Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3911891 A
Publication typeGrant
Publication dateOct 14, 1975
Filing dateAug 13, 1973
Priority dateAug 13, 1973
Publication numberUS 3911891 A, US 3911891A, US-A-3911891, US3911891 A, US3911891A
InventorsDowell Robert D
Original AssigneeDowell Robert D
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Coating for metal surfaces and method for application
US 3911891 A
Abstract
A coating is disclosed herein together with a method of forming that coating on metal surfaces of an internal combustion chamber. The coating is deposited for example, on the combustion surface of a piston to form a thermal barrier and thus enable higher temperatures to be sustained within the chamber. Combustion at higher temperatures achieves a more complete fuel burning thus increasing performance and reducing emissions. The coating is formed on the combustion surface by successively depositing layers of different materials preferably applied utilizing a plasma flame spray process. More particularly, the formation of the coating on the combustion surface involves preparing the surface as by grit blasting and then initially depositing a thin (approximately 0.001 - 0.003 inches) nickel aluminum alloy layer. Thereafter, a second thicker layer (approximately 0.003 - 0.006 inches) comprised primarily of said nickel aluminum alloy and refractory zirconium oxide is deposited followed by the deposition of a still thicker layer (approximately 0.008 - 0.010 inches) primarily of zirconium oxide.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Dowell Oct. 14, 1975 COATING FOR METAL SURFACES AND 57 ABSTRACT METHOD FOR APPLICATION A coating is disclosed herein together with a method [76] Inventor: Robert Dowel], 23321 Falena of forming that coating on metal surfaces of an inter- Torrance Cahf' 90501 nal combustion chamber. The coating is deposited for [22] Filed: Aug. 13, 1973 example, on the combustion surface of a piston to form a thermal barrier and thus enable higher temper- [21] Appl' 387717 atures to be sustained within the chamber. Combustion at higher temperatures achieves a more complete 52 us. (:1 123/191 A; 92/213; 92/223; fuel burning thus increasing Performance and reduc- 92 4; 1 7 7 M ing emissions. The coating is formed on the combus- 51 Int. (:1 F02f 3/12 tien Surface by successively depositing layers of differ- [58] Field of Search 92/223, 224, 213; em materials Preferably applied utilizing a plasma 23 19 117 71 M, 94 flame spray process. More particularly, the formation of the coating on the combustion surface involves pre- [56 References Ci d paring the surface as by grit blasting and then initially UNITED STATES PATENTS depositing a thin (approximately 0.001 0.003 92/223 inches) nickel aluminum alloy layer. Thereafter, a secijfiijifii 1311321 302113;]; 1111117. M 9 thicker fi r e 9 3,010,480 11/1961 Ragsdale 117 71 M Inches) Compnsed f y of P alPmmum 3,203,321 8/1965 Rosen 123/191 A alloy and yz mum o ude 1s deposlted fol- 3,459,167 8/1969 Briggs et 81.... 123/191 A lowed y the depeeltlon of a Still thleker leyer p- 3,552,370 1 1971 Briggs 92/223 pr ly 00 0.0 0 h s) pr marily f zir o- 3,660,05l 5/1972 Lee 28/62 nium oxide.

FOREIGN PATENTS OR APPLICATIONS France 92/223 11 Claims, 5 Drawing Figures LAYERS U.S. Patent Oct.14,1975 Sheet2of2 3,911,891

PLASMA SPRAY GUN 44 I ///11mm1 H 52 H J LAYERS 64 66 3 62 2 6O COATING FOR METAL SURFACES AND METHOD FOR APPLICATION BACKGROUND OF THE INVENTION This invention relates generally to the art of coating and more specifically to a particular coating, and method of application thereof, suitable for coating the surfaces of an internal combustion chamber to enable operation thereof at temperatures greater than could otherwise be sustained.

