Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3908787 A
Publication typeGrant
Publication dateSep 30, 1975
Filing dateOct 9, 1974
Priority dateOct 9, 1974
Publication numberUS 3908787 A, US 3908787A, US-A-3908787, US3908787 A, US3908787A
InventorsDobrunz Ronald C, Paine David L, Probst Ronald N, Urch Harvey M, Wenger Jerry A
Original AssigneeWenger Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Portable acoustical shell and riser structure
US 3908787 A
Abstract
A portable acoustical shell and riser structure including a step unit with a pivotal linkage frame system movable between an operative position with a series of vertically-spaced steps and a compacted position wherein floor-engaging wheels are positioned for floor engagement and an acoustical shell pivotally hinged to the step unit for movement between a transport position wherein the acoustical shell is closely spaced to the step unit for movement of the entire structure to various locations on the floor-engaging wheels and for storage. Additionally, the acoustical shell can be moved to an operative position extending generally upright and at an angle to the step unit whereby performers, such as a choral group, may stand on the steps and with the acoustical shell enhancing the sound. The structure additionally has mechanisms for placing parts of the acoustical shell at a desired angle relative to each other and a filler panel assembly for spanning the space between adjacent structures and with further mechanisms to assure locking of the components in operative use positions and to assure a fixed relation between the components when the structure is being transported on the floor-engaging wheels.
Images(6)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1191 Wenger et al.

1451 Sept. 30, 1975 PORTABLE ACOUSTICAL SHELL AND RISER STRUCTURE [75] Inventors: Jerry A. Wenger, Owatonna; David L. Paine, Ellendale; Harvey M. Ureh, West Concord; Ronald C. Dobrunz; Ronald N. Probst, both of Owatonna, all of Minn.

['73] Assignee: Wenger Corporation, Owatonna,

' Minn.

[22] Filed: Oct. 9, 1974 [21] Appl. No.: 513,268

1521 US. c1. 181/30; 160/40; 160/135; 160/351; 181/33 GB; 182/129 1511 161. c1." E04B 1/99; EO4G 1/00; A470 5/00 581 Field 61 Search 181/30, 33 HB; 160/40, 160/113,135,351,136;182/152,129,113,

Primary E.\'ami/1erStephen J. Tomsky Attorney, Agent, or FirmWegner, Stellman, McCord, Wiles & Wood 1 ABSTRACT A portable acoustical shell and riser structure including a step unit with a pivotal linkage frame system movable between an operative position with a series of vertically-spaced steps and a compacted position wherein floor-engaging wheels are positioned for floor engagement and an acoustical shell pivotally hinged to the step unit for movement between a transport position wherein the acoustical shell is closely spaced to the step unit for movement of the entire structure to various locations on the floor-engaging wheels and for storage. Additionally, the acoustical shell can be moved to an operative position extending generally upright and at an angle to the step unit whereby performers, such as a choral group, may stand on the steps and with the acoustical shell enhancing the sound. The structure additionally has mechanisms for placing parts of the acoustical shell at a desired angle relative to each other and a filler panel assembly for spanning the space between adjacent structures and with further mechanisms to assure locking of the components in operative use positions and to assure a fixed relation between the components when the structure is being transported on the floor-engaging wheels.

16 Claims, 16 Drawing Figures US. Patent Sept. 30,1975 Sheetl0f6 3,908,787

US. Patent Sept. 30,1975 Sheet 2 of6 3,908,787

US. Patent Sept. 30,1975 Sheet 3 of6 3,908,787

Sheet 4 of 6 Sept. 30,1975

U.S. Patent US. Patent Sept. 30,1975 Sheet 5 of6 3,908,787

Sheet 6 of 6 U.S. Patenfi Sept. 30,1975

PORTABLE ACOUSTICAL SHELL AND RISER STRUCTURE BACKGROUND OF THE INVENTION This invention pertains to structure primarily used in association with the performing arts and, more particularly', a portable acoustical shell and riser structure which may be placed in a compact condition and has floor-engaging wheels for storage and transport of the structure and which may be easily erected to an operative position merely by the operation of various latch and lock mechanisms and movement'of parts about pivotally-hinged connections.

