Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3912223 A
Publication typeGrant
Publication dateOct 14, 1975
Filing dateMar 15, 1974
Priority dateMar 15, 1974
Publication numberUS 3912223 A, US 3912223A, US-A-3912223, US3912223 A, US3912223A
InventorsIwata Yoshiaki
Original AssigneeNittan Co Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Fireproof smoke damper
US 3912223 A
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent 1191 Iwata Oct. 14, 1975 [54] FIREPROOF SMOKE DAMPER 2,226,815 12 1940 Haines 236/49 2,251,822 8/1941 Car1son.... 126/293 [75] Inventor: Yosluaki lwata, Fu rsawa, Japan 3,010,451 11/1961 Hodgins 26/285 B [73] Assigneez .Nittan Company, Limited, Tokyo 3,172,347 3/1965 1011115011 98/1 Japan 3,227,219 1/1966 Boyer et a1. 169/5 3,275,286 9/1966 Wood 251/30 [22] Filed: Mar. 15, 1974 3,303,886 2/1967 Tattersall et a1 169/5 3,352,159 11/1967 Bruce et a1. 251/299 pp 451,343 3,719,321 3/1973 McNabney 236/49 3,730,] 12 5/1973 Hutchinson et a1 98/59 52 us. c1 251/299; 126/285 R; 236/49; 2x33; 22%;?

126/293;l69/5;169/60 51 1111. cm. F16K 1/16; F23L 13/00; A62C 37/18 FOREIGN PATENTS 0R APPLICAUONS [58] Field of Search 98/1, 58-62, 1,017,761 10/1957 Germany 126/285 98/108; 126/285 R, 285 B, 287.5, 293, 418,982 3/1947 Italy 169/5 285.5, 292, 297, 289; 251/30, 299, 298, 303,

300; 236/49; 169/60, 61, 65, 5 Primary ExaminerWil1iam E. Wayner Assistant Examiner-Henry C. Yuen [56] References Cited Attorney, Agent, or FirmEugene E. Geoffrey UNITED STATES PATENTS 422,956 3/1890 Malmborg 126/285 B [57] ABSTRACT 472,461 4/1892 Lundstedt.... 126/285 B A fireproof smoke damper having a casing or duct 521,531 6/ 89 st r 126/293 which includes a curved sector and a shutter plate 1,515,234 11/ 1924 236/49 X within the sector and pivoted at the center of curva- 1,647,036 10 1927 Dileo 251/298 we thereofi 2,112,554 3/1938 Beam 126/287.5 2,224,705 12/1940 Stringer 126/285 B 4 Claims, 2 Drawing Figures US. Patent Oct. 14, 1975 .1 III! F. l-lll.

FIREPROOF SMOKE DAMPER This invention relates to a fireproof smoke damper for use in the ventilation system of a building.

When a fire breaks out in a room ofa building, smoke and flame produced by the fire are transferred to other rooms and to the outside of the building through exhaust ducts of the ventilation system. This not only obstructs fire-fighting and sheltering action but also promotes the spread of fire. Many types of dampers have been used with a ventilation duct but the prior dampers have commonly employed a butterfly type shutter plate rotatably supported on a shaft in a straight tubular damper casing. Such types of prior damages have gaps between the shutter plates and the casings for the purpose of preventing interference with the operation of the damper due to rusting of the rotating portion and contamination with dust. As a result, sufficient interception of smoke and flame'cannot be obtained because the closed damper is not air-tight.

Accordingly, an object of this invention is to provide a novel and improved fireproof smoke damper which overcomes the abovementioned disadvantages of the prior dampers and will effectively prevent the passage of smoke and flame into ventilation and other ducts.

The'damper according to this invention includes a damper casing having a longitudinal section at least a part of which is composed of a sector and a shutter plate rotatably supported at one edge by a shaft positioned at the center of said sector.

Other features of the operation of this invention will be described in detail hereinunder with reference to the accompanying drawings.

In the drawings: FIG. 1 is a cross-sectional view of an embodiment of a smoke damper according to this invention; and

FIG. 2 is a schematic diagram, partially in block form, representing the damper of FIG. 1 and means for the operation thereof.

Throughout the drawings, like reference numerals are used to denote corresponding structural components.

