Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3913576 A
Publication typeGrant
Publication dateOct 21, 1975
Filing dateNov 6, 1973
Priority dateNov 6, 1973
Also published asCA1067787A, CA1067787A1, DE2451916A1
Publication numberUS 3913576 A, US 3913576A, US-A-3913576, US3913576 A, US3913576A
InventorsColston John R, Martin Frank E, Smith Norman E
Original AssigneeWestinghouse Electric Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Breathing apparatus
US 3913576 A
Abstract
Breathing apparatus which incorporates a sensing device operable to adjust the amount of breather's exhaled gas captured in a gas collector section as a direct function of flow rate and volume of the previous inhalation. The amount of exhaled gas captured is sufficiently low in carbon dioxide (CO2) content to permit rebreathing on the next inhalation, at which time the sensor again adjusts the volume of exhaled gas to be captured. In the one embodiment, a fire fighter's breathing system is described wherein the gas collector section is integral with the breathing mask worn by the fire fighter.
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 11 1 Martin et a1.

[ 1 BREATHING APPARATUS [75] inventors: Frank E. Martin, Chester; John R.

Colston, Annapolis; Norman E. Smith, Pasadena, all of Md.

[73] Assignee: Westinghouse Electric Corporation,

Pittsburgh, Pa.

[22] Filed. Nov. 6, 1973 [21] Appl. No.: 413,413

[52] U.S. C1. 128/142.2 [51] int. Cl.- A62B 7/04 [58] Fieid of Search 128/1422, 142.3, 142, 128/1456,145.8,146.5,202,188,203,197, 196, 2.07, DIG. 17, 145.5; 73/27 R [56] References Cited UNITED STATES PATENTS 2,633,843 4/1953 Glasser 73/27 R 2,743,167 4/1956 Cherry 1. 73/27 R 3,021,839 2/1962 Marsh 128/202 3,266,869 8/1966 Dengler 1 1 4 128/207 3,309,684 3/1967 Kahn et al. 1 1 128/207 3,358,681 12/1967 Chabanier 128/1422 1 1 Oct. 21, 1975 3,396,723 8/1968 Freytag 128/145.6 3523527 8/1970 128/1458 3,548,821 12/1970 (jigauri 128/145.6 3557725 1/1971 McQueen 128/188 3,680,556 11/1972 Morgan 128/1422 Primary Examiner-Richard A, Gaudet Assistant ExaminerHenry J. Recla Attorney, Agent. or Firm-D. Schron [57] ABSTRACT Breathing apparatus which incorporates a sensing device operable to adjust the amount of breathers exhaled gas captured in a gas collector section as a direct function of How rate and volume of the previous inhalation. The amount of exhaled gas captured is suf ficiently low in carbon dioxide (CO content to permit rebreathing on the next inhalation, at which time the sensor again adjusts the volume of exhaled gas to be captured. in the one embodiment, a fire fighter's breathing system is described wherein the gas collec tor section is integral with the breathing mask worn by the fire fighter.

13 Claims, 10 Drawing Figures U.S. Patent Oct. 21, 1975 Sheet 2 ms 3,913,576

I7 VOL LIMIT TO/FROM USER SENSOR F IG.3A

BREATHING GAS EXH

BREATHING GAS US. Patent 0a. 21, 1975 Sheet 3 of5 3,913,576

U.S. Patent Oct. 21, 1975 Sheet 4 of5 3,913,576

TIME

US Patent Oct. 21, 1975 Sheet 5 of5 3,913,576

BREATHING APPARATUS BACKGROUND OF THE INVENTION 1. Field of the Invention:

Breathing apparatusof the type wherein the user rebreathes a portion of his previously exhaled breath.

2. Description of the Prior Art:

Attempts have been made in the past to conserve the amount of breathing gas consumed from a breathing apparatus by allowing collectiotn and subsequent rebreathing of the initial portion of exhaled gas.

This initial portion is low in carbon dioxide content and is referred to as the dead space or dead volume. Such breathing apparatus finds widespread use in the fields of diving, space, rescue work and in general, instances where the user must be supplied with breathable gas while in a hostile ambient environment.