Fixed acoustical treatment for auditoriums and the like is well known; Portable acoustical shells are often used in schools and at other locations wherein an acoustical shell having pivotally interconnected panels has a frame with floor-engaging wheels permitting transport of the shell between a storage location and various locations for use'with the shell panels then being moved to an operative position. Examples of such structures are shown in US. Pat Nos. 3,180,446 and 3,630,309, issued to the assignee of this application.

Also in the performing arts, it is frequently desirable to have choral groups, for'example, positioned at different vertical levels and portable riser structures for achieving this are known. In many instances, such portable risers have fixed frames; however, a more versatile unit has a series of vertically-spaced steps carried by a frame linkage system which can move between an extended position for use and a compacted position to reduce the size of the riser structure for transport and storage. Such structure also has floor-engaging wheels to enhance portability. Examples of such structures are shown in Pat. Nos. 3,747,706 and 3,747,708, issued to the assignee of this application.

Frequently, it is desirable to have both portable riser structure and acoustical shell structure used at the same time and otherwise placed in storage. In the past, these structures have been separate and, therefore, have involved duplication of substantial structure providing for support and transport of the various componentsand have increased the time and labor involved in handling of the structure. I

SUMMARY A feature of the invention disclosed herein is to provide a portable acoustical shell and riser structure wherein the riser structure is constructed with a linkage system to permit extension of the steps into operative position or positioning of the riser structure in a compact relation for transport and storage and with floorengaging wheels provided thereon and with a portable acoustical shell mountedto the riser structure for transport and storage therewith and support by the riser structure and which may be easily erected into a desired operative position by operation of mechanism permanently associated with the structure. I

A further feature of the aforesaid structure has the acoustical shell with a filler panel assembly permanently attached thereto which may extend laterally from the acoustical shell when in operative position in order to coact with an adjacent structure in a multiple structure assembly and close any 'gap between adjacent acoustical shells. The filler panel assembly is mounted to the acoustical shell for movement between a folded,

storage position and an operative position and both the shell and the filler panel assembly have upper and lower panels with the upper shell panel being positionable at various angles of outward extension and with theupper filler panel being adjustably connected thereto at different degrees of overlap in order to span the gap between adjacent upper shell panels regardless of the angle of extension thereof.

Additionally, the upper acoustical shell panel is hinged to the lower acoustical shell panel for movement between positions-of close adjacency for transport and in operative position with the upper shell panel extending upwardly from the lower shell panel and with the hinge means incorporating positive lock structure for holding the upper shell panel at any one of a plurality of preselected angles relative to the lower shell panel.

Another feature of the invention is to provide for latch or lock structure for securely holding the various components in compact relation for transport and storage, including latch means for holding the acoustical shell in closely-spaced relation to the riser structure and additional means carried by the acoustical shell for holding the tiller panel assembly in closely-spaced parallel relation with the acoustical shell panels and with the latter means also functioning to engage and hold a laterally-extended filler panel of an adjacent structure when plural of said structures are positioned adjacent each other in use.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of the portable acoustical shell and riser structure shown in transport position except for the riser structure having been moved from a compacted position to an extended position but with the floor-engaging wheels still operative;

FIG. 2 is a perspective view of the structure shown in FIG. 1 which has been rotatably tipped to place the riser structure in operative position and remove the support thereof by the floor-engaging wheels and with the acoustical shell structure still in transport position;

FIG. 3 is a front elevational view with part of the riser structure broken away and with the acoustical shell shown in one of its operative positions;

FIG. 4 is a diagrammatic view showing a curved relation of a plurality of the structures shown in FIG. 3;

: FIG. 5 is a diagrammatic view, showing a plurality of these structures associated in straight line;

FIG. 6 is a diagrammatic view showing a further arrangement of a plurality of structures;

FIG. 7 is a fragmentary side elevational view of the pivot structure interconnecting the acoustical shell and the riser structure, with parts broken away, and with an alternate position shown in broken line;

' FIG. 8 is a rear elevational view, on an enlarged scale and with parts broken away, of the acoustical shell structure as shown in FIG. 3 and with the upper shell panel at a different angle;

FIG. 9 is a fragmentary elevational view, on a further enlarged scale and taken generally along the line 9-9 in FIG. 8;

FIG. 13 isafragmentary view, on an enlarged scale, taken generally along the line13l3 in FIG. 8;

FIG. 14 is a plan section, taken generally along the.

line I4.-l4 in FIG. 13; i

FIG. 15is a diagrammatic view, showing. the relation; of an upper filler panel with an upper acoustical shell panel at one angle of the acoustical shell panel; and

FIG. 16 is a view, similar to FIG, 15, showing a different relation of the filler panel when the upper acoustical. shell panel is at a different angle.

