al.; An automatic Infants; .1. Thoracic & Cardiovas. Surg.; Vol. 63; No. 2; 2-72; pp. 263268.

Primary Examiner-Barry S. Richman Attorney, Agent, or Firm-Thomas J. Bird, .lr.; Granville M. Pine; Edward A. Hedman [5 7] ABSTRACT ment, the apparatus is used in an extracorporeal circuit to sense changes in the pressure and volume of blood and to signal the speed controller on a blood transfer pump in the blood circuit.

7 Claims, 8 Drawing Figures Mme/AL PUMP US Patent Sept. 23,1975 Sheet 1 of5 US Patent Sept. 23,1975 Sheet 3 of5 3,907,504

Qsi 1 m OE Ems N .96? .Q

QDQQQQ tswk QR Sou E BLOOD OXYGENATION SYSTEM INCLUDING AUTOMATIC MEANS FOR STABILIZING THE FLOW RATE OF BLOOD THERETI-IROUGH This invention relates to an apparatus for sensing and signaling changes in the pressure and volume of fluids passing therethrough. More particularly, it is concerned with an apparatus which can sense the amount of liquid in a reservoir, e.g., one used in an extracorporeal fluid circuit and, using this signal, to modulate the speed of a pump in the circuit.

BACKGROUND OF THE INVENTION Various sensors are known which can detect the amount of liquid in a reservoir used in an extracorporeal circuit and, using this signal, modulate the speed ofa pump in the circuit. If the circuit is used, for exam ple, to oxygenate blood, such sensor-controllers operate almost automatically, considerably simplifying the perfusionists task. In this way, for example, a two pump circuit, generally needed with membrane lungs,

is reduced to the operational simplicity of a one-pump circuit by having an automatically controlled arterial pump. Also, such an automatic pump speed controller can be used to sense a venous reservoir being filled by gravity drainage from the patient and thus control the venous pump.

Among the prior art sensors are those which are weighing devices. These suffer serious disadvantages because they have two to four large tubes and two small tubes connected to a compliant or rigid reservoir, and the preload due to these tubes adversely affects the functioning of the weighing mechanism. Another device is based on the principle of an optical detection of the liquid level in the reservoir. However, the optical technique is complicated, lacks reliability, is applicable mainly only to rigid reservoirs, and generally is adapted to give only onoff rather than modulated pump control signals.

In a novel way, the device of the present invention can sense the amount of liquid in a reservoir, e.g., one used in an extracorporeal circuit and, using this signal, modulate the speed of a. pump in the circuit. The present device provides the stated advantages simply, reliably, and in a method consistent with maintaining sterility in the blood.

BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:

FIG. 1 illustrates a vertical plan view, partially in section, of a compliant reservoir pressure and volume sensing and signalingdevice, which is one embodiment of this invention;

FIGS. 2 ((-11 illustrate semi-diagramatically, the device of FIG. 1 in which the compliant reservoir is shown ,to assume typical configurations under the influence of various fluid pressures and volumes;

FIG. 3 is a schematic, partial plan view, showing how the device of FIG. 1 can be used to keep the pump in a gravity drainage, single pump, extracorporeal circuit at the proper speed;

FIG. 4 is a schematic, partial plan view, showing how the device of FIG. 1 can be used to keep either the venous pump or the arterial pump of a two-pump gravity drainage system automatically at proper speed; and

FIG. 5 is a schematic, partial plan view, showing how the device of FIG. I can automatically control the speed of an arterial pump in a two-pump venous pump suction circuit.

Although FIGS. 3-5 relate specifically to a membrane lung of the type described in the copending application of D. R. Ingenito, W. P. Mathewson, D. R. Ryon and Gunnar E. Walmet, Ser. No. 247,987, filed on Apr. 21, 1972, now US. Pat. No. 3,839,204 issued Oct. 1, 1974, and assigned to the assignee of the present invention, it will be understood that the device of this invention can be used equally effectively with other membrane lungs and even different types of fluid gasexchanger and/or heat-exhanger.

DESCRIPTION OF THE INVENTION In its broadest aspects, the invention contemplates a device for continually sensing changes in reservoir distention/pressure and for signaling the changes to operate an external controller. In a preferred feature, the device will include means for varying the maximum volume of the reservoir. This allows one compliant reservoir to be used in an extracorporeal circuit for a variety of patient sizes.

According to the present invention, there is provided an apparatus for sensing and signaling changes in the pressure and volume of a fluid passing therethrough, said apparatus comprising:

a. a hollow chamber;

b. a compliant reservoir for holding said fluid, said reservoir being disposed within said hollow chamber and including an inlet and an outlet port for said fluid; and

c. motion actuated means in said hollow chamber for signaling changes in the size of said compliant reservoir.

