Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3913524 A
Publication typeGrant
Publication dateOct 21, 1975
Filing dateSep 26, 1973
Priority dateMar 13, 1972
Publication numberUS 3913524 A, US 3913524A, US-A-3913524, US3913524 A, US3913524A
InventorsFukushima Osamu, Matsumoto Seiji, Sato Masamichi
Original AssigneeRank Xerox Ltd
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Liquid developing apparatus for electrophotography
US 3913524 A
Abstract
Electrostatic latent images are developed in a liquid electrophoretic developer, and during the development, developer immediately adjacent the image whose toner concentration has become depleted is removed from the image area and replaced by fresh developer. Images are thereby more fully developed to the extent of the electrostatic charge, eliminating edge and halo effects that result from incomplete development and the preferential attraction of toner to areas of higher electrostatic charge over adjacent areas of lower charge.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent F ukushima et al.

[4 Oct. 21, 1975 LIQUID DEVELOPING APPARATUS FOR ELECTROPIIOTOGRAPHY Inventors: Osamu Fukushima; Masamichi Sato; Seiji Matsumoto, all of Asaka, Japan Assignee: Rank Xerox, Ltd., London, England Filed: Sept. 26, 1973 Appl. No.: 400,777

Related US. Application Data Division of Ser. No. 234,154, March 13, 1972, Pat. No. 3,808,024.

US. Cl. 118/637; 117/37 LE; 1l8/DIG. 23 Int. Cl. G03G 15/10 Field of Search 118/637, 429, DIG. 23;

References Cited UNITED STATES PATENTS 12/1972 Fukushima et a1. 118/637 1/1973 Sato et al 118/637 7/1973 Savit et al. 118/637 7/1973 Sato 118/637 8/1973 Sato et a1 118/637 3,783,827 1/1974 Fukushima et al. 118/637 3,804,062 4/1974 Fukushima et al. .v 1 18/637 FOREIGN PATENTS OR APPLICATIONS 1,122,124 11/1966 United Kingdom 118/637 Primary ExaminerMervin Stein Assistant Examiner-Douglas Salser Attorney, Agent, or Firm-James J. Ralabate; Donald C. Kolasch; Ernest F. Chapman [57] ABSTRACT Electrostatic latent images are developed in a liquid electrophoretic developer, and during the development, developer immediately adjacent the image whose toner concentration has become depleted is removed from the image area and replaced by fresh developer. Images are thereby more fully developed to the extent of the electrostatic charge, eliminating edge and halo effects that result from incomplete development and the preferential attraction of toner to areas of higher electrostatic charge over adjacent areas of lower charge.

8 Claims, 7 Drawing Figures US. Patent Oct. 21, 1975 Sheet 1 of 2 3,913,524

FIG. 1

US. Patent Oct.2l, 1975 Sheet 2 of2 3,913,524

M I4 20 I4 14' iii 5 5 Q A @g' @1 Q) G) (9 I5 15 l5 I5 15' FIG. 3A FIG. 38 FIG. 3C

FIG. 4

LIQUID DEVELOPING APPARATUS FOR ELECTROPI-IOTOGRAPHY This is a division, of application Ser. No. 234,154, filed Mar. l3, I972, now US. Pat. No. 3,808,024 issued Apr. 30, 1974.

INTRODUCTION AND SUMMARY OF INVENTION The present invention relates to electrophoretic liquid development of electrostatic latent images such as are obtained in the field of electrophotography, and more particularly the invention is directed to maintaining an adequate supply of developer toner at the image surface, to facilitate complete development of various image charge levels, and to minimize or substantially eliminate edge effects normally experienced in the development of these images.