DESCRIPTION OF THE PREFERRED EMBODIMENT .A general understanding. of the invention disclosed herein ,may be obtained from consideration of FIGS. 1

ity of steps 22 and having, at their lower ends, floorengaging wheels 23. The side frames 20 and,21 are shown in extended position in FIGS. 1 and 2. While in full transport condition, the side frames 20 and 21 would bepivoted relative to the steps 22 to a position substantially parallel thereto to reduce the over-all widthof the unit as viewed looking toward the righthand side of FIG. 1. The riser structure is shown in extended position in FIG. 1, with the side frames 20 and 21 held in' erected condition by a brace member 24. This structure ismore particularly shown and the operation thereof describedin the aforesaid patent, owned by the assignee of this application and the disclosure thereof is incorporated herein by reference. I

With the riser structure extended, as shown in FIG. 1, the structure ;is rotatably tipped to a position, as shown in FIG. 2, wherein ,thesteps 22 are verticallyspaced for support of a plurality vof rows of persons as in'a choral group. l

The structure is,-in an intermediate condition, as shown in FIG. 2, wherein the acoustical shell 11 is still in a transport condition and must be operatively extended to an operative position as shown in FIG. 3.. The acoustical shell includes a lower shell panel 25 andan upper shell panel 26 which are hinged together along their adjacent edges andwith the lower shell panel 25 additionally hinged to the riser structure whereby the acoustical shell 1 1 can be raised from the transport position of FIG. 2 to the operative. position of FIG. 3. The

shell panels each have a surroundflframe with acoustical surfaces. 1

The acoustical shell 11 is pivotally connected to the riser structure by a pivot assembly, shown particularly in FIG. ,7. The structure shown in FIG. 7 is duplicated at each side of the riser structure "10and includes a tu bular arm 30 secured to a bracket 300, as by welding,

Y and with the bracket 30a pivoted to theframe of the riser structure. An L-shaped arrr'i 31. of tubular construction is pivoted to arm 30 atf32 and movable betive position, as shown in full. line infFI G. .7,. by a slidable lock member 34 which,,in locked position, has a flange 35 overlapping the lower surface of the arm 30. This lock is a tubular member which'is slidably movable on thearm 31 and which may be retained in an unlocked position byfrictional engagement with a spring 7 member" 35(as shown inbroken line in FIG. 7). The

flange 35 of the lock prevents clockwise pivoting of the arm 31 with respect to the arm 30, as yiewed in FIG. 7, while counterclockwise movement is prevented by engagement of the arm 3 l with the interior surface of the lower part of the arm 30.

The arm 31 is secured to the surround framemember 37 of an acoustical lower shell panel and with the free end of the armearrying a floor-engaging wheel 38 whereby added stability is provided for the structure when in transport position with the wheels 38 as well as the wheels 23 engaging 'the floor. v

With theacoustical shell 11 in transport and storage condition, as shown in FIG. 2, the arm 31 is in the broken line position of FIG. 7 and the acoustical shell structure is held locked to the riser structure by a pair of locks 40, one of which is shown in FIG. 2. The lock 40 is pivotally mounted on the shell surround frame 37 and has a bifurcated end to engage both sides of the upper step 22 and hold the shell in 'a position extending generally parallel to the step unit. A similar lock member 40 is located at the side. of the shell not visible in FIG. 2.