It is generally known that more complete fuel burning can be achieved in an internal combustion engine if higher temperatures can be sustained within the combustion chambers. Since some heat loss occurs through all of the chamber surfaces, including the cylinder wall and head and piston combustion face, attempts have previously been made to form a coating on these surfaces to act as a thermal barrier to thus prevent heat flow out of the chamber. Such attempts have not, however, been successful due to various factors including the great difficulty of bonding suitable coatings to the surfaces in a manner which enables the bond to be maintained at elevated operating temperatures.

SUMMARY OF THE INVENTION The present invention is directed to a coating suitable for application to metal surfaces of an internal combustion chamber and to a method for forming that coating on such surfaces.

Briefly, in accordance with the invention, the coating is formed by sucessively depositing layers of different materials preferably applied utilizing a plasma flame spray process. More particularly, the formation of the coating on the piston combustion face involves preparing the surface as by grit blasting and then initially depositing a thin (approximately 0.001 0.003 inches) metal layer, e.g. a nickel aluminum alloy, which exhibits a thermal expansion characteristic similar to that of the substrate. Thereafter, a second thicker layer (approximately 0.003 0.006 inches) comprised primarily of a mixture of said first metal layer and a refractory material such as zirconium oxide is deposited followed by the deposition of a still thicker layer (approximately 0.008 0.010 inches) of refractory material which last layer minimizes heat loss to the substrate. The middle or transition layer, preferably exhibits a thermal expansion characteristic between that of said first and third layers and as a consequence relieves stresses which might otherwise be created at elevated operating temperatures.

DESCRIPTION OF THE DRAWINGS FIG. l is a schematic illustration of a portion of an internal combustion engine showing the elements of two combustion chambers;

FIG. 2A is a schematic illustration showing a step in the method of applying a coating in accordance with the present invention to a piston;

FIG. 2B is a plan view of the apparatus shown in FIG. 2A;

FIG. 3 is a schematic illustration typical of a further step in the application of the coating in accordance with the invention to a piston; and

FIG. 4 is an enlarged cross-sectional view illustrating the various layers of the coating applied to the piston end face.

DESCRIPTION OF THE PREFERRED EMBODIMENT The present invention is directed to a coating and a method of applying that coating to metal surfaces, particularly metal surfaces forming the chamber of an internal combustion engine.

It is generally known that more complete fuel burning can be achieved in an internal combustion engine if higher temperatures can be sustained within the combustion chambers. Since the various surfaces exposed in the combustion chamber are generally formed of good heat conducting metal such as aluminum or iron alloys, significant amounts of heat are transferred via these elements out of the combustion chambers. The present invention is particularly directed to a coating applicable to the metal surfaces within the combustion chamber, particularly the piston end face, to considerably reduce heat loss and thereby enable the temperatures within the chambers to be sustained at higher levels than would otherwise be possible. In order for a coating to be suitable to the aforedescribed application, it is necessary that it be capable of being very tightly bonded to the metal surfaces, in addition to it, of course, having to exhibit a high thermal barrier characteristic. Refractory materials which generally exhibit suitable thermal barrier characteristics often cannot be adequately bonded to metal surfaces exposed to elevated temperatures because of the significant differences in thermal expansion characteristics.

In accordance with the present invention, a coating is disclosed comprised of three layers. The material selected for the first layer, which is bonded directly to the metal surface, has a thermal expansion characteristic close to that of the metal surface. A third, or outside layer material is selected which has excellent thermal barrier characteristics and a middle or intermediate layer is selected which exhibits a thermal expansion characteristic between that of the first and third layers for the purpose of relieving mechanical stresses therebetween which might otherwise be created in the presence of temperature gradients.

Prior to considering the specifics of the coating in accordance with the present invention and the method of applying it, attention is called to FIG. 1 which schematically illustrates the crosssection of a portion of a typical internal combustion engine. The engine is comprised of a block 12 and a head 14 mounted on and secured to the block. A plurality of cavities 16 extend inwardly from the upper surface of the block 12. Dome portions 18 of the head 14 cover and closes the cavities 16.

