Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3908762 A
Publication typeGrant
Publication dateSep 30, 1975
Filing dateSep 27, 1973
Priority dateSep 27, 1973
Also published asCA1018062A1
Publication numberUS 3908762 A, US 3908762A, US-A-3908762, US3908762 A, US3908762A
InventorsRedford David Arthur
Original AssigneeTexaco Exploration Ca Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method for establishing communication path in viscous petroleum-containing formations including tar sand deposits for use in oil recovery operations
US 3908762 A
Abstract
Many oil recovery techniques for viscous oil recovery such as recovery of bitumen from tar sand deposits, including steam injection and in situ combustion, require establishment of a high permeability interwell fluid flow path in the formation. The method of the present invention comprises forming an initial entry zone into the formation by means such as noncondensible gas sweep or hydraulic fracturing and propping, or utilizing high permeability streaks naturally occurring within the formation, and expanding the zone by injecting steam and a noncondensible gas into the gas swept zone, propped fracture zone or high permeability streak. The mixture of steam and noncondensible gas is injected into the formation at a pressure in pounds per square inch not exceeding numerically the overburden thickness in feet, and the steam-noncondensible gas-bitumen mixture is produced either from the same or a remotely located well. The operation may be repeated through several cycles in order to enlarge the flow channel. Suitable noncondensible gases include nitrogen, air, carbon dioxide, flue gas, exhaust gas, methane, natural gas, ethane, propane, butane and mixtures thereof. Saturated or supersaturated steam may be used.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Redford [111 3,908,762 [4 1 Sept. 30, 1975 1 1 METHOD FOR ESTABLISHING COMMUNICATION PATH IN VISCOUS PETROLEUM-CONTAINING FORMATIONS INCLUDING TAR SAND DEPOSITS FOR USE IN OIL RECOVERY OPERATIONS [75] Inventor: David Arthur Redford, Fort Saskatchewan, Canada [73] Assignee: Texaco Exploration Canada Ltd.,

Canada 221 Filed: Sept. 27, 1973 21 App]. No.: 401,529

[521 US. Cl. 166/263; 166/271; 166/272 [51] Int. Cl. EZIB 43/24; E21B 43/26 [58] Field of Search 166/272, 271, 263

[56] References Cited UNITED STATES PATENTS 2,910,123 10/1959 Elkins et a1. 166/271 3.208.909 10/1966 Closmann et a1... 166/271 X 3.221.813 12/1965 Closmann et a1. 166/271 3.259.186 7/1966 Dietz... 166/263 3.279.538 10/1966 Doscher... 166/271 X 3.399.722 9/1968 Buxton et al. 166/263 X 3.411.575 11/1968 Connally. Jr.... 166/271 X 3.706.341 12/1972 Redford 166/272 X 3.768.559 10/1973 Allen et a1. 166/272 Primary E.raminer-Stephen .1. Novosad Attorney, Agent, or Firm-Thomas H. Whaley; Carl G. Ries; Jack H. Park [57] 7 ABSTRACT Many oil recovery techniques for viscous oil recovery such as recovery of bitumen from tar sand deposits.

including steam injection and in situ combustion, re-

quire establishment of a high permeability interwell fluid flow path in the formation. The method of the present invention comprises forming an initial entry zone into the formation by means such as noncondensible gas sweep or hydraulic fracturing and propping, or utilizing high permeability streaks naturally occurring within the formation, and expanding the zone by injecting steam and a noncondensible gas into the gas swept zone, propped fracture zone or high permeability streak. The mixture of steam and noncondensible gas is injected into the formation at a pressure in pounds per square inch not exceeding numerically the overburden thickness in feet. and the steam-noncondensible gas-bitumen mixture is produced either from the same or a remotely located well. The operation may be repeated through several cycles in order to enlarge the flow channel. Suitable noncondensible gases include nitrogen, air. carbon dioxide, flue gas, exhaust gas, methane, natural gas, ethane. propane butane and mixtures thereof. Saturated or supersaturated steam may be used.

13 Claims, 3 Drawing Figures US. Patent Sept. 30,1975 Sheet 1 of2 3,908,762

4 METHOD FOR ESTABLISHING I COMMUNICATION PATH IN viscous PETROLEUM-CONTAINING FORMATIONS INC U I G A A D DEPOSITS FOR USE IN OIL'RECOVERY OPERATIONS T1? BACKGROUND-OFTI'IE INVENTION i Fieldoff the Invention l r I t I This invention pertains to'a method forfrecovering petroleum from viscous petroleum-containing formations including tar sand deposits and specifically to amethod for establishing a stable interwell communication path in the formation, and to a'rn'ethodfor using the communication path in an: oilr'ecovery process involving injection of a, recovery fluidlsuch as sol-- vent: steam orair for in situ combustion intdtlie communication path ,I i I 2 I y it 'i v Deseriptionjofthe Prior Art L g There are many subterranean, petroleum-containing formations. throughout the' wo rld from which petroleum cannot" be recovered -by conventional means because of thehigh viscosity of thepetr'oleum contained therein. The best known and most extreme'exampleof such viscous petroleum-containing" formations are the so-called tar sands or bituminous sand deposits. The largest iand most famous such deposit is in' the Athabasca area in the northeastern part ofthe Province of Alberta, Canada, which deposit containsin excess of 700 billion barrels of petroleum.jOther extensive tar sand deposits exist in thewestern United States and in Venezuela, and lesser deposits are located Europe andAsi a,