Continuing with the sequence in movement of the structure to operative position from the previously de scribed intermediate condition of FIG. 2, it will be seen that the lock members 40 are pivoted to release theengagement with the upper step 22 and then ,the',acoustical shellll is raised by pivoting of arms 31 relative to. arms 30 of the pivot mountings forth'e acoustical shell. With the acoustical shell having a lower panel 25 and.

an upper panel 26, the next step in operation is to dispose the upper shell panelat a predetermined angle relative to the lower shell panel prior to final positioning as shown in FIG. 3. Thelupper shell panel 26 is'piv'otally connectedto the lower shell panel by a pair of hinge'assemblies located, one at each vertical edge of the two panels. One of the hinge assemblies and lock means as-' sociated therewith is shown particularly inFIGS. 9 and" '10. The hinge assembly, indicated generally at H, includes a hinge arm 41 connected to the surround frame member 37 of the lower shell panel and a hinge arm 42 connected to a surround frame member 38 of the upper I lower shell panel, as shown in full line in FIG. 9, to a variety of preselected angular positions for tlieupper shell panel and one of which is indicated in' broken line in FIG. 9. Analysis has shown that three angular posi-' tions of the upper shell panel 26, other than upright, are adequate to me'et a variety of conditions as to overall height and size of room in which the structure is used and these four positionsare obtained by a lock structure including a detent pin 44 carried by the hinge iarm 4l and whichcoacts with any one 'of four different openings 45,. 46, 47', and 48 in hinge arm 42 and dis posed'along an areuate line about the pivot pin 43 as the center. As shown in FIG.'9, the pin 44 is in opening 45 which provides for position 1 whereby the upper shell panel 26 is vertical. The opening 46 provides for position 2 which is at an angle of approximately 30 from the vertical. The opening 47 provides for a position 3 which provides for an angle of 45 from the vertical; while the opening 48 provides for position 4 which has the upper shell panel 26 at an angle of approximately 60 from the vertical.

The pin 44 is mounted for retraction by connection to a manually-operable actuator 50 which is selfretaining, either in the position shown in FIG. or at a position rotated counterclockwise 90 therefrom to lock the pin 44 in retracted position. A spring 51 acts between a C-washer 52 fitted in a groove in the locking pin 44 and a member 53 carried on the hinge arm 41 to normally urge the pin 44 into extended position into one of the holes 44-48 and to maintain the manual actuator 50 in either of the positions shown in FIG. 10 wherein surfaces 55 thereof engage the member 53 or, alternatively, wherein surfaces 56 of the manual actuator engage the member 53 and with the detent pin 44 retracted. This structure is operated to set the angle of the upper shell panel 26'relative to the lower shell 25 by raising the acoustical shell 11 from the position shown in FIG. 2 a sufficient distance to permit outward pivoting of the upper shell panel 26. The desired angle of the upper shell panel is then set by operation of the structure shown in FIGS. 9 and 10 and the acoustical shell 11 is then raised to the position shown in FIG. 3 andthe locks 34 of the pivot assembly, shown in FIG. 7, are then lowered to the full line position shown therein to maintain the acoustical shell in operative position. At this time, a pivoted step guard 60 can be pivoted from the position of FIG. 2 to the position of FIG. 3 to partially span the space between the upper step 22 and the lower edge of the acoustical shell lower panel As explained morefully hereinafter, a number of the portable acoustical shell and riser structures may be used in association with each other and there is a resulting space between the acoustical shells of adjacent structures. For improved acoustical properties as well as appearance, it is desirable to span the spaces between adjacent acoustical shells and, for this purpose, each of the structures has a filler panel assembly associated therewith. The filler panel assembly is shown in operative position from the front of the structure in FIG. 3 and from the rear of the structure in FIG. 8. A lower filler panel 65 is pivotally hinged along an adjacent edge to the lower acoustical shell panel 25 by means, such as a piano hinge 66. An upper filler panel 67 is hinged along an adjacent edge to the upper edge of the lower filler panel 65 by means such as piano hinge 68. The hinging of the filler panels to each other and to the lower acoustical shell panel permits a folding downwardly of the upper filler panel 67 toward the front face of the lower filler panel 65, as viewed in FIG. 3, to have the front faces of both filler panels in facing relation and then pivotal movement of the filler panels about the hinge 66 into a position of storage within the surround frame 37 of the lower acoustical panel 25 and with the upper filler panel 67 positioned uppermost, as viewed in FIG. 2.