A piston 20 is mounted within the cylindrical cavity 16, for reciprocal movement toward and away from the dome 18, defining a combustion chamber formed essentially by the wall 22 of the cylindrical cavity, the substantially flat end face 24 of the piston, and the surface 26 of the dome. As is well known, the combustion chamber additionally normally includes an inlet valve 28 and an exhaust valve 30 as well as a spark plug 32. Since heat loss can, and does, occur through all of the surfaces exposed to the combustion chamber, the thermal barrier coating in accordance with the present invention can be advantageously used on all of these surfaces, hereinafter referred to as the combustion surfaces. Although the coating can be advantageously utilized on all of the combustion surfaces, the detailed description herein of the method of applying the coating will be restricted to its application to the end face 24 of the piston 20. However, it will be understood that the coating can be similarly applied to other surfaces.

Briefly, application of the coating in accordance with the present invention to the piston end face comprises primarily the steps of (1) initially preparing the piston end face surface for coating, (2) applying the first layer, (3) applying the second layer, (4) applying the third layer, and (5) cleaning and polishing.

The piston surface is prepared initially by cleaning it, preferably in a suitable vapor degreasing apparatus utilizing for example, perchlorethylene. After being cleaned, the portions of the piston to be coated are grit blasted. In order to do this, the piston 20 is loaded into a specially made fixture 36 illustrated in FIGS. 2A and 2B. The fixture 36 is comprised of a top plate 38 secured by fixed standards 40 to a turntable 42. The plate 38 has a center opening 44 below which the piston 20 is supported on a mounting structure 46. The mounting structure 46 can elongate as represented by the arrows, to press the piston 20 up into tight engagement with the underside of plate 38. In order to remove the piston 20 from the fixture 36, the mounting structure 46 is shortened so that the piston can be slid out.

The opening 44 and plate 38 is precisely dimensioned so as to have a diameter slightly smaller than the diameter of the piston end face. As an example, it is desirable to leave a narrow arcuate area, approximately one thirty-second inch in width, immediately adjacent the outer circumference of the piston end face, free of coating in order to establish a better bond between the coating and the piston end face.

With the piston 20 mounted in the fixture 36 as shown in FIG. 2A, the piston end face surface is grit blasted using for example an aluminum oxide grit having a mesh size of 47/70. The grit blast gun 46 should be approximately 3 inches above the surface of the piston and discharge the grit at approximately 35 pounds per square inch. As represented by the arrow in FIG. 2A adjacent the grit blast gun, the gun 46 is moved back and forth over the surface of the piston 20 to develop a substantially uniform surface roughness of 150/300 RMS.

Subsequent to the preparation of the piston end face surface by cleaning and grit blasting, the surface is ready for application of the three successive coating layers. In accordance with the preferred method of applying the coating, all three layers are applied in substantially the same manner utilizing the same apparatus. More particularly, each of the coating layers is applied utilizing a plasma flame spray apparatus, for example, of the type shown in US. Pat. No. 3,145,287. This apparatus is capable of producing and controlling a high velocity, high temperature inert gas stream for long periods. Typically, gas velocities of 1,000 feet per second at 12,000 to 30,000 degrees Fareinheit can be produced. The hot gas stream is used to melt and accelerate at high velocities the material to be deposited which is usually introduced into the apparatus in powder form. When the molten particles impact on the surface to be coated (substrate), they form a dense high purity coating which does not metallurgically effect the substrate in that there is no heat effected zone and no distortion.

The coating layers are applied to the piston end face utilizing the fixture 36 as shown in FIG. 3. Whereas, the

grit blast gun was moved across the piston face in FIG. 2A along two perpendicular axes, the preferred manner of depositing the coating material on the piston end face, as shown in FIG. 3, involves moving the plasma spray gun 50 along one axis only while simultaneously rotating the entire fixture 36 by shaft 52 secured to turntable 42. Alternatively, the spray gun 50 can be moved across the face of the piston along two perpen dicular axes.