Tiaijsah'as are defined as sand saturated with'a highly viscous crude petroleum material not recoverable in its natural ,state through a well by ordinary production methods, The petroleum or hydrocarbon/materials containedin tar sand deposits are highly bituminousin character, with viscosities ranging in the millions of centipoise at formation temperature and pressure. The tar sand deposits are about 35 percent by volume or 83 percent bykwjeight sand, ,and th e sand is generally a fine quartzimaterial. The sand grains are coated with alay er of water, and thevoid spacebetwee'n the water coated san d grains isfilled withbituminous petroleum. Sometar sand deposits have agas saturation, generally air or methane, althougli manyjt ar sand deposits c on- 1 tain essentially no gas The sum of bitumen and water concentrationsconsistently equals aboutff/lpercent by weight, with the bitumen, portion thereof varying fr iii about twopercent tofabout" lfipe rcerit. 'Qne fofthe strikingdifferences between tar sand d'epos its' and more conventionaljpetroleuni resel voirs isjthela ence ofa consolidated iiji. while the sa'ijiq g'ra' 'ijis aref'iri grainto gra in contact, they: are t not cemented 'togethe f'lhe API gravity ,of ,theg bitumen ranges" about 6 'to about 8f,. and the, specific gravit y at 60fFahrenheit is from about.l.0 06 toabout 1.021., Y

. Recoyery methods for tar sand deposits arecla's'sifiable as strip mining ,o'rin sit u processesfMostof the recovery. todate, hasbeen by means of strip mining, although strip miningiseconomically feasible'at the'presentrtirnel only in. those deposits wherein jth ratio of overburden thickness. toctarhsand depositthicknes's is around 1 o less. lnsitu proi iesseswhich have beenp'rO pqsedi P i rt ha e El e e @PPQI l h. S ti re 'floodin g'. and. .stearn.,injection, as w ie'll as"s te-1 1 1;- emulsificati on drive processes.

It has' been recognizedin the prior art that many of the thermal processes and the 'stea'm emulsification drive process require the establishmer'it of acommunication pat h'between one or more injection wells and one or more production wells, through which the re-- covery fluid maybeinjectedl Many failures to recover appreciable quantities of bitumen from tar sand deposits by' in situ recovery processes are related to plugging ofthe communication path between injection wells and production wells. Plugging can occur in a propped frac-' tu're zone asa' result oft'vi/o phenomena. (1) Bitumen" heated by the injected'fluid toa'sufficiently high temperature wi llflow in the fracture zone for a brief per-' v iold but will lose heat and become so viscous that it is essentially immobile after traveling "only a short distance from the thermal recovery fluid'injection point. (2) When ;a heated fluid such as steam .is injected into a propped fracture communication path between injection and production wells, bitumen above the communication path is heated, softens and flows down into and plugs the'propped fracture zone.

v In view of theforegoing, it can be seen that there is a substantial, unfulfilled need for a method for establishing a stable communication path between injection well aha production'wells within a tar sand deposit, which communication path will not be plugged or otherwise affected during the subsequent injection thereinto of a thermal recovery fluid.

'1 SUMMARY OFTI'IE INVENTION l have discovered, and this constitutes my'invention, that a stable, permeable communication path may be established between wells drilled into'and completed'in a'subterraneanj viscous petroleum-containing formation such as a tar sand deposit according to the process described belowf'My process requires-that there be at least moderate gas permeability or a high permeability streak within the 'formation, which may be" a naturally occurring high permeability streak or one which is formed means of conventional hydraulic fracturing and propping according to techniques well known'in the prior art. Myp'rocess' utilizes simultaneous injection of s team and'a noncondensiblegas. The steam' maybe supersaturated or saturated; Gases suitable foruse in my "invention include carbon dioxide, metha'nefnitrog'en,'ai r', and mixturesthereof. 3

through the formation; then gas injection should be the firststep in this proeess'Any"noncondensible gas such asnitrogen, air, carbon dioxide, natural gas or methane may beused. If a permeable streak is present-,g'as may be injecte'd'brieflythi'ough'this permeable" streak. Otherwise, hydraulic fracturing and'propping are required to open a zone into'which steam and noncond'en'sible gas are injected. Y