In setting up the filler panel assembly andafter the angle of the upper acoustical panel 26 has been set 'relative to the lower acoustical panel 25, the filler panel assembly is pivoted upwardly and outwardly from the back of the lower acoustical panel 25 followedby pivoting of the upper filler panel 67 relative to the lower filler panel by movement permitted by the hinge 68.

It will be noted that all of the panels of both the acoustical shell and the tiller panel assembly are generally rectangular whereby if the upper acoustical shell panel 26 extends vertically upward, the filler panels 65 and 67 will extend vertically upward adjacent the acoustical shell panels. This is illustrated in the rear elevationalview of FIG. 8. With the upper filler panel 67 being supported only by the hinge 68, it is necessary to secure the upper filler panel to the upper acoustical shell panel 26. In the relative positions shown in FIG. 8, this is accomplished by having a hook 70 carried by the upper acoustical shell panel 26 engaged in an opening 71 atthe upper edge of the upper filler panel 67. This is the relation when the upper acoustical shell panel extends upward vertically from the lower shell panel and the lower filler panel 65 is to be coplanar with the lower acoustical shell panel 25. There are additional openings 72, 73, and 74 which are coded similarly to the coding of the pivot assembly holes 4448, shown in FIG. 9, which control and establish the angle of the lower filler panel relative to the lower shell panel.

The hook 70 and associated structure are shown particularly in FIGS. 13 and 14 wherein the hook 70 is fixed to a carrier 75 having a pair of flanges 76 and 77 slidable within associated grooves formed in the surround frame 38 of the upper acoustical shell panel 26. The carrier 75 has sliding movement in order to permit insertion of the hook 70 in any one of the openings 7174 followed by upward movement of the hook, as viewedin FIG. 13, to securely overlie the upper filler panel 67. When this is accomplished, the threaded member 79 is advanced into engagement with a wall 80 of the surround frame to firmly hold the flanges 76and 77 against the outer surfaces of the associated grooves and, in effect, lock the hook 70 in position. This variablelocation of the hook in one of the openings 71-74 of the upper filler panel is diagrammatically shown in FIGS. 15 and 16 wherein, in FIG. 15, the relation is as illustrated in FIG. 8.

The filler panel assembly, when in transport position of the structure, nests behind the lower acoustical shell panel 25 and a latch assembly is provided in order to hold the filler panel assembly in such relation during transport. This structure is shown particularly in FIGS. 8, 11 and 12. This latch assembly has the added function of coacting with a free edge of a lower filler panel 65 of an adjacent structure to secure said free edge against movement and this particular operation is specifically shown in FIGS. 11 and 12. The latch assembly includes a latch member pivoted at 91 to a clip 92 slidably engaged with a section of the panel surround frame member 37 and which is held in adjusted position by firm extension of a threaded member 93 into engagement with a section 94 of the surround frame which causes a reaction of clip sections 95 and 96 against adjacent parts of the surround frame surfaces to hold the clip 92 firmly in position. The threaded member 93 has one end of a spring 97 engaged therewith and with the opposite end of the spring connected to the 'latch member 90 and urging the latch member in a clockwise direction of rotation as viewed in FIG. 11. As shown in FIGS. 11 and 12, the latch member 90 is urged by the spring 97 into engagement with a lower filler panel 65 of an adjacent structure to hold the filler panel in firm relation with the remainder of the structure. The latch member 90also functions to hold the folded filler panel assembly within the interior of the rear side of the lower acoustical shell panel 25, as will be evident in FIG. 8 wherein the latch member 90 overlies this cavity at the rear of the acoustical shell panel 25.

- Referring now to FIGS. 4 to 6 wherein several of the possible arrangements of'the structure are shown and wherein the step structures are diagrammatically illustrated, it will be noted that in FIG. 4 a curved configuration'is provided. This is obtained by the fact that the steps 22 of a step unit are of variable length with the lowest step being shorter than the highest step so that in the-arrangement of FIG. 4 there will be a continuity of step surfaces at each step level. This is particularly evident in FIG. 1 wherein the highest step, which is at the bottom of the structure, is longer than the lowest step, which is at the top of the structure, as viewed in FIG. 1. Further, as seen in FIGS. 1 and 3, the acoustical shell panels 25 and 26 have a width substantially less than the step unit. Thus as the step units are related as shown in FIG. 4, there is a space between the acoustical shell panels of adjacent structures and it is the function of the filler panel assembly to span these spaces.