In describing the steps of applying the coating layers to the piston end face, various parameters will be recited with the assumption being made that a particular plasma flame spray gun and powder feeder, both sold commercially by Metco, Inc., is being employed. The gun type is 3MB. The powder feeder type is 3MP. The cathode type is 3MllA and the rectifier utilized is 4MR or 6MR.

The initial coating layer applied directly to the piston end face is a bonding layer, preferably a nickel aluminum alloy. The powder employed is comprised of approximately percent nickel and 5 percent aluminum with a mesh size range from -l70 to +325.

The various plasma spray parameters preferably employed in depositing the first coating layer are as follows:

CARRIER GAS Nitrogen em Type Regulator Console Flow Primary Nitrogen 50 2PSl 50 2PSI SCFH Secondary Hydrogen 50 i lPSl 50 i lPSl l0 SCFH EM Operat- 500 Amps: 65-67 Volts ing: POWDER FEEDER Gas: 37 SCFH RPM: 16 Port No. 2 Amps: Spray Rate: 68 grams/min Meter Wheel S STANDOFF Gun to Work Distance: 5 in. NOZZLE Type G ADDITIONAL INSTRUCTIONS Preheat to 150 F. Max. Part Temp. 350F Steel 200F Aluminum Surface Speed: 150 ft/min.

It has previously been mentioned that a narrow arcuate area immediately adjacent the edge of the piston end face is left free of coating to assure better bonding of the coating to the piston. This area, which may have a width of approximately one thirty-second of an inch, is represented by numeral 60 in FIG. 4. To further assure good bonding, the thickness of each layer is tapered gradually proximate to the edge thereof. The tapering of layer 1 in FIG. 4 is represented by number 62. The variation in thickness of the layer to establish the tapering is achieved by varying the speed of the plasma spray gun as it moves across the piston end face or by varying the rotational speed of the turntable depending on the position of the gun. For example, if the plasma spray gun is moving faster adjacent the edge, it will deposit a lesser thickness of material than it will when it is moving more slowly toward the center of the piston. The number of passes of the gun across the piston determines the thickness of the coating layer applied. Preferably, the nickel aluminum alloy (layer 1) should be applied to a thickness of approximately 0.001 0.003 inches.

CARRIER GAS Argon ARC GAS Type Re ulator Console Flow Primary Nitrogen 5012PSI 50:;2PSI 75 SCFH Secondary Hydrogen SOilPSI 50:1 PSI 15 SCFH POWER Operating: 500 Amps 7585 Volts POWDER FEEDER Gas 40 SCFH RPM 80 Port No. 2

AMPS Spray Rate 76 grams/min Meter Wheel S STANDOFF Gun to Work Distance 5510.5 in. NOZZLE Type G ADDITIONAL INSTRUCTIONS Preheat to 150F Max. Part Temp. Surface Speed 150 ft/min.

The thickness of the second layer should also be tapered adjacent the edge thereof as shown at 64. The thickness of the second layer is preferably somewhat greater than the first layer, i.e. approximately 0.003 0.006 inches.

Deposition of the third layer utilizes a powder comprised primarily of zirconium oxide (approximately 93%), calcium oxide (approximately 5%), aluminum oxide (approximately 5%) and silicon dioxide (approximately 0.4%) plus traces of other oxides and using a fully lime or yttria stabilizer. The powder mesh size is approximately 200 +325 RD. The thickness of the third layer is also tapered adjacent the edge thereof as shown at 66. The thickness of the third layer should be somewhat greater than that of the second layer, i.e. approximately 0.008 0.010 inches.

The adjustable parameters for depositing the third layer are substantially as follows:

Type G ADDITIONAL INSTRUCTIONS Preheat to 150 F. Max Part Temp 300 F Surface Speed 150 ftjmin.