In the field of electrophotography the phenomenon of edge effect, or the preferential development of the peripheral portion of an image charge area, is well known. To eliminate or correct this problem, it has been proposed to provide a development electrode in closely spaced facing relationship with the electrostatic image surface to be developed, and to provide liquid electrophoretic developer in the space between said electrode and surface. However, this method often results in insufficient developed image density, because it is difficult to maintain an adequate supply of fresh liquid developer in the very narrow space between the development electrode and the image surface to be developed. The liquid developer consists of colored toner particles suspended in an electrically insulating liquid vehicle, so that once the toner is exhausted from the minute supply of developer in said space, continued advancement of development is prevented. During the development that takes place under these circumstances, it will be appreciated that the central portion of a high charge area will receive toner until exhaustion of the toner supply in that region. At the edge of this high charge area however, toner will be received not only from developer in the immediate area, but toner will also be drawn from the developer in the region of an adjacent lesser charge image area. This effect causes the border of the high charge image area to be developed to a greater density than the equally highly charged central portion of this image area; and further, this action contributes to a halo effect around the high charge image area, in that the adjacent lower charge portion of the image is grossly underdeveloped because it is deprived of toner by the preferential attraction of toner from that area to the edge of the high charge image area.

It might be assumed'that' continued or prolonged development would rectify this situation, in that eventually sufficient toner would be deposited over the entire highly charged image area to completely satisfy the charge and provide a uniform density, and thereafter, toner would deposit in the halo area to a density appropriate to satisfy the lesser image charge in that area. However, prolonged development will not mormally rectify the problem, because the developer immediately adjacent the image surface becomes essentially exhausted of toner, thus effectively terminating the development action. The interfacial adhesion between the image surface and the exhausted developer solution is such that replacement with fresh developer from the remaining developer solution is not accomplished even with stirring or agitation of the developer to the extent that such agitation can be had without disturbing the toner already deposited in image configuration.

The purpose of the present invention is to overcome the foregoing disadvantages and substantially to eliminate or minimize the described edge and halo effects. Basically, the improved results of the present invention are accomplished by squeezing the exhausted developer layer adjacent the latent image carrier surface during the development process, whereby the exhausted developer solution is expressed away from the latent image surface, enabling fresh developer solution to replace the exhausted developer, and thus permitting continued development action. When development is caused to continue in this way, the highly charged latent image areas fully develop to a uniform image density until the charge is completely satisfied with toner, and once this occurs, the adjacent areas of lesser image charge develop to an image density appropriate to their respective levels of charge. Thus, the above-described edge and halo effects are eliminated, or significantly reduced. The expressing operation can be repeated an appropriate number of times during the development process, as may be required to effect full development of the electrostatic latent image.

It is therefore one object of the present invention to provide for the replacement of exhausted developer solution with fresh developer solution at the interface between an electrostatic latent image carrying surface and a liquid electrophoretic developer solution.

Another object of the present invention is to provide for said replacement by expressing the exhausted developer solution from adjacent said image carrying surface.

Still another object of the present invention is to provide for successive expressings of exhausted developer solution from adjacent said image carrying surface; to effect a substantially complete development of the electrostatic latent image.

Other objects and advantages of the present invention will become apparent to those skilled in the art from a consideration of the following detailed description of exemplary specific embodiments of the invention, had in conjunction with the accompanying drawings, in which like numerals refer to like orcorresponding parts, and wherein:

BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic vertical sectional view of a development apparatus embodying the principles of the present invention;

FIG. 2 is a perspective view of an expressing roll used in the apparatus of FIG. 1;

FIGS. 3A-C are fragmentary views of the appratus of FIG. 1 illustrating several modifications thereof;

FIG. 4 is a schematic vertical sectional view of another development apparatus embodying the principles of the present invention; and

FIG. 5 is perspective view of a guiding roll used in the apparatus of FIG. 4.

DETAILED DESCRIPTION Referring to FIG. 1, tank 13 contains a conventional liquid electrophoretic developer 21 comprising toner particles suspended in an electrically non-conductive liquid. Paired squeeze rolls 14-15, 14-l5; and 14"-15" are mounted in tank 13 for rotation in the directions indicated by the arrows, so that an electrophotographic sheet 1 is fed between the paired rolls in the direction of arrow 2. Guides 17 and 17 are provided at the two ends of the tank 13 to direct sheet 1 into and out of the tank. The electrophotographic sheet 1 having an electrostatic latent image on one surface, is directed by guide 17 to pass through the nips of said squeeze rolls with the latent image facing upwardly, and is then directed by guide 17' upwardly out of the container 13. The electrostatic latent image on the surface of sheet 1 may be formed in a conventional manner, as by uniformly charging a photoconductive surface of sheet 1, and then exposing said surface to an optical image to discharge the light struck portion of the photoconductive surface.