Referring to FIG. 1, there is shown a preferred embodiment of the invention, in the form of a compliant reservoir pump speed controller. The sensor-controller is constructed of hollow chamber 2 comprised of U shaped base 4 of metal, plastic or the like and U shaped cover piece 6 also of metal, plastic or other suitable material of construction. Preferably, cover piece 6 and- /or base 4 will be of transparent material, such as clear plastic to allow the fluid in compliant reservoir 8 to be visually observed for any bubbles, clots, suspended foreign matter, and the like. To facilitate mounting, base 4 can be fitted with holder support 10. Adjustment slots 12 and lock screws 14 are providedin cover 6 and base 4 to permit changing the maximum volume of hollow chamber 2.

Compliant reservoir 8 is constructed of any suitable flexible material, such as metal, plastic and the like, preferably poly(vinyl chloride), silicone rubber, etc., and is fitted with inlet 13 and outlet 15, for fluid. It is desirable to provide that inlet 13 be tubular and that it terminate somewhat high up into the reservoir so that any bubbles in the fluid will be trapped by rising to the top of the reservoir instead of being drawn out of outlet 15. In the embodiment shown in FIG. 1, one or more vents, 16, are provided at the top of reservoir 8, and these can also serve conveniently as a sample port. For convenience, reservoir support 18 can be provided to hold the reservoir within the hollow chamber, eg by grasping a ring or other suitable fixture attached thereto.

Another important element in the device of this invention is the means for sensing the amount of liquid in reservoir 8. This can comprise a plate adjacent the reservoir, the plate being movable with changes in reservoir shape induced by fluid pressure and volume changes and a transducer actuated by motion from the sensor plate for supplying a signal to an external .recorder or controller. The sensor plate can be of the linear translating or, preferably, a pivoting type, and preferably is biased, e.g., with a spring, against the reservoir. Many different transducers can be used to convert the motion of the sensor plate to a different form of signal energy, but when used as a pump controller, it is preferred to use a linear motion actuated potentiometer or a linear motion actuated autotransformer.

Referring again to FIG. 1, sensor plate is shown hinged to base 4 at hinge point 22 and is seen to contact compliant reservoir 8 along a fairly substantial area of contact. Leaf spring 24 biases sensor plate 20 against reservoir 8. The transducer comprises linear potentiometer 26 having rod 28, of metal, strategically located to transmit changes in the position of sensor plate 20 to the potentiometer;

In operation, as compliant reservoir 8 fills up with fluid, sensor plate 20 deflects against spring 24. Conversely as reservoir 8 empties, sensor plate 20 follows it and moves out. As sensor plate 20 moves, metal rod 28 connected to linear motion actuated potentiometer 26 has its resistance varied. The resistance is the speed controlling signal in a suitable pump motor speed controller (not shown in FIG. 1).

If it is desired to change the maximum volume of the reservoir, cover plate 6 can be moved with respect to base 4 and locked in the new position with screws 14. This is shown, along with typical pressures and volumes in the reservoir (pressures measured near the top of the reservoir to avoid hydrostatic head contributions), at

various positions in FIG. 2.

For medical use, it is desirable that all parts of the device be'made of plastic. This increases the electrical resistance between the blood and any electrical components used in the sensor to insure patient safety in the event of anelectrical failure. Alternately, metal parts, if used, can be covered with an insulator. The materials in contact with blood should be easily sterilizable and be biocompatible.

DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 3-5 show how the device of this invention can be used as a reservoir sensing pump speed controller in extracorporeal circuits for oxygenating or otherwise treating body fluids, e.g., blood, and the like, before their return to the patient.

Referring to FIG. 3, reservoir sensing pump controller 30 is used in a gravity drainage, single pump, extracorporeal circuit to keep the pump at the proper speed. Blood from the patient (not shown) passes by gravity through conduit 32 into inlet port 13 on sensor device 30. The blood leaves through port 15 and is pumped, e.g., with roller type pump 34 (Sarns Corp., Ann Arbor, Mich, or the like) through conduit 36 past pressure monitoring gauge 38 to the inlet port of membrane type blood-gas exchanger 40 (GE-DUALUNG, General Electric Co., Schenectady, N.Y., or the like) which is fitted with inlet 42 and outlet 44 for heat exchange fluid and inlet conduit 46 for oxygen. The oxygenated blood exits the membrane lung through conduit 48 and, after being led to bubble trap 50, is returned to the patient through conduit 52. Shown schematically in combination with reservoir 8 are hinged sensor plate 20 and linear potentiometer 26 which supplies a pump speed varying signal through conductor 54 to pump 34. As changes in volume or pressure in the system expand or contract reservoir 8, the pumpspeed is varied automatically to compensate,