"Steam' and the" "no'hondensible gas may be mixed prior-"to injection or injected sequentially or separately to mix inthe' formation. The injection pressure of the 's't e a'rn-rioncondensible gas mixture should not exceed a value in pounds'p'er square 'inchnumerically equal to the overburdenthicknessin feet in order to avoid fracturing? the overburden; Steam and 'noncondensible gas are injected into one well," and flow through the gas ,s'wept zone, permeable streak or propped fracture zone to a remotely located well. Flow reversal may be used to insure creation o'f'a uniform thickness communication path. Recovery of bituminous petroleum by more conventional, high efficiency techniques such as steam emulsification drive, combined thermal-solvent injection, or in situ combustion operations may be undertaken next using the communication path.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 presents an illustrative embodiment of my invention, wherein an injection well and production well are treated to produce the desired stable commmunication path according to the process of my invention.

FIG. 2 shows the temperature profile of a test cell after 10 minutes of injection during evaluation of the process of my invention.

FIG. 3 shows the temperature profile similar to FIG. 2 but after 70 minutes.

DESCRIPTION OF THE PREFERRED EMBODIMENTS I. The Process My invention may best be understood by reference to the attached drawings, which shows in cross-sectional view, a tar sand deposit type of petroleum formation being subjected to one illustrative embodiment of the process of my invention. In the drawing, tar sand formation l is penetrated by wells 2 and 3, which are in fluid communication with the tar sand deposit 1 by means of perforations 4 and 5 respectively. Wells 2 and 3 are both equipped on the surface for injection of fluid thereinto or production of fluid from the well. This is accomplished by providing well 2 with valves 6 and 7, and by providing well 3 with valves 8 and 9.

Hydraulic fracturing and propping is performed in the formation via both wells, which gives rise to the creation of a thin, high permeability streak 10 extending at least part way between wells 2 and 3. Even though propping material is injected into the hydraulic fracture, the fracture is not adequate for sustained injection thereinto of steam in the final recovery phase of the operation because of the tendency for heated bitumen to cool and plug the propped fracture of bitumen above the zone to flow down into the fracture zone. Accordingly, valve 7 is closed and valve 6 is opened, and a mixture of steam and noncondensible gas is injected into well 2 through perforation 4 into the propped fracture zone 10. Noncondensible gas is supplied by a compressor or contained under pressure in vessel 11 and pumped therefrom by pump 12 into mixing vessel 13. Steam is supplied from generator 14 by a pump 15. The injection pressure is raised to the desired value and pumps 12 and 15 insure mixing steam and noncondensible gas in the desired ratio. The material being injected into the fracture zone is preferably essentially 100% noncondensible gas initially, with the steam content being increased with time.

The hydraulic fracturing operation may establish an interwell connecting fracture as shown in the figure, or fracture zones may extend into the formation only part way to the other wells. If an interwell fracture cannot be established, steam and noncondensible gas should be injected into each discrete fracture zone via each well. The maximum injection pressure is still limited by the overburden thickness. The preferred method is to inject steam and noncondensible gas up to a pressure in pounds per square inch not greater numerically than the overburden thickness in feet. Injection of fluid should be stopped and pressure should then be held at the above described level on all wells for a soak period of from 4 to 24 hours. The pressure is then reduced and production of steam, noncondensible gas, steam condensate and bitumen taken from all of the wells. This procedure is repeated until interwell communication is established.

The presence of noncondensible gas in the fracture zone is thought to help avoid formation plugging in several ways. The rate of heating is reduced because the presence of a noncondensible gas with steam reduces the heat transfer rate significantly. The gas pressure is higher in the fracture zone than it would be if steam alone is present, and this higher pressure helps hold softened tar sand material in place above the fracture. Moreover, if hot, liquefied bitumen tends to cool and become immobile as its flows through the propped fracture zone and cools, the presence of noncondensible gas in the zone maintains small flow channels open in the immobile bitumen plug through which hot fluids can flow to heat and reliquefy the bitumen plugs. The reason for this effect is related'to the high mobility ratio of noncondensible gas and viscous liquid bitumen. Such high mobility'ratio is normally detrimental to recovery efficiency because the high mobility (low viscosity) gas tends to channel or finger through the viscous petroleum. Channeling in this instance is beneficial, since it facilitates passing the hot steam through the immobile bitumen, resulting in heating and consequent viscosity reduction of the bitumen. When bitumen becomes immobile and plugs a propped fracture zone such as when steam alone is being injected, the portion of the steam vapor near the obstruction cools and eventually condenses, so neither channeling nor heating of the immobile bitumen obstruction results. Injection of additional steam alone is not helpful since is cannot reach the immobile bitumen obstruction, and the only heating effect is by conduction along the long dimension, of the fracture, a very inefficient heat transfer process. l

Passage of the mixture of steam and gas through the propped fracture zone results in gradual enlargement of the vertical thickness by continually heating bitumen above and below the zone. The viscosity of bitumen is reduced by heating and flows through the fracture towarclthe production well 3, carried along by the flowing steam and gas in propped fracture zone 10. Although injection of steam would heat and liquefy bitumen along the faces of the zone more rapidly than steam and noncondensible gas, plugging usually results when pure steam is injected into a fracture.