In the arrangement of FIG. 5, it is necessary to have certain of the structures provided with step units which are the reverse of those shown in the drawings wherein the units 100 and 101 have the highest step shorter than the lowest step.

In the arrangement of FIG. 6, there is a single reverse unit 100 used, with the other units being of the structure shown specifically in this application. Thus, the filler panel assembly spans the space between adjacent acoustical shells and the upper filler panel 67 of each filler panel assembly follows the upper acoustical shell panel 26 in all angular relations thereof with respect to the lower acoustical shell panel 25. There is a corresponding angular relation of the lower filler panel 65 relative to the acoustical shell.

I More specifically in FIG. 4, the upper filler panel 67 should have one of the openings 71-74 associated with the hook 70 which corresponds with the position opening of the hinge assembly of FIG. 9. If position 2 is used in the hinge assembly of FIG. 9, then position 2 should :be used with the filler panel. In a straight-line arrangement as viewed in FIG. 5, then the position 1 opening of the upper filler panel should be used, namely, opening 71 for association with the hook 70. In the arrangement of FIG. 6, the units 102 and 103 should have the position opening on the filler panel correspond to the position opening on the hinge assembly of FIG. 9, while the unit 100 and a unit 104 have position 1 opening of the filler panel used in association with the hook 70. A unit 105 has its filler panel assembly closed and inactive. It will be seen that the angle of the lower filler panel is set by the relation of the hook 70 to one of the openings 71-74.

Starting from the operative position of FIG. 3, movement of the structure to a storage position is com- 'menced by release of the lock members 34 of the pivot mountings of the acoustical shell to the riser structure and with a gentle lowering of the acoustical shell structure to place the upper edge of the upper acoustical shell panel 26 in engagement with the floor. The hook is then released from the upper filler panel 67, the filler panelsmoved to an angle relative to the shell panels and the upper filler panel 67 is then folded downwardly against the front face of the lower filler panel 65 and the associated panels are then pivoted about the hinge 66 to nest within the rear of the lower acoustical panel 25. The latch assembly shown in FIGS. 11 and 12 is moved into position to hold the filler panel assembly in association with the acoustical shell. The acoustical shell is then raised a sufficient distance to permit movement of the front face of the upper acoustical shell panel 26 toward the front face of the lower acoustical shell panel 25, as permitted by release of the detents associated with the hinge structure therefor shown in FIGS. 9 and 10. When this is accomplished, the acoustical shell is then brought to the position shown in FIG. 2 and the travel latches 40 are moved into locked relation with the upper step 22. Previously, the step guard 60 has been moved to the position shown in FIG. 2. The structure is then rotatably tipped to the position of FIG. 1 and then the side frames 20 and 21 of the step unit are pivoted relative to the steps to lie closely adjacent thereto. The structure is then in a compact storage condition and for transport along the floor including support by the wheels 23 of the step unit as well as the wheels 38 carried by the arms 31 of the pivot mounting assembly for the acoustical shell. Reverse of the foregoing operations sets up the structure for use.

We claim:

1. A portable acoustical shell and riser structure including a step unit having a pivotal linkage system movable between transport and operative positions and having floor-engaging wheels positioned for floor engagement in the transport position and a series of vertically-spaced steps for use in the operative position, an acoustical shell, and means for piviotally hinging said acoustical shell to said step unit for movement between a transport position in closely spaced relation to said step unit and an operative position extending generally upright and at an angle to said step unit.

2. A structure as defined in claim 1 wherein said pivotal hinge means carries additional floor-engaging wheels to provide added stability in transport.

3. A structure as defined in claim 1 including means for latching said acoustical shell to said step unit in both of said shell positions.

4. A structure as defined in claim 1 wherein said acoustical shell includes upper and lower panels with said pivotal hinge means connected to said lower panel, second hinge means pivotally connecting said upper panel to said lower panel, and means for locking said upper panel at one of a plurality of different angles with respect to said lower panel.