. Referring to FIG. 4, reservoir sensing pump controller 30 is used to keep either the venous pump or, preferably, the arterial pump of a two-pump gravity drainage system automatically at proper speed. Blood from the patient (not shown) passes by gravity through conduit 56 into inlet port 17 on sensor device 30. The blood leaves through port 15 and is. ,pumped by roller type venous pump 34 through conduit 36 past pressure monitoring gauge 38 to an inlet port of membrane type blood-gas exchanger40. oxygenated blood exits the exchanger through conduit 58 and is split into two streams, one being recycled to controller 30 through conduit 60 and entrance port 13. Complaint reservoir 8 is fitted with one vent tube 16 and a second vent tube includes filter 62 and cardiotomy reservoir 64. The other oxygenated blood stream istransferred through conduit 66and pumped by roller type arterial pump 68 to bubble trap 70 before being returned to the patient. Shown schematically in combination with reservoir 8 are hinged sensor plate 20 and linear potentiometer 26 which supplies a pump speed varying signal. If venous pump 34 is controlled, signal conductor 54 is used. Alternatively, and preferably, if arterial pump 68 is controlled, signal conductor 55 is used. In either case the pump speed is varied automatically to compensate for changes in blood pressure and volume within reservoir 8.

Referring to FIG. 5, reservoir'sensing pump controller 30 is used to keep the arterial pump in a two-pump venous pump suction circuit automatically at the proper speed. Blood from the patient (not shown) flows through conduit 72 into roller type venous pump 34 and pumped through conduit 36 to an inlet port of membrane type blood-gas exchanger 40. Oxygenated blood exits the exchanger through conduit 74 and enters compliant reservoir (arterial) 8 through entrance port 13. Compliant reservoir 8 is fitted with vent tube 16 andwith cardiotomy reservoir 64 coupled to reservoir 8 through filter 62. Part of the oxygenated blood in reservoir 8 exits through port 19 and circulates back through the venous pump circuit via conduit 76. Another part of the volume of oxygenated blood in reservoir 8 exits through port 15 to roller type arterial pump 68 where it is pumped through conduit 78, and, optionally, bubble trap 70, back to the patient. Shown schematically in combination with reservoir 8 are hinged sensor plate 20 and linear potentiometer 26 which supplies a pump speed varying signal through conductor 55 to pump 68, automatically varying the pump speed to compensate for changes in blood pressure and volume within reservoir 8.

Obviously, many other variations are possible in the light of the above specific embodiments. For example, FIGS. 4 and 5 illustrate how the sensor can be located in the venous and arterial two-pump circuits. Several other variations are possible. Illustratively, in FIG. 5.

decoupling conduit 76 between the reservoir and the inlet to venous pump 34 can be clamped off resulting in coupled pump speeds, i.e., arterial pump 68 will follow the settings of venous pump 34. Moreover, the reservoir sensors control in FIG. 4 can be moved to run the circuit exactly as shown in FIG. 5 to achieve automatic operation. In both venous and arterial reservoir circuits, the venous pump is desirably set somewhat faster than the anticipated rate of drainage from the patient. Excess flow will recirculate through a decoupling line (60 in FIG. 4; 76 in FIG. 5). A sensor controlled arterial pump will return just the venous drainage back to the patient. This has two major advantages: (i) lessened manpower drain during partial supports; and (ii) smaller liquid inventories needed in the reservoir during all cases due to the ability of the machine to compensate more rapidly than a human operator. Other variations will include an arterial pump speed sensor with high and low speed set-point alarms, especially useful for automatic operation, because a sudden change of speed will usually indicate a problem with the perfusion. It will be obvious also that the locations of the cardiotomy reservoir can be changed from those shown in FIGS. 4 and 5, without departing from the invention.

The above description demonstrates that the present invention discloses a reservoir sensing and signaling de- 'vice which is simple and offers unique advantages over other pre-existing designs meant to serve the same function.

Many variations of the present invention are possible without departing from the spirit or scope of the appended claims.