Since the heating effect is a function of temperature of the fluid flowing in zone 10, and since the fluid cools as it passes through the zone from injection well to production well, the extent of removal of bitumen from the formation adjacent to the zone is greatest near the injection well, decreasing steadily with distance from the point of injection. This results in a non-uniform, wedge shaped communication zone. Although this is not always objectionable, certain recovery processes which may be used give better results if the vertical thickness of the communication path is more nearly uniform. Accordingly, when it is desired to produce a more nearly uniform communication path, the injection-production functions of wells 2 and 3 are reversed, with injection of steam and noncondensible gas being into well 3 and production of steam, steam condensate and liquefied bitumen being taken from well 2, this is accomplished using an arrangement such as is shown in the attached figure by closing valves 6 and 9 and opening valves 8 and 7 so the mixture of steam and noncondensible gas is introduced into well 3 and passes therefrom into in terval 10 via perforations 5. Fluid consisting mainly of steam, noncondensible gas, steam condensate and liquefied bitumen are produced via well 2 through valve 7 to surface located treating facilities.

Whichever injection sequence is being utilized, the fluid produced will be a mixture of steam, water (steam condensate), bitumen and noncondensible gas, which must be treated on the surface to separate water and bitumen. Gravity separation tanks are satisfactory for separating bitumen and water unless a substantially stable emulsion has been formed due to the presence of naturally occuring emulsifiers in the bitumen. Resolution of water-in-oil emulsions must also be accomplished and is easily done by contacting the water-in-oil emulsion with an acid. 7

Depending on the type of recovery process contemplated in the communication path, from one to four or even more repetitive cycles of the above treatment may be required to convert the propped fracture zone into a satisfactory communication path.

When developing a communication path for an in situ separation process involving steam injection, the transition from the communication path development phase to the in situ recovery phase can occur smoothly. The first fluid injected into the propped fracture zone will ordinarily consist of from 50% to 100% inert gas, the remainder being steam. After production of inert gas is detected at the production well, the steam fraction of the fluid being injected into the production well is increased. The maximum safe rate of increase in steam to noncondensible gas ratio varies from one formation to another because of differences in bitumen composition and content, sand particle size, etc. It is generally preferred to inject essentially 100 percent noncondensible gas initially, and then include gradually increasing quantities of steam with the noncondensible gas.

One may include a small quantity of an alkalinity agent such as caustic (sodium hydroxide or ammonia) in the first portion of steam-noncondensible gas mixture injected to aid in forming of bitumen-in-water emulsion. Emulsion formation makes possible the movement of bitumen which is otherwise immobile. Removal of bitumen from the zone immediately adjacent to the original fracture is necessary in order to expand the fracture into a communication path which will remain open upon injection of thermal fluids during the main recovery portion of the process.

The above cycles are continued through a series of separate steps, simultaneously in each well or alternating from one well to the other, until a satisfactory stable, permeable flow path between well 2 and well 3 is achieved.

The communication path between wells 2 and 3 established according to the above procedure may be utilized for a subsequent in situ recovery process such as steam injection, steam plus emulsifying chemical injection, or numerous other recovery techniques applicable to tar sand deposits which required the establishment of an interwell communication path. Although steam injected into the communication path via well 2 will channel through the communication path, heating of bituminous petroleum contained in the tar sand deposit will continue along the surfaces exposed to the communication path through which the heated fluid is being injected. Bituminous petroleum along the interface between the tar sand deposit and the communication path will be heated, the viscosity will be reduced, and the material will flow into the communication path. The bituminous petroleum will then flow toward the production well and will be produced along with steam condensate. The recovery process is aided materially by including a small amount of a basic material such as caustic or sodium hydroxide in the steam, which enhances the formation of a low viscosity oil-in-water emulsion. The produced fluid in such a recovery program is an oil-in-water emulsion which has a viscosity only slightly greater than'water. Surface equipment for separating bituminous petroleum from the oil-in-water emulsion must be provided.

The communication path established according to the above described procedural steps may also be utilized in the refluxing solvent recovery process described in pending application Ser. No. 357,425, filed May 4, 1973.