A nozzles 16 is provided in advance of each pair of squeeze rolls 14-15, 14'-15', and 14"-15" to direct liquid developer toward and over the latent image surface of sheet 1. By means of a pump, not shown, liquid developer 21 is continuously circulated from the tank 13 to the nozzles, thereby maintaining a constant supply of fresh developer flowing over the latent image area. The flow of liquid developer from the nozzles 16 is at a slow rate, since rapid flow would tend to deteriorate the existing development toner deposit. Said nozzles 16 can also be utilized as development electrodes by forming them of electroconductive material, and for that purpose it is preferable that the nozzles be flanged, as at 16a. The rolls 15, 15' and 15" are preferably made of electroconductive material in order to ground the rear or non-image side of photosensitive sheet 1 as the sheet advances through the developer. The rollers 14, 14 and 14" which are juxtaposed to the image surface of sheet 1 can be made of electroconductive or insulating material, or can have an electroconductive core covered with an insulation layer. These rolls can desirably be used as development electrodes to enhance the development results. The number of pairs of squeeze rolls may vary, as desired. Three pairs are shown, but it is suggested that the number may advantageously vary from two to five.

The preferred shape for rolls 14, 14' and 14 is illustrated in detail in the perspective view of one roll 14 in FIG. 2. The major portion 14b of the roll has a uniform diameter, but the ends of the roll are formed to have a slightly larger diameter, providing a small annular flange structure 14a at each end of the roll. The enlarged diameter at 14a is grossly exaggerated in the drawings for illustration purposes, and in practice it is found that a radius enlargement between portions 14a and 14b is preferably only of the order of about 0.1 mm. When a sheet 1 passes through the nip of rolls 14 and 15, the side edges of the sheet 1 are engaged between end flanges 14a of roll 14 and the surface of roll 15. Thus, in the nip of rolls 14-15 the lesser diameter portion 14b of the roll 14 is spaced a very small distance from the image surface of sheet 1. Rolls 14' and 14" are similar in construction and operation. Rolls l5, l and function as backing rolls for rolls 14, 14' and 14". Obviously, an endless belt arrangement could be substituted for the rolls 15, 15' and 15", if desired.

Thus, in operation, as sheet 1 with an electrostatic latent image thereon enters the developer bath 21, it is directed by guide 17 to pass through the nips of the squeeze roll pairs 14-15, 14'-15', and 14"-15", and then it is deflected by guide 17 to pass out of the developer bath. As the sheet travels through the bath, it

passes under the nozzles 16 and is exposed to the developer flow issuing from these nozzles. The electrostatic latent image is partially developed as it passes under the first nozzle 16, and the developer solution immediately adjacent the image surface becomes largely depleted of toner particles. As the sheet proceeds into the nip of roll pair 14-15, the close spacing of roll surface 14b to the image surface squeezes the depleted developer solution away from the surface of the sheet, so that when that portion of the sheet emerges from the nip of these rolls, fresh developer solution can again contact the image surface of the sheet and the development process can continue as the sheet passes under the second nozzle 16 and is exposed to the flow of developer solution emerging therefrom. Similar action occurs at the nip of roll pair 14'-15 and the third nozzle l6, and again at the nip of roll pair 14"l5".

Because of the action of the squeeze rolls 14-15, 1414 l5, and 14"-l5" in removing exhausted or toner depleted developer solution from immediately adjacent the image surface of the sheet 1 and permitting further effective development action to continue, when the sheet 1 emerges from the developer bath 21 the image thereon is fully developed to maximum density, or nearly so, for the charge densities thereon. Consequently, for the reasons expressed previously, there are no, or very little edge and halo effects in the developed image. After emerging from the developer bath 21, the sheet 1 is dried of adhering developer liquid, and the toner image is fixed to the sheet or transferred to a receiving sheet in accordance with conventional practices in the art.