After the three layers have been deposited as shown in FIG. 4, it is preferable to polish the piston face with an appropriate polishing wheel such as Tycro 904188 to remove any loose material.

Although the materials and parameters disclosed herein have been found to be preferred for coating aluminum pistons intended to operate in typical internal combustion chambers, it is recognized that selected different materials and parameters could also be used. For example, in lieu of the nickel aluminum alloy disclosed herein for use as layer 1, a nickel chrome alloy could be substituted. Certain other refractory materials such as magnesium, zirconate could be substituted for zirconium oxide, disclosed herein, for the third layer with some degradation of effectiveness.

From the foregoing, it should be recognized that a coating, and a method of applying that coating to metal surfaces, particularly metal surfaces used within an internal combustion chamber, has been disclosed herein for enabling operating temperatures within the combustion chamber to be sustained at a higher level than would otherwise be feasible. The coating involves the application of three distinct layers; a first layer having a thermal expansion characteristic similar to that of the substrate so as to provide good bonding, a third layer exhibiting a very high thermal barrier characteristic, and a second layer having a thermal expansion characteristic intermediate that of the first and third layers to relieve mechanical stresses which might otherwise be encountered in the presence of temperature gradients. As a consequence of enabling higher temperatures to be sustained within the combustion chamber, more efficient fuel burning is achieved resulting in increased performance and better fuel economy along with a reduction in emissions.

What is claimed is:

1. A piston for use in an internal combustion engine comprising:

a substantially cylindrical member formed of metal and having a substantially flat end face; and

a coating bonded to said flat end face, said coating comprising:

a first layer of material bonded directly to said flat end face having a thermal characteristic substantially the same as that of said cylindrical member metal;

a second layer of material bonded to said first layer; and

a third layer of bonded to said second layer and having a thermal barier characteristic substantially greater than that of said cylindrical member metal, said second layer of material having a thermal expansion characteristic between that of said first and third layer materials.

2. The piston of claim 1 wherein said first layer constitutes an alloy comprising of approximately percent nickel and 5 percent aluminum and said third layer material is comprised primarily of zirconium oxide.

3. The piston of claim 9 wherein said second layer material is a blend comprised substantially two thirds of said third layer material and one third of said first layer material.

4. The piston of claim 3 wherein said third layer is thicker than said second layer and said second layer is thicker than said first layer.

5. An internal combustion engine comprising:

a block including a plurality of cylindrical cavities extending inwardly from one surface thereof;

a head mounted in said block closing said cavities;

a plurality of cylindrical pistons each having a substantially flat end face and each disposed in a different one of said cylindrical cavities for reciprocal movement therein, each piston forming a combustion chamber between the flated face thereof, the cylindrical wall of the cavity and the portion of said head surface closing the cavity; and

a thermal barrier coating bonded to at least a portion of the surfaces forming said combustion chambers, said coating including:

a first layer of metal bonded directly to said combustion chamber surfaces and exhibiting a thermal expansion characteristic substantially the same as that of said combustion chamber surface material;

a second layer of material bonded to said first layer; and

a third layer of refractory material bonded to said second layer and exhibiting a thermal barrier characteristic substantially greater than that of said combustion chamber surface said second layer of material exhibiting a thermal expansion characteristic between that of said first and third layers.

6. The engine of claim 5 wherein said thermal barrier coating is bonded to the flat end faces of said pistons; and

wherein the thickness of the coating on each of said piston end faces is tapered proximate to the edge thereof.

7. The engine of claim 6 wherein the edge of the coating on each of the pistons is spaced from the edge of the end face thereof 8. The engine of claim 5 wherein said first layer constitutes an alloy comprised of approximately percent nickel and 5 percent aluminum.

9. The engine of claim 5 wherein said third layer material is comprised primarily of zirconium oxide.

10. The engine of claim 5 wherein said second layer material is a blend comprised of substantially two thirds of said third layer material and one third of said first layer material.