II. The Noncondensible Gaseous Constituent Gases suitable for use in combination with steam in the process of my invention include carbon dioxide, methane, nitrogen and air. Carbon dioxide and methane are preferred gases because of their high solubility in petroleum, although this solubility must be taken into consideration in selecting the ratio of noncondensible gas, to insure that more than the amount which will dissolve in the petroleum is injected, so some gas-phase will remain at formation conditions. Also, crude gases such as flue gas or engine exhaust gas, both 'rich in carbon dioxide and nitrogen content, may be used. Ethane or propane may also be used. Nitrogen and air are also preferred noncondensible gases because of their widespread availability.

llI. Field Example My invention may be better understood by reference to the following pilot field example, which is offered only as an illustrative embodiment of my invention, and is not intended to be limitative or restrictive thereof.

A tar sand deposit is covered with 300 feet of overburden, and it is determined that the thickness of the tar sand deposit is feet. An injection and a production well are drilled, 100 feet apart, and completed into the full interval of the tar sand deposit. Spinner surveys indicate that there are no intervals of high permeability within this particular segment of the tar sand deposit, and gas permeability of the entire formation is quite low. Hydraulic fracturing must be undertaken in order to establish an injection zone for the process of my invention. Conventional hydraulic fracturing is applied to the formation adjacent to both the injection well and production well, and coarse sand propping material is injected into the fracture to prevent healing thereof after fracture pressure is removed. Gas injectivity tests are performed, and it is determined that communica tion between wells has been achieved by fracturing.

Pure nitrogen is injected into the fracutre zone via the injection well at a pressure of 200 pounds per square inch. After production of nitrogen from the production well is observed, a mixture of percent quality steam and nitrogen is injected into the well. The volume ratio of nitrogen to steam is initially 1 standard cubic feet per pound, with the ratio decreasing gradually to about 0.20 over a 6 day period. Approximately 0.2 percent caustic soda (sodium hydroxide) is added to the steam during the first days of steam injection to aid in forming an emulsion with the bitumen, so that bitumen may be removed more effectively from the zone around the fracture more readily. Caustic soda is not needed after 10 days.

Injection of the nitrogen and steam continues for approximately 1 week, which is sufficient to establish a communication path of sufficient extent that pure steam may be injected without danger of plugging occurring in the communication path as a result of cooling of bitumen or slumping of heated bitumen into the path. As a safety measure, the steam content is increased gradually rather than abruptly, over a 10 day period. Injection of steam is continued as the principal recovery technique, bitumen being produced in the form of an oil-in-water emulsion.

IV. Experimental In order to establish the operability of the process of my invention, and further to determine the optimum materials and procedures, the following laboratory work was performed. A laboratory cell was utilized in these experiments in order to simulate underground tar sand deposits. The model is a pipe, inches long and 18 inches in diameter. One inch diameter wells, one for injection and one for production, are included, each being positioned three inches from the cell -wall and 180 apart. The top of the well is equipped with a piston and sealing rings which impose overburden pressure.

The cell described above was packed with a mined tar sand sample and compressed by pneumatic tamping to a density of 2 gm/cc, followed by application of an overburden pressure of 500 psig for 6 days. A 4; inch X 2 inch clean sand path was provided between wells in this sample to simulate a fracture.

Nitrogen gas flow was adjusted to 24 standard cubic feet per hour at a pressure of 300 pounds per square inch into the injection well, through the simulated fracture in the compressed tar sand material and out the production well, and this was continued for several hours. Steam and nitrogen were injected at a pressure of 300 pounds per square inch. The first production of bitumen occured after only 2 minutes, and the pressure at the models production well quickly rose to above 250F. The rapid occurrence of bitumen production and low pressure differential between the injection and production wells are indicative of formation of a communication path between the injection well and production well. Throughout the run, large amounts of free bitumen (appearance of pure bitumen but was actually a water-in-oil emulsion) floated on the oil-inwater emulsion in the production receiver. Steam and noncondensible gas were injected at a pressure of 290 to 350 pounds per square inch for 4 5/6 hours, followed by injection of steam only for 2 hours before terminating the runJThere was no indication of plugging during the run.

Analysis of data obtained from thermocouples placed in the cell indicated a hot flow path across the tar sand between wells and movement of heat outwards from this path. The temperature profile of FIG. 2 illustrates this result after 10 minutes of steam injection, and FIG. 3 shows the result after 70 minutes of steam injection.

The cell was unpacked in the usual manner and inspected. Major depletion was noted around the injection port and extending toward the production port,

with lesser degree of depletion throughout most of the cell.

While my invention has been described in terms of the number of illustrative embodiments, it should be understood that it is not so limited, since many variations of the process of my invention will be apparent to persons skilled in the related art without departing from the true spirit and scope of my invention. Similarly, while a mechanism has been proposed to explain the benefits resulting from the process of my invention, I do not wish to be restricted to any particular mechanism responsible for the benefits achieved through the use of my process. It is my desire and intention that my invention be limited only by such restrictions and limitations as are imposed in the appended claims.