Referring to FIG. 1, the damper of this embodiment has an L-type casing l'consisting of a straight upright portion 11, a curved elbow portion 12 and a straight horizontal portion 13. The upright portion 11 is connected to a ventilation duct 2 and the horizontal portion 13 is connected to a suction hood 3 positioned within an opening formed in the wall 4 of the building. The elbow portion 12 is a curved section having a central angle 6 which is equal to 90 in the present embodiment. A horizontal rotating shaft 21 is supported at the center of the sector or curved section of the elbow portion 12 and a flat shutter plate 20 having a contour corresponding to the cross-section of the elbow portion 1 is supported at one edge by the shaft 21. The shutter 'plate 20 is rotatable about the shaft-21 between the closed position 20 as shown and the opened position 20' as shown in phantom. Thus, the shutter plate 20 can completely close the elbow portion 12 with the central angle6. A flow-rate control 30 having shutter wings 31 and a face grid 32 is positioned in the suction hood 3. v 3

Referring to FIG. 2, the damper shaft 21 is coupled v through a crank-arm 22 to a piston rod 41 of an air cylinder having a piston 42 which is always held in the lowermost postion by a spring 43. An air inlet port 44 attached to the bottom of the cylinder 40 is connected through a hose 5 to an outlet port 51 of an electromagnetic air valve 50. The air valve also has an air inlet port 52 connected through a hose 6 to a compressed air source such as an air compressor (not shown) and an air exhaust port 53. The cylinder of the electromagnetic air valve 50, includes an armature 55 which is actuated by an electromagnet 54 and a piston 56 is fixedly coupled through a connecting rod 57 to the armature 55. The armature 55, piston 56 and respective ports 51, 52 and 53 are arranged so that the ports 51 and 52 communicate when the armature 55 is actuated and the ports 51 and 53 communicate when the armature 55 is deactuated. The electromagnet 54 of the air valve 50 is connected to a power source (not shown) through a main control switch board 60 including a main switch 61 and a test switch 62, a local control switch board including a thermostat switch 71 and a test switch 72 and a fuse box including a fuse 81. The main control switch board 60 is installed in the central control room and has a plurality of branch lines for feeding to the other dampers though they are omitted from the drawing for the purpose of simplification. The local control switch board 70 is installed near each damper and the fuse box 80 is installed in the damper casing 1.

When the main switch 61 is closed, the electromagnet 54 of the air valve 50 is energized to pull up the armature 55 and of the piston 56. Thus, the ports 51 and 52 communicate to feed a compressed air to the air cylinder 40 through the hoses 6 and 5 from the compressed air source (not shown). The piston 42 is pushed up against the spring 43 to rotate the crank arm 22, upwardly and maintain the shutter plate 20 of the damper in the open position 20' (FIG. 1).

When the main switch 61 is opened manually in the case of fire, the'electromagnet 54 is de-energized and the piston 56 falls under its own weight with the result that the ports 51 and 53 are placed in communication. Accordingly, the air in the air cylinder 40 is exhausted through the hose 5 and the port 53 and the piston 42 is pushed downwardly by the spring 43 to rotate the shutter plate 20 to its counterclockwise position to close the damper. The same damper closing action also occurs in response to opening of the switches 62, 71 or 72 or opening of the fuse 81 by excessive heat or other reason. The operation and objects of these switches are self-explanatory.

As previously described, the damper of this invention is fully closed as long as the shutter plate 20 is within the central angle 0 of the sectorial or curved section of the elbow portion 12. A cam fixed to the rotating shaft 21 of the shutter plate 20 is shaped so that it actuates a switch 91 only when the shutter plate 20 is within the central angle 0. The switch 91 is connected in an indicating lamp circuit (not shown) to indicate sufficient closure of the damper.

Although, in the above embodiment, the damper is connected to a vertically extending ventilation duct and, therefore, the shutter plate 20 of the damper is opened upwardly about the horizontal shaft 21, the

" spring force of the air cylinder 40, while, in the former case gravity supplements the action of the spring.

As above described, the damper of this invention can sufficiently intercept smoke and flame even if some deviation takes place in the position of the closed shutter plate and, therefore, exhibits a high degree of safety and reliability over the prior art dampers.

It should be noted that the above description has been made in conjunction with the illustrated embodiment only and various changes and modifications may be made without departing from the scope of the invention as defined in the appended claim.

I claim:

1. A fireproof smoke damper assembly comprising a duct having a substantially straight section and a curved elbow section joined one to the other, said curved section having a longitudinal section in the form of a sector of a circle having its center at one side of said duct, a shaft on said one side of said duct and substantially coincident with said center and a damper plate attached along one edge to said shaft for rotation within said duct about said center, said damper being movable from an open position lying against a wall of said straight section to closed positions when disposed at any point within said curved section and is in close proximity with the wall of said curved section.