5. A structure as defined in claim 4 wherein said locking means includes a spring loaded lock pin on one part of said second hinge means and a series of lock pin receiving openings on a second part of said second hinge means and which are arcuately disposed about a pivot axis for said two parts of the second hinge means.

6. A structure as defined in claim 4 including a filler panel assembly for extension laterally of said acoustical shell when the latter is in operative position to close the gap between acoustical shells of two of said structures positioned adjacent to each other.

7. A structure as defined in claim 6 wherein said filler panel assembly includes upper and lower pivotally interconnected filler panels generally coextensive with the upper and lower shell panels, and said lower filler panel and shell panel being vertically hinged together along an adjacent edge.

8. a structure as defined in claim 7 including a filler panel latch for holding said filler panels in folded backto-back relation with the acoustical shell when in transport position.

9. A structure as defined in claim 8 including means mounting said filler panel latch for engagement with a filler panel of an adjacent structure when two of said structures are positioned adjacent each other.

10. A structure as defined in claim 7 wherein said upper filler panel and upper shell panel are movable independently of each other and means for holding said last-mentioned parts in overlapped fixed relation and in variable amounts to set the angle of the lower filler panel relative to said lower shell panel.

11. A portable acoustical shell structure including upper and lower shell panels, hinge means interconnecting said shell panels for movement between a transport position wherein the panels are in face-toface relation and an operative position wherein the upper shell panel extends upwardly from the lower shell panel, means associated with the hinge means for locking said panels in any one of several different angular relations, a filler panel assembly including upper and lower filler panels hinged together along adjacent edges, said lower filler panel being hinged to said lower shell panel along adjacent edges and an axis extending heightwise thereof, means for latching said filler panel assembly to said lower shell panel for transport with said filler panels in face-to-face relation, and means for locking said upper filler panel to said upper shell panel when in operative position with the filler panels extended laterally of the shell panels and with varying degrees of overlap dependent upon the angularity of the lower filler panel to the lower shell panel, and floorengaging rollers for transport of said structure.

12. A structure as defined in claim 11 wherein said filler panel latching means includes a latch member pivoted to said lower shell panel and extendable beyond a rear face of the lower shell panel to engage a filler panel, said latch member also being engageable with an operatively positioned filler panel of an adjacent structure when a plurality of said structures are associated in use.

13. A structure as defined in claim 11 including a step unit, means hinging said shell structure to said step unit, and said floor-engaging rollers being both on said step unit and on said shell structure.

14. A structure as defined in claim 13 wherein said last-mentioned hinging means permits disposition of said shell structure adjacent said step unit for transport and extension of the shell structure upwardly from the step unit in operative position, and locking means associated with the hinging means to maintain the lastmentioned relation.

15. A portable acoustical shell and riser structure including a step unit having a pivotal linkage frame system movable between transport and operative positions and having floor-engaging wheels positioned for floor engagement in the transport position and a series of vertically-spaced steps for use in the operative position, an acoustical shell, means for pivotally hinging said acoustical shell to said step unit for movement between a transport position in closely spaced relation to said step unit and an operative position extending generally upright and at an angle to said step unit, said acoustical shell having upper and lower shell panels hinged together along an adjacent edge by hinge structure, detent means associated with the hinge structure for the shell panels and engageable in a selected one of a plurality of arcuately arranged openings in a hinge member of said hinge structure for locating the upper shell panel at a predetermined angle relative to the lower shell panel, releasable means for locking the acoustical shell to the step unit when in said transport position, releasable means for locking the acoustical shell in operative position relative to said step unit, and a filler panel assembly including upper and lower filler panels positioned to extend laterally from the acoustical shell panels when in operative position and with the lower filler panel hinged to the lower shell panel along an adjacent edge, and means for connecting the upper filler panel to the upper shell panel at different locations with differing degrees of overlap between said latter panels to cause and be dependent upon the desired orientation of the lower filler panel relative to the lower acoustical shell panel.