In place of the nozzles 16 in FIG. 1, alternative arrangements are shown in FIGS. 3A-C. In the latter FIGS. nozzles 16 are replaced by nozzles 19, but the squeeze roll arrangement remains the same. FIG. 3A shows a modification in which the roll 14 is constantly cleaned of deposited toner by spraying the liquid developer from the nozzle 19 directly onto roll 14. In this case, the liquid developer sprayed onto the roll 14 flows over the roll into the developer bath to agitate the developer solution adjacent the surface of sheet 1. Obviously, the nozzle 19 need not be centered over the roll 14, but may be shifted toward one side or the other thereof. In FIG. 38 a separate development electrode 20 is provided between each set of squeeze rolls, and the flow of liquid developer from the nozzles 19 is directed against these electrodes and deflected toward the nips of the squeeze roll pairs. A further modification of this arrangement is illustrated in FIG. 3C, in which the electrode 20 is provided with sloping surfaces to deflect the developer flow from nozzles 19 more effectively toward the nips of the squeeze roll pairs.

A further embodiment of the invention is shown in FIG. 4 which is particularly suited for developing a long or indefinite length web la of photosensitive material, in lieu of the short sheet 1 in the FIG. 1 embodiment. This embodiment comprises a tank 30 containing conventional electrophoretic liquid developer 31. Rolls 37 and 38 are mounted adjacent one end of the tank for feeding the electrophotographic web la into the tank and are preferably provided with electrically insulating surfaces. These feed rolls can be wetted with the developer vehicle free of toner, to effect a prewetting of the web la prior to development to prevent deposition of toner from simple mechanical absorption of developer.

Within tank 30 are positioned three squeeze roll pairs 42-39, 43-40, and 4441 which function in the same manner as, and correspond to the squeeze roll pairs 14-15, 14l4 15', and l415 of FIG. 1. Nozzles 49, 50, 51 and 52 are also provided to generate a flow and agitation of developer solution, in the same manner as nozzles 16 in FIG. 1, or nozzles 19 in FIGS. 3A-C.

In addition, tank includes a set of four roll type development electrodes 32, 34, and 36. One roll 32 is shown in enlarged perspective in FIG. 5. It includes a primary cylindrical portion 32b, with enlarged diameter flanges 32a at each end. These rolls are formed of conductive material, to enable them to perform the development electrode function.

As web 1a passes through developer solution 31, its photoelectric latent image surface faces upwardly toward rolls 32, 34, 35 and 36, and toward rolls 42, 43 and 44. The longitudinal side edges of the web lie in contact with the flanges 32a of roll 32, and the corresponding end flanges of rolls 34, 35 and 36. Thus, developer solution enters in the space between the image surface of the web 1a and the surface of the reduced diameter portions of the development electrode rolls 32, 34, 35 and 36. Development proceeds in stages in the manner described above with respect to FIG. 1, and exhausted developer solution is squeezed from the surface of the web 1a with each pass through the nip of a squeeze roll pair. As the web 1a emerges from the development tank 30, excess developer solution is removed by press rolls 45 and 46, and the web with its developed image is then dried and fixed in a conventional manner, with or without transfer of the image to a separate receiving sheet, as desired.

Thus, it will be appreciated that a primary feature of the present invention is the periodic removal of exhausted or depleted developer solution from adjacent the image surface of the image carrier, and replacement with fresh developer containing an adequate concentration of toner particles. In this manner, the electrostatic latent image is caused to develop to the full densities represented by the different levels of electrostatic charge thereon, thereby effectively eliminating the edge and halo effects ordinarily encountered. The foregoing embodiments of the invention are only illustrative of the invention, and various modifications and alternatives will be apparent to those skilled in the art. Accordingly, the scope of the present invention is not to be construed as limited to these embodiments, but as including such modifications and alternatives as are embraced by the spirit and scope of the appended claims.

What is claimed is:

1. An apparatus for developing an electrostatic latent image on the surface of an image carrier, comprising a tank for containing liquid electrophoretic developer including a suspension of toner particles in an electrically insulating liquid vehicle, means for conveying said carrier through said tank, and means in said tank for removing developer having a depleted toner concentration from immediately adjacent the image surface of said carrier, said depleted toner removing means comprising a roll having a cylindrical surface and positioned adjacent the path of travel of said carrier through said tank and located to be closely adjacent the image surface of said carrier whereby depleted developer adjacent said image surface is constrained to move away from said surface, said roll having enlarged diameter flanges at its ends for engaging the image surface of said carrier, and thereby defining a fixed spacing between said cylindrical surface and said carrier image surface.