I claim:

1. In a method of recovering viscous petroleum including bitumen from a subterranean, viscous petroleum-containing formation including a tar sand deposit, said formation being penetrated by at least one injection well and by at least one production well, said recovery method being of the type wherein a fluid is injected into the injection well for the purpose of increasing the mobility of the petroleum contained in the formation, the improvement for creating a permeable, stable, fluid communication path between the injection well and production well which comprises:

a. fracturing the formation adjacent to at least one of the wells by hydraulic fracturing and injecting into the fractured Zone a propping agent to establish a permeable, propped fracture zone extending at least a portion of the way into the tar sand deposit toward the other well;

b injecting steam and a gas selected from the group consisting of methane, ethane, propane and butane into the propped fractured Zone via the well adjacent thereto at a preselected pressure; and

c. recovering bitumen, steam and steam condensate from at least one of said wells.

2. A method as recited in claim 1 wherein steam and gas are injected into at least one well and travels through the propped fracture to at least one remotely located well.

3. A method as recited in claim 1 wherein repetitive cycles are performed with injection alternating between the wells.

4. A method as recited in claim 3 wherein repetitive cycles of injecting steam and gas and producing fluids from the same wells are continued until communication between wells is established.

5. A method as recited in claim 1 wherein steam and gas are injected into injection and production wells simultaneously.

6. A method as recited in claim 1 wherein the pressure at which the steam and gas are injected into the formation is equal to a value between the original formation pressure and a value in pounds per square inch numerically equal to the thickness of the overburden in feet.

7. A method as recited in claim I wherein the recovery fluid injected into the communication path is steam.

8. A method as recited in claim 1 wherein the recovery fluid injected into the communication path is a mixture of steam and an alkaline material including caustic.

9. In a method of recovering viscous petroleum including bitumen from a viscous petroleun containing formation including a tar sand deposit, the formation being permeable to gas, the formation being penetrated by at least one injection well and by at least one production well, the recovery method being of the type wherein a fluid is injected into the formation to increase the mobility of the petroleum contained in the formation, the improvement for creating a permeable, stable communication path between the injection and production well which comprises:

a. introducing a first gas which is noncondensible at formation conditions into the formation via the injection well and recovering the gas from the formation via the production well for a preselected period of time to create a gas swept zone in the formation;

b. introducing a mixture of steam and a second gas which is noncondensable at formation conditions into the gas swept zone; and

c. recovering bitumen, steam condensate and the noncondensible gas from the production well.

10. A method as recited in claim 9 wherein the first noncondensible gas is selected from the group consisting of nitrogen, carbon dioxide, flue gas, exhaust gas, methane, natural gas, ethane, propane, butane, and mixtures thereof.

11. A method as recited in claim 9 wherein the second noncondensible gas is selected from the group consisting of nitrogen, carbon dioxide, flue gas, exhaust gas, methane, natural gas, ethane, propane, butane,

and mixtures thereof.

12. A method as recited in claim 9 wherein the first noncondensible gas and second noncondensible gas are the same.

13. In a method of recovering viscous petroleum including bitumen from a subterranean, viscous petroleum-containing formation including a tar sand deposit, said formation being penetrated by at least one injection well and by at least one production well, said recovery method being of the type wherein a fluid is injected into the injection well for the purpose of increasing the mobility of the petroleum contained in the formation, the improvement for creating a stable, permeable fluid communication path between the injection well and production well which comprises:

a. hydraulically fracturing and introducing a propping agent into the formation adjacent the injection well and the production well to form a propped fracture zone adjacent each well extending only part way from that well to the fracture adjacent the other well;