16. A structure as defined in claim 15 wherein said means pivotally hinging the acoustical shell to the step unit includes arms connected to the acoustical shell, and floor-engaging wheels carried by said arms to be positionedat a distance from the floor-engaging wheels of the riser structure to provide added stability in transport and storage of the structure.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2375941 *Mar 6, 1943May 15, 1945Nostrand Eugene SSound reducing device for beds
US3180446 *Nov 17, 1961Apr 27, 1965Wenger Harry JPortable sound shell
US3435909 *Oct 23, 1965Apr 1, 1969Wenger CorpSound reflecting structure
US3630309 *Jun 10, 1969Dec 28, 1971Wenger CorpPortable shell
US3747706 *Nov 18, 1971Jul 24, 1973Wenger CorpPortable folding riser
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4290332 *Sep 17, 1979Sep 22, 1981Schoeffling Jr Thomas ISound shielding and pick-up device
US4515238 *Oct 20, 1983May 7, 1985Baker Warren NPortable acoustical shield and sound enhancing closure
US4667833 *Jul 26, 1985May 26, 1987Jamison Albert LModular display structures
US5069011 *Apr 6, 1990Dec 3, 1991Grosh Scenic Studios, Inc.Portable acoustical panel structure
US5168129 *Feb 19, 1991Dec 1, 1992Rpg Diffusor Systems, Inc.Variable acoustics modular performance shell
US5356346 *Jan 11, 1993Oct 18, 1994Brunswick Bowling & Billiards CorporationFor hiding bowling pinsetters on bowling lanes
US5403979 *Sep 28, 1993Apr 4, 1995Stageright CorporationEasily raisable and lowerable telescopic shell tower acoustic system and methods of making and using the system
US5524691 *Nov 18, 1994Jun 11, 1996Wenger CorporationPortable panels for a stage shell
US5525766 *Nov 23, 1994Jun 11, 1996R & A Acoustical StructuresPortable acoustical shell structure
US5530211 *Dec 27, 1994Jun 25, 1996Stageright CorporationSound reflecting shell tower and transporter structure and methods of erecting and storing the towers
US5622011 *Feb 16, 1995Apr 22, 1997Wenger CorporationPortable panels for a stage shell
US5779554 *Mar 28, 1997Jul 14, 1998Amf Bowling, Inc.Three-dimensional bowling alley masking unit
US5787647 *Jun 7, 1996Aug 4, 1998Wenger CorporationPortable riser
US5875591 *Feb 7, 1997Mar 2, 1999Wenger CorporationPortable panels for a stage shell
US5901505 *Apr 3, 1998May 11, 1999Wenger CorporationPortable riser
US6085861 *Oct 8, 1998Jul 11, 2000Wenger CorporationCollapsible portable acoustic tower
US6729075Oct 18, 2001May 4, 2004Wenger CorporationAudience seating system
US6922947Apr 6, 2004Aug 2, 2005Wenger CorporationAudience seating system
US7107734Jun 27, 2005Sep 19, 2006Wenger CorporationAudience seating system
US7296653 *Jan 7, 2005Nov 20, 2007Smith Jr Harold NSound control apparatus
US7565951 *Aug 4, 2006Jul 28, 2009Joab Jay PerdueWall mountable acoustic assembly for indoor rooms
US7600608 *Sep 16, 2005Oct 13, 2009Wenger CorporationActive acoustics performance shell
US8091605 *Jan 25, 2007Jan 10, 2012Jim Melhart Piano and Organ CompanyAcoustic panel assembly
US8544213 *Oct 24, 2011Oct 1, 2013Progressive Products, Inc.Transforming structure with tower shuttle
US8689520Oct 1, 2013Apr 8, 2014Progressive Products, Inc.Transforming structure with tower shuttle
US8783328Jan 9, 2012Jul 22, 2014Jim Melhart Paino and Organ CompanyAcoustic panel assembly
US20120096775 *Oct 24, 2011Apr 26, 2012Allison Todd NTransforming structure with tower shuttle
US20130285423 *Mar 14, 2013Oct 31, 2013Ramiro Sebastian PACHECOYSubstitute bench
Classifications
U.S. Classification181/30, 181/287, 160/351, 182/129, 160/135, 160/40
International ClassificationE04H3/10, E04B1/82, G10K11/20, E04B1/84, E04H3/12, G10K11/00
Cooperative ClassificationE04H3/126, G10K11/20, E04B1/8236, E04B2001/8414
European ClassificationG10K11/20, E04B1/82E1, E04H3/12C