2. A fireproof smoke damper according to claim 1 including an arm carried by said shaft, a cylinder including a spring loaded piston, a rod coupling said arm to said piston whereby said piston under the action of said spring will normally hold said damper in the closed position, means including an electrically operated valve for feeding a fluid under pressure to said cylinder, said valve upon being energized permitting fluid pressure to act on said position and move it in opposition to said spring to open said damper and means on said valve for interrupting said fluid pressure upon de-energization and permit discharge of said fluid in said cylinder and said piston to move said damper to the closed position.

3. A fireproof smoke damperaccording to claim 2 including a power switch, a thermostatically controlled switch and at least one test switch connected in series one with the others and with said electrically operated valve for controlling the application of energy to said valve.

4. A fireproof smoke damper according to claim 3 wherein a heat responsive fuse is positioned within said damper casing and connected in series with said switches.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US422956 *Dec 26, 1889Mar 11, 1890 Electric valve-controller
US472461 *Aug 6, 1890Apr 5, 1892 Electro-magnetic valve-controller
US521531 *Mar 15, 1894Jun 19, 1894 Damper
US1515234 *Mar 14, 1921Nov 11, 1924Westinghouse Electric ProductsExhaust valve for electrically-heated ovens
US1647036 *Dec 24, 1924Oct 25, 1927 Pipe pitting
US2112554 *Jul 17, 1936Mar 29, 1938Bryant Heater CoAutomatic control for fuel burning apparatus
US2224705 *Oct 29, 1938Dec 10, 1940Stringer George EAutomatic damper control
US2226815 *Mar 13, 1939Dec 31, 1940Honeywell Regulator CoPneumatic controller
US2251822 *Jun 5, 1939Aug 5, 1941Master Electric CoStack damper regulator
US3010451 *Nov 28, 1958Nov 28, 1961Hodgins Comb Devices LtdSmoke pipe damper
US3172347 *Nov 13, 1962Mar 9, 1965American Warming VentilationUniversal fire damper with angular axle
US3227219 *Dec 19, 1963Jan 4, 1966Gen ElectricTesting for a fire extinguishing system
US3275286 *Oct 8, 1962Sep 27, 1966Lockheed Aircraft CorpFlow control valve
US3303886 *Mar 24, 1965Feb 14, 1967Specialties Dev CorpCombination air conditioning and foam plug fire extinguishing system
US3352159 *Nov 30, 1966Nov 14, 1967Brusmatic IncAutomatic cotton lint sampler
US3719321 *May 20, 1971Mar 6, 1973Trane CoAir flow control device
US3730112 *Mar 18, 1971May 1, 1973Silent Glan CorpIncineration systems and methods
US3753184 *Mar 23, 1972Aug 14, 1973Johnson Service CoTemperature control system
US3757821 *Dec 22, 1971Sep 11, 1973Fujiwara KDisk type electromagnetic valve
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4136676 *Dec 7, 1977Jan 30, 1979Thermiser Manufacturing CorporationFlue box assembly
US4189092 *Jan 8, 1979Feb 19, 1980Barber-Colman CompanyDamper control for preventing spread of fire and smoke through an induction mixing box
US4958687 *Oct 31, 1989Sep 25, 1990Daito Tech Kabushiki KaishaFire damper
US4991657 *May 16, 1989Feb 12, 1991Lelande Jr Walter CFire suppression system
US6071096 *Apr 25, 1997Jun 6, 2000Grasl; AndreasPneumatic cylinder, in particular for actuating fume extraction valves in fume and heat extraction plants
US6112823 *Nov 9, 1999Sep 5, 2000O'leary; JamesWaste fire suppression control device
US6775990 *Oct 17, 2002Aug 17, 2004Mark Douglas SwinfordMethods and apparatus for regulating gas turbine engine fluid flow
USRE41229 *Aug 16, 2006Apr 20, 2010General Electric CompanyMethods and apparatus for regulating gas turbine engine fluid flow
WO1986006783A1 *May 7, 1986Nov 20, 1986Crawford Door ProdArrangement for air control
Classifications
U.S. Classification251/299, 126/285.00R, 236/49.2, 169/60, 169/5, 126/293
International ClassificationA62C2/12, F16K17/36, F16K17/38, A62C2/00
Cooperative ClassificationF16K17/386, A62C2/12
European ClassificationF16K17/38B, A62C2/12