11. The engine of claim 5 wherein said third layer is thicker than said second layer and said second layer is thicker than said first layer.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2075388 *Jan 25, 1934Mar 30, 1937De Cloud Joseph PoissantHeat insulating metal body
US3006782 *Nov 5, 1958Oct 31, 1961Norton CoOxide coated articles with metal undercoating
US3010480 *Oct 13, 1958Nov 28, 1961Clifford A RagsdaleThermocouple tube and protective coating
US3203321 *Nov 20, 1961Aug 31, 1965Darlite CorpArticle of bonded ferrous metal and aluminum
US3459167 *Jan 22, 1968Aug 5, 1969Briggs Southwick WInternal combustion engine
US3552370 *Feb 20, 1969Jan 5, 1971Briggs Southwick WInternal combustion engine
US3660051 *Dec 11, 1969May 2, 1972Scragg & SonsContact body
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4095005 *Aug 10, 1976Jun 13, 1978Nissan Motor Company, Ltd.Method of producing low wear coating reinforced with brazing solder for use as rubbing seal
US4386112 *Nov 2, 1981May 31, 1983United Technologies CorporationCo-spray abrasive coating
US4398527 *Jul 1, 1981Aug 16, 1983Chevron Research CompanyInternal combustion engine having manifold and combustion surfaces coated with a foam
US4459900 *Jul 6, 1981Jul 17, 1984Deere & CompanyFor an internal combustion engine
US4481237 *Dec 14, 1981Nov 6, 1984United Technologies CorporationMultilayer, cermet interlayers, gradients, stress relieving
US4495907 *Jan 18, 1983Jan 29, 1985Cummins Engine Company, Inc.Combustion chamber components for internal combustion engines
US4524732 *Mar 1, 1984Jun 25, 1985Feldmuhle AktiengesellschaftCylinder head of a piston engine
US4538562 *May 6, 1983Sep 3, 1985Ngk Insulators, Ltd.Pistons, tappets, metal ceramic bonding
US4612880 *Mar 21, 1985Sep 23, 1986Union Oil Company Of CaliforniaMethod for control of octane requirement increase in an internal combustion engine having manifold and/or combustion surfaces which inhibit the formation of engine deposits
US4646707 *Aug 26, 1983Mar 3, 1987Pfefferle William CMethod of operating catalytic ignition engines and apparatus therefor
US4664021 *Aug 12, 1985May 12, 1987Ae PlcProtective coating of detonation-resistant material
US4706550 *Jan 9, 1986Nov 17, 1987The United States Of America As Represented By The Secretary Of The NavyAluminum-silicon carbide fibers, weapons, welding, heat resistance
US4708613 *Feb 27, 1986Nov 24, 1987Kabushiki Kaisha ToshibaPlunger for a multi-plunger type resin mold device
US4711208 *Apr 11, 1986Dec 8, 1987Kolbenschmidt AgPiston for internal combustion engines
US4776309 *Nov 3, 1986Oct 11, 1988Oktan AbInternal combustion engine having low octane number requirements
US4798770 *Nov 6, 1987Jan 17, 1989Toyota Jidosha Kabushiki KaishaHeat resisting and insulating light alloy articles and method of manufacture
US4808487 *Apr 17, 1986Feb 28, 1989Plasmainvent Ag, Im Oberleh 2Protection layer
US4811707 *Aug 11, 1986Mar 14, 1989Pfefferle William CCatalyst coated combustion chamber
US4941397 *May 18, 1989Jul 17, 1990Suzuki Jidosha Kogyo Kabushiki KaishaPiston assembly for internal combustion engine
US4974498 *Mar 5, 1990Dec 4, 1990Jerome LemelsonSynthetic diamond protective coating
US5063894 *Nov 5, 1990Nov 12, 1991Kolbenschmidt AktiengesellschaftCeramic fiber, magnesium alloy