We claim:

1. An apparatus for extracorporeally oxygenating the blood of a living patient comprising in combination i. at least one pumping means for the blood,

ii. oxygenating means for the blood,

iii. means for sensing and signalling changes in the pressure and volume of blood passing through said apparatus, said sensing and signalling means comprising:

a. a hollow chamber of a selectively fixed and adjustable volume and comprising a base piece and w a' cover piece; b. a compliant reservoir for holding said blood, said reservoir being disposed within said hollow chamber and including an inlet and an outlet port for said blood; said hollow chamber substantially limiting the maximum expansion volume of said complaint reservoir, and 5 c. motion activated means in said hollow chamber for generating an electrical signal proportionate to changes in the size of said compliant reservoir, and d. adjusting means movably attaching said cover piece to said base piece to permit selective adjustment of the volume of said hollow chamber by movement of said cover piece relative to said base piece, and

iv. pump speed controlling means being operatively connected to receive said signal from said motion activated means and to automatically adjust the operation of said pumping means so as to move said blood through said apparatus at a flow rate responsive to said signal.

2. An apparatus as defined in claim 1 wherein two pumping means are utilized, one being a venous pumping means located upstream of said oxygenating means and the other being an arterial pumping means located downstream of said oxygenating means and wherein said pump speed controlling means is operatively connected to said arterial pumping means to automatically adjust the flow rate thereof responsive to said signal.

3. An apparatus as defined in claim 1 wherein said oxygenating means for the blood is a membrane type blood-gas exchanging means.

4. An apparatus as defined in claim 1 wherein a single pumping means is utilized in the apparatus.

5. An apparatus as defined in claim 4 wherein the single pumping means is a venous pumping means located upstream of said oxygenating means.