2. An apparatus as set forth in claim 1, and further including a backup roll for said flanged roll.

3. An apparatus as set forth in claim 2, and further including a development electrode located closely adjacent the path of travel of said image carrier.

4. An apparatus as set forth in claim 3, and further including means for agitating the developer.

5. An apparatus as set forth in claim 4, wherein said agitating means includes a nozzle and means for circulating developer from said tank through said nozzle.

6. An apparatus as set forth in claim 1, and further including a development electrode positioned closely adjacent the path of travel of said image carrier.

7. An apparatus for developing an electrostatic latent image on the surface of an image carrier, comprising a tank for containing liquid electrophoretic developer including a suspension of toner particles in an electrically insulating liquid vehicle; means for conveying said carrier through said tank; a plurality of toner-depleted developer removal means in said tank for removing developer having a depleted toner concentration from immediately adjacent the image surface of said carrier, said toner-depleted developer removing means comprising rolls having a cylindrical surface positioned adjacent the path of travel of said carrier through said tank and located closely adjacent the image surface of said carrier, whereby toner-depleted developer adjacent said image surface is constrained to move away from said surface; a plurality of development electrodes alternating with said toner-depleted developer removal means along the line of travel of said carrier; a plurality of nozzles alternating with said tonerdepleted developer removal means along the line of travel of said carrier and means for circulating developer from said tank through said nozzle to expose the image surface to a flow of fresh developer.

8. An apparatus as set forth in claim 7 comprising flanged nozzles made of electroconductive material whereby said nozzles are utilized as development electrodes.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3707139 *Sep 25, 1970Dec 26, 1972Fuji Photo Film Co LtdLiquid type electrophotography developing apparatus
US3713422 *Mar 10, 1971Jan 30, 1973Fuji Photo Film Co LtdApparatus for developing an electrostatic latent image by liquid development
US3744452 *Feb 17, 1972Jul 10, 1973American Photocopy Equip CoElectrostatic developing system with cylindrical drum liquid contact unit
US3749059 *Aug 27, 1970Jul 31, 1973Fuji Photo Film Co LtdApparatus for developing electrostatic latent image
US3750624 *Jul 21, 1971Aug 7, 1973Fuji Photo Film Co LtdApparatus for developing electrophotographic continuous web material
US3783827 *Dec 30, 1971Jan 8, 1974Fuji Photo Film Co LtdLiquid development apparatus for electrophotography
US3804062 *Nov 27, 1970Apr 16, 1974Fuji Photo Film Co LtdElectrophotographic developing device
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4079697 *Oct 19, 1976Mar 21, 1978Minolta Camera Kabushiki KaishaElectrode conductive roller developing device
US4102306 *May 10, 1977Jul 25, 1978Konishiroku Photo Industry Co., Ltd.Developing roller and rinsing device
US4111156 *Jun 22, 1977Sep 5, 1978Olympus Optical Co., Ltd.Devices for developing an electrostatic charge image on a record sheet by a developer solution
US4116141 *Feb 18, 1977Sep 26, 1978Olympus Optical Co., Ltd.Plate shaped development electrode
US4248515 *Jun 8, 1977Feb 3, 1981Agfa-Gevaert, A.G.Developing apparatus
US4340294 *Aug 11, 1980Jul 20, 1982Agfa-Gevaert AktiengesellschaftDeveloping apparatus
US4410260 *Dec 9, 1981Oct 18, 1983Coulter Systems CorporationToning apparatus and method
US5832334 *May 15, 1997Nov 3, 1998Minnesota Mining And Manufacturing CompanyColor control system for electrographic printer
US5963758 *May 12, 1998Oct 5, 1999Minnesota Mining And Manufacturing CompanySystem and method for maintaining color density in liquid toners for an electrographic printer
Classifications
U.S. Classification399/242, 118/688, 399/292
International ClassificationG03G15/10
Cooperative ClassificationG03G15/108
European ClassificationG03G15/10I