US5158052 *Feb 21, 1992Oct 27, 1992Atsugi Unisia CorporationAluminum alloy piston
US5169674 *May 23, 1991Dec 8, 1992The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationPlasma spraying a alloy layer to metal surfaces and ceramic layer of zirconia stabilized with yttrium or magnesia, compaction by glass beads
US5236787 *Jul 29, 1991Aug 17, 1993Caterpillar Inc.Thermal barrier coating for metallic components
US5282411 *Mar 19, 1992Feb 1, 1994Isuzu Motors LimitedHeat-insulating piston with middle section of less dense but same material
US5384200 *Apr 18, 1994Jan 24, 1995Detroit Diesel CorporationThermal barrier coating and method of depositing the same on combustion chamber component surfaces
US5404639 *Jul 6, 1994Apr 11, 1995Dana CorporationComposite insulation for engine components
US5458224 *Sep 17, 1993Oct 17, 1995Kabushiki Kaisha Daikin SeisakushoClutch release-actuating hydraulic cylinder fluid chamber construction
US5987882 *Apr 19, 1996Nov 23, 1999Engelhard CorporationTurbocharger and oxidation catalyst
US6006516 *Apr 11, 1997Dec 28, 1999Engelhard CorporationSystem for reduction of harmful exhaust emissions from diesel engines
US6422008Apr 16, 2001Jul 23, 2002Engelhard CorporationSystem for reduction of harmful exhaust emissions from diesel engines
US6606983Sep 18, 2001Aug 19, 2003Federal-Mogul World Wide, Inc.Ferrous pistons for diesel engines having EGR coating
US6655369Aug 1, 2001Dec 2, 2003Diesel Engine Transformations LlcCatalytic combustion surfaces and method for creating catalytic combustion surfaces
US7527048Dec 2, 2003May 5, 2009Diesel Engine Transformation LlcCatalytic combustion surfaces and method for creating catalytic combustion surfaces
US20120067203 *Jan 25, 2010Mar 22, 2012Marcus KennedySliding element with exposed functional surface
US20130118438 *Oct 31, 2012May 16, 2013Federal-Mogul CorporationCoated piston and a method of making a coated piston
USRE33876 *Oct 10, 1989Apr 7, 1992United Technologies CorporationThermal barrier coating for nickel and cobalt base super alloys
DE3246303A1 *Dec 14, 1982Aug 4, 1983United Technologies CorpVerfahren zum aufbringen eines keramischen belages
EP0027782A1 *Aug 27, 1980Apr 29, 1981Conort Engineering AbProcess for achieving stoichiometric combustion in two-stroke Otto engines, and system therefor
WO1979001103A1 *May 21, 1979Dec 13, 1979British Internal Combust EngComposite materials
WO1986006106A1 *Apr 17, 1986Oct 23, 1986Plasmainvent AgProtection layer
WO1989007985A1 *Mar 3, 1989Sep 8, 1989Vesuvius Crucible CoPlasma spray coated ceramic bodies and method of making same
WO1994000616A1 *Jun 11, 1993Jan 6, 1994Bodo HaeuserProcess for producing a protective coating on metal walls subject to attack by hot gases, especially flue gases
WO2013036747A1 *Sep 7, 2012Mar 14, 2013Federal-Mogul CorporationCylinder liner with a thermal barrier coating
Classifications
U.S. Classification123/669, 92/224, 427/456, 92/223, 92/213
International ClassificationF02F3/10, F02B77/02, B24C11/00, F02F3/12, C23C4/02, C23C4/10
Cooperative ClassificationF02B77/02, F05C2201/021, B24C11/00, F05C2201/0448, C23C4/105, F05C2251/042, F02F3/12, C23C4/02
European ClassificationC23C4/10B, B24C11/00, F02F3/12, C23C4/02, F02B77/02