6. An apparatus as defined in claim 1 which also includes a blood heat exchanging means.

7. An apparatus as defined in claim 6 wherein said oxygenating means for the blood is a membrane type bood-tgas exchanging means and the blood heat exchanging means is integral therewith.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2659368 *May 28, 1949Nov 17, 1953Jefferson Medical College Of PExtracorporeal circulation device
US3332746 *Mar 29, 1963Jul 25, 1967Single Cell Res Foundation IncPulsatile membrane oxygenator apparatus
US3374066 *Jun 15, 1964Mar 19, 1968William E. FarrantThermostabilizer for extracorporeal oxygenator
US3413095 *Jun 14, 1965Nov 26, 1968Mogens L. BramsonMembrane oxygenator
US3484211 *Dec 8, 1964Dec 16, 1969Us ArmyMembrane oxygenator
US3513845 *Sep 15, 1966May 26, 1970United Aircraft CorpBypass heart pump and oxygenator system
US3533408 *Mar 30, 1966Oct 13, 1970Jean Marc PaoliExtra-corporeal blood circulation
US3717174 *Aug 3, 1971Feb 20, 1973R DewallPerfusion safety valve
US3827828 *Dec 26, 1972Aug 6, 1974Edwards MFluid pump control system
US3833013 *Apr 6, 1972Sep 3, 1974Baxter Laboratories IncSelf-valving fluid reservoir and bubble trap
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4062360 *Apr 2, 1976Dec 13, 1977Bentley Laboratories, Inc.Atraumatic fluid handling method and apparatus
US4140635 *Apr 13, 1977Feb 20, 1979Esmond William GArtificial lung
US4299705 *Sep 7, 1979Nov 10, 1981Russell Richard TMethod of treating blood during operative procedures
US4309993 *Mar 6, 1980Jan 12, 1982Baxter Travenol Laboratories, Inc.Liquid flow sensing apparatus
US4411786 *Oct 5, 1981Oct 25, 1983Russell Richard TMethod and apparatus for separating blood from other fluids during operative procedures
US4416280 *Dec 10, 1981Nov 22, 1983Minnesota Mining And Manufacturing CompanyCardioplegia delivery system
US4417884 *Jul 9, 1981Nov 29, 1983Haemonetics CorporationCentrifuge timer clamp
US4451562 *Apr 26, 1982May 29, 1984Cobe Laboratories, Inc.Blood oxygenator
US4469659 *Apr 26, 1982Sep 4, 1984Cobe Laboratories, Inc.Medical equipment
US4490331 *Feb 12, 1982Dec 25, 1984Steg Jr Robert FExtracorporeal blood processing system
US4568330 *Jun 2, 1983Feb 4, 1986Minnesota Mining And Manufacturing CompanyCardioplegia delivery system with improved bubble trap
US4599093 *Aug 2, 1984Jul 8, 1986Steg Jr Robert FOxygenation, medical equipment
US4610656 *Aug 21, 1984Sep 9, 1986Mehealus PartnershipFully portable semi-automatic mechanical heart-lung substitution system and method
US4643713 *Nov 5, 1984Feb 17, 1987Baxter Travenol Laboratories, Inc.Venous reservoir
US4704203 *Jun 9, 1986Nov 3, 1987Reed Charles CDefoaming blood during surgery
US4717377 *Aug 15, 1986Jan 5, 1988Terumo Kabushiki KaishaBlood circulating circuit for membrane-type artificial lung, and reservoir for use in blood circulating circuit
US4765959 *Nov 12, 1985Aug 23, 1988Terumo Kabushiki KaishaBlood circulating circuit for membrane-type artificial lung, and reservoir for use in blood circulating circuit
US4832689 *Nov 2, 1987May 23, 1989B. Braun Melsungen AgInfusion means
US5232439 *Nov 2, 1992Aug 3, 1993Infusion Technologies CorporationMethod for pumping fluid from a flexible, variable geometry reservoir
US5342313 *Nov 2, 1992Aug 30, 1994Infusion Technologies CorporationFluid pump for a flexible, variable geometry reservoir
US5578267 *Aug 4, 1995Nov 26, 1996Minntech CorporationCylindrical blood heater/oxygenator
US5693039 *Feb 2, 1994Dec 2, 1997Cobe Laboratories, Inc.Venous reservoir bag assembly
US5720741 *Jun 7, 1995Feb 24, 1998Cobe Laboratories, Inc.Venous reservoir bag assembly
US5770073 *Mar 15, 1996Jun 23, 1998Minntech CorporationCombined cardiotomy and venous reservoir
US5931646 *Oct 3, 1996Aug 3, 1999Terumo Kabushiki KaishaBlood delivery instrument for regulating the amount of blood stored in an accumulator independent of the pumping operation
US6106776 *Apr 11, 1997Aug 22, 2000University Of PittsburghMembrane apparatus with enhanced mass transfer via active mixing
US6113575 *May 14, 1998Sep 5, 2000Terumo Cardiovascular Systems CorporationVolume control apparatus for a flexible venous reservoir
US6123519 *Apr 8, 1998Sep 26, 2000Terumo Kabushiki KaishaDelivery blood storing member-equipped blood reservoir tank and blood delivery instrument for extracorporeal circulation circuit
US6217826Sep 21, 1998Apr 17, 2001University Of PittsburghBlood pump oxygenator
US6337049Aug 28, 1998Jan 8, 2002Yehuda TamariSoft shell venous reservoir
US6348175Oct 5, 1999Feb 19, 2002University Of PittsburghMembrane apparatus with enhanced mass transfer via active mixing
US6723284Nov 6, 2000Apr 20, 2004University Of PittsburghMembrane apparatus with enhanced mass transfer, heat transfer and pumping capabilities via active mixing
US6773426Feb 28, 2001Aug 10, 2004Yehuda TamariAccommodates variations in the volume of blood circulating in the extracorporeal circuit during cardiopulmonary bypass; disposable
US7122151Apr 19, 2004Oct 17, 2006University Of PittsburghCompact unit that simultaneously oxygenates and pumps blood in single step; sustains patient for extended duration
US7651473 *Dec 8, 2004Jan 26, 2010Jms Co., Ltd.Extracorporeal blood circulating apparatus, closed-type venous reservoir and extracorporeal blood circulating method
DE3247149A1 *Dec 21, 1982Jul 5, 1984Norbert KraemerVorrichtung zur ueberwachung des blutstandes in einem oxygenator
DE102005029682A1 *Jun 21, 2005Dec 28, 2006Maquet Cardiopulmonary AgHeart/lung bypass, for patients on a heart/lung machine, has a reservoir for priming solution and/or blood
EP0080610A1 *Nov 5, 1982Jun 8, 1983Terumo Kabushiki KaishaBlood circulating circuit for membrane-type artificial lung, and reservoir for use in blood circulating circuit
EP0089748A2 *Feb 21, 1983Sep 28, 1983CD Medical, Inc.Rigid shell expansible blood reservoir, heater and hollow fibre membrane oxygenator assembly
EP0766974A2 *Oct 2, 1996Apr 9, 1997Terumo Kabushiki KaishaBlood reservoir, blood delivery instrument, and blood delivery apparatus
WO1985003879A1 *Jan 25, 1985Sep 12, 1985Omnis Surgical IncPriming system for ultrafiltration unit
WO1986001416A1 *Aug 12, 1985Mar 13, 1986Mehealus PartnershipFully portable semi-automatic mechanical heart-lung substitution system and method
WO2003018088A1 *Aug 20, 2002Mar 6, 2003Michigan Critical Care ConsultApparatus for exchanging gases in a liquid
Classifications
U.S. Classification422/46, 417/43, 417/37, 417/36, 422/111, 422/48, 417/250, 128/DIG.300
International ClassificationA61M1/36
Cooperative ClassificationY10S128/03, A61M1/3639
European ClassificationA61M1/36C5