b. injected steam and a gas-selected from the group consisting of methane, ethane, propane and butane into the fracture zone adjacent each well until the injection pressure reaches a predetermined value; c. maintaining steam and the gas in each fracture for a predetermined soak period; I d. reducing the pressure in each well to permit steam, non-condensible gas and viscous petroleum to flow from each propped fracture zone into each well.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2910123 *Aug 20, 1956Oct 27, 1959Pan American Petroleum CorpMethod of recovering petroleum
US3208909 *May 19, 1961Sep 28, 1965Puziss MiltonAnaerobic process for production of a gel-adsorbed anthrax immunizing antigen
US3221813 *Aug 12, 1963Dec 7, 1965Shell Oil CoRecovery of viscous petroleum materials
US3259186 *Aug 5, 1963Jul 5, 1966Shell Oil CoSecondary recovery process
US3279538 *Feb 28, 1963Oct 18, 1966Shell Oil CoOil recovery
US3399722 *May 24, 1967Sep 3, 1968Pan American Petroleum CorpRecovery of petroleum by a cyclic thermal method
US3411575 *Jun 19, 1967Nov 19, 1968Mobil Oil CorpThermal recovery method for heavy hydrocarbons employing a heated permeable channel and forward in situ combustion in subterranean formations
US3706341 *Oct 8, 1970Dec 19, 1972Canadian Fina Oil LtdProcess for developing interwell communication in a tar sand
US3768559 *Jun 30, 1972Oct 30, 1973Texaco IncOil recovery process utilizing superheated gaseous mixtures
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3983939 *Oct 31, 1975Oct 5, 1976Texaco Inc.Method for recovering viscous petroleum
US4068715 *Jun 25, 1976Jan 17, 1978Texaco Inc.Method for recovering viscous petroleum
US4068717 *Jan 5, 1976Jan 17, 1978Phillips Petroleum CompanyProducing heavy oil from tar sands
US4099568 *Dec 22, 1976Jul 11, 1978Texaco Inc.Injection of steam and non-oxidizing gas
US4109720 *Nov 9, 1976Aug 29, 1978Texaco Inc.Combination solvent-noncondensible gas injection method for recovering petroleum from viscous petroleum-containing formations including tar sand deposits
US4121661 *Sep 28, 1977Oct 24, 1978Texas Exploration Canada, Ltd.Viscous oil recovery method
US4124072 *Dec 27, 1977Nov 7, 1978Texaco Exploration Canada Ltd.Viscous oil recovery method
US4127170 *Sep 28, 1977Nov 28, 1978Texaco Exploration Canada Ltd.Viscous oil recovery method
US4127172 *Sep 28, 1977Nov 28, 1978Texaco Exploration Canada Ltd.Viscous oil recovery method
US4141415 *Jul 1, 1977Feb 27, 1979Texaco Inc.Method of recovering hydrocarbons by improving the vertical conformance in heavy oil formations
US4246966 *Nov 19, 1979Jan 27, 1981Stoddard Xerxes TProduction and wet oxidation of heavy crude oil for generation of power
US4265310 *Oct 3, 1978May 5, 1981Continental Oil CompanyFracture preheat oil recovery process
US4271905 *Feb 21, 1979Jun 9, 1981Alberta Oil Sands Technology And Research AuthorityGaseous and solvent additives for steam injection for thermal recovery of bitumen from tar sands
US4607699 *Jun 3, 1985Aug 26, 1986Exxon Production Research Co.Method for treating a tar sand reservoir to enhance petroleum production by cyclic steam stimulation
US4687058 *May 22, 1986Aug 18, 1987Conoco Inc.Solvent enhanced fracture-assisted steamflood process
US4733726 *Mar 27, 1987Mar 29, 1988Mobil Oil CorporationMethod of improving the areal sweep efficiency of a steam flood oil recovery process
US4819725 *Dec 28, 1987Apr 11, 1989Texaco Inc.Recovering oil bypassed by a steam override zone
US4838351 *Aug 27, 1987Jun 13, 1989Mobil Oil Corp.Proppant for use in viscous oil recovery
US4852650 *Dec 28, 1987Aug 1, 1989Mobil Oil CorporationSilicon carbide or nitride;enhanced oil recovery
US4892147 *Dec 28, 1987Jan 9, 1990Mobil Oil CorporationHydraulic fracturing utilizing a refractory proppant
US5020595 *Jul 12, 1989Jun 4, 1991Union Oil Company Of CaliforniaCarbon dioxide-steam co-injection tertiary oil recovery process
US5036917 *Dec 6, 1989Aug 6, 1991Mobil Oil CorporationMethod for providing solids-free production from heavy oil reservoirs
US5036918 *Dec 6, 1989Aug 6, 1991Mobil Oil CorporationMethod for improving sustained solids-free production from heavy oil reservoirs
US5042581 *Feb 9, 1990Aug 27, 1991Mobil Oil CorporationMethod for improving steam stimulation in heavy oil reservoirs
US5046560 *Jun 10, 1988Sep 10, 1991Exxon Production Research CompanyOil recovery process using arkyl aryl polyalkoxyol sulfonate surfactants as mobility control agents
US5247993 *Jun 16, 1992Sep 28, 1993Union Oil Company Of CaliforniaEnhanced imbibition oil recovery process
US5634520 *May 8, 1996Jun 3, 1997Chevron U.S.A. Inc.Varying water to gas ratios for efficient increase of oil mobility
US6016867 *Jun 24, 1998Jan 25, 2000World Energy Systems, IncorporatedUpgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
US6016868 *Jun 24, 1998Jan 25, 2000World Energy Systems, IncorporatedProduction of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking
US6328104Jan 24, 2000Dec 11, 2001World Energy Systems IncorporatedUpgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
US6662872Nov 7, 2001Dec 16, 2003Exxonmobil Upstream Research CompanyInjecting steam into reservoir and recovering fraction of the hydrocarbons and forming heated chamber in reservoir; continuing to inject steam into the reservoir and mobilizing and recovering hydrocarbons; injecting a solvent
US6708759Apr 2, 2002Mar 23, 2004Exxonmobil Upstream Research CompanyLiquid addition to steam for enhancing recovery of cyclic steam stimulation or LASER-CSS
US6769486May 30, 2002Aug 3, 2004Exxonmobil Upstream Research CompanyCyclic solvent process for in-situ bitumen and heavy oil production
US6893615May 4, 2001May 17, 2005Nco2 Company LlcProducing compressed gas for such as subterranean crude oil formation injection; condensation chilling below dew point
US7279017Feb 21, 2003Oct 9, 2007Colt Engineering CorporationMethod for converting heavy oil residuum to a useful fuel
US7341102Apr 28, 2005Mar 11, 2008Diamond Qc Technologies Inc.Flue gas injection for heavy oil recovery
US7445761May 2, 2003Nov 4, 2008Alexander Wade JMethod and system for providing compressed substantially oxygen-free exhaust gas for industrial purposes
US7464756Feb 4, 2005Dec 16, 2008Exxon Mobil Upstream Research CompanyProcess for in situ recovery of bitumen and heavy oil
US7765794Jan 18, 2006Aug 3, 2010Nco2 Company LlcMethod and system for obtaining exhaust gas for use in augmenting crude oil production
US7770640Feb 6, 2007Aug 10, 2010Diamond Qc Technologies Inc.Carbon dioxide enriched flue gas injection for hydrocarbon recovery
US7926561 *Oct 30, 2008Apr 19, 2011Shell Oil CompanySystems and methods for producing oil and/or gas
US7964148Oct 24, 2008Jun 21, 2011Nco2 Company LlcSystem for providing compressed substantially oxygen-free exhaust gas
US8136590 *May 17, 2007Mar 20, 2012Shell Oil CompanySystems and methods for producing oil and/or gas
US8136592 *Aug 8, 2007Mar 20, 2012Shell Oil CompanyMethods for producing oil and/or gas
US8596371Mar 15, 2012Dec 3, 2013Shell Oil CompanyMethods for producing oil and/or gas
US8645069 *Mar 15, 2007Feb 4, 2014Schlumberger Technology CorporationMethod for determining a steam dryness factor
US8684079Jan 27, 2011Apr 1, 2014Exxonmobile Upstream Research CompanyUse of a solvent and emulsion for in situ oil recovery
US8752623Jan 10, 2011Jun 17, 2014Exxonmobil Upstream Research CompanySolvent separation in a solvent-dominated recovery process
US8770288 *Jan 31, 2011Jul 8, 2014Exxonmobil Upstream Research CompanyDeep steam injection systems and methods
US8813846 *Oct 5, 2009Aug 26, 2014The Governors Of The University Of AlbertaHydrocarbon recovery process for fractured reservoirs
US20090248306 *Mar 15, 2007Oct 1, 2009Schlumberger Technology CorporationMethod for determining a steam dryness factor
US20100181114 *Mar 27, 2008Jul 22, 2010Bruno BestMethod of interconnecting subterranean boreholes
US20110174498 *Oct 5, 2009Jul 21, 2011The Governors Of The University Of AlbertaHydrocarbon recovery process for fractured reservoirs
US20110226473 *Jan 31, 2011Sep 22, 2011Kaminsky Robert DDeep Steam Injection Systems and Methods
CN1676870BApr 20, 2005May 5, 2010太原理工大学Method for extracting oil and gas by convection heating of oil shale
CN101449027BMay 18, 2007Mar 12, 2014国际壳牌研究有限公司Systems and methods for producing oil and/or gas
CN101501295BAug 8, 2007Nov 20, 2013国际壳牌研究有限公司Methods for producing oil and/or gas
CN101796156BJul 17, 2008Jun 25, 2014国际壳牌研究有限公司生产油和/或气的方法
DE2830646A1 *Jul 12, 1978Apr 5, 1979Texaco Exploration Ca LtdVerfahren zur gewinnung von viskosem erdoel aus unterirdischen, viskoses erdoel fuehrenden, durchlaessigen formationen
EP2022936A1 *Aug 6, 2007Feb 11, 2009Shell Internationale Research Maatschappij B.V.Solvent assisted method to mobilize viscous crude oil
Classifications
U.S. Classification166/402, 166/269, 166/271, 166/403
International ClassificationE21B43/16, E21B43/40, E21B43/24, E21B43/34
Cooperative ClassificationE21B43/2405, E21B43/40, E21B43/168
European ClassificationE21B43/24K, E21B43/16G2, E21B43/40