Previous systems relied on a technique for capturing a fixed volume of exhaled gas within a distensible bag, the fixed volume being determined by maximum bag distension. The entire volume of gas captured within this bag was then made available for the next inhalation. Such systems increased the duration of the breathable gas supplied; however, in actuality, the dead volume is not a constant value nor is it a constant ratio with respect to inspiratory tidal volume. Accordingly, depending upon the fixed volume chosen, the apparatus can be less than efficient or in some instances, can be quite hazardous due to excess amounts of CO rebreathed.

SUMMARY OF THE INVENTION The present invention retains optimum efficiency and safety regardless of high or low work rates by variably controlling the volume of exhaled breath which is saved, in accordance with the users breathing.

A sensing means senses the tidal volume and the flow rate of an inspiration, and on the subsequent expiration the sensing means effectively causes a volume limiting device to proportionately limit the amount of exhaled breath flowing into a gas collector. The gas thus collected is available to supplement the next inhalation.

The gas collector may, if desired, be formed of two sections, a first section having a fixed maximum volume and a second section having a variable maximum volume.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a curve illustrating the variation in CO, concentration as a function of expired volume;

FIG. 2 is a curve illustrating the dead volume as a function of inspired tidal volume;

FIGs. 3A and 3B illustrate, in block diagram form, two embodiments of the present invention;

FIG. 4 illustrates in more detail another embodiment of the present invention;

FIG. 5 is a curve illustrating inhalation and exhalation as a function of time;

FIG. 6 illustrates a variation of the embodiment of FIG. 4;

FIG. 7 is a front view of a fire fighter utilizing the apparatus of FIG. 6;

FIG. 8 is a side view of FIG. 7, with portions broken away; and

FIG. 9 is a block diagram of another embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 is a typical plot of instantaneous CO; content as a function of a volume of expired breath and serves to define certain terms. The vertical axis represents CO concentration in the expired breath and the horizontal axis represents the expired volume. The initial expiration contains no CO, whatsoever, and thereafter, the CO content rises. At inflection point A, the instantaneous CO concentration is somewhat less than 2.5%; however, the cumulative CO content up to this point is less than 1%. This volume is approximately equal to the volume of the bronchial tree and upper respiratory passages not subject to gas exchange. This volume is termed the anatomic dead volume and is designated on the horizontal axis by the term AV Respiratory gas exchange takes place in the alveoli of the lungs and point B on the curve represents instantaneous CO concentrations typical of alveolar gas and is in the order of 44.5%. The cumulative CO content up to point B, however, would only be about 2-2.5% and within an acceptable range for rebreathing. The volume corresponding to point B is designated the kinetic dead volume KV and may be defined as the amount of exhaled gas needed to flush the dead space gas from the respiratory passages up to the appearance of'pure alveolar gas. The kinetic dead volume is approximately equal to twice the anatomic dead volume.

Proceeding along the curve, point C is reached and represents the tidal volume, that tis, the volume of gas expired during the respiratory cycle, and is designated V- As total lung volume increases due to increased depth of inspiration, so also does the dead volume increase. A typical relationship is illustrated in FIG. 2 wherein the vertical axis represents the kinetic dead volume in milliliters and the horizontal axis represents the inspired tidal volume in liters. The sloped straight line curve of FIG. 2 intersects the vertical axis at 300 milliliters and has a slope of approximately 7.5 milliliters increase in kinetic dead volume per milliliter increase in tidal volume. The actual slope of the straight line varies somewhat, according to different investigators in the field of respiratory physiology and according to recent data, FIG. 2 represents a somewhat conservative viewpoint. That is, the curve in FIG. 2 is less steep than that predicted by some investigators. In addition, the typical curve is based on an attest anatomic dead volume of milliliters (the kinetic dead volume is approximately tiwce that or 300 milliliters) corresponding approximately to a user's body weight of I50 lbs. The base value varies per individual roughly on a direct milliliter of anatomic dead volume per pound of body weight basis.

Various prior art devices utilize a fixed maximum volume breath-saving arrangement. Let it be assumed for purposes of comparison, that the breath-saving volume is designed to hold a maximum capacity of 400 milliliters of exhaled breath; this is a represented by the horizontal line in FIG. 2 labeled Prior Art If the user is working at a rate such that his inspired tidal volume is a little more than 1.8 liters, then from the kinetic dead volume curve it is seen that there is 400 milliliters of dead volume containing gas which can be rebreathed and, accordingly, the apparatus is efficient for that particular work rate.

Consider now a situation where the user is at rest. In such instance, his kinetic dead volume is only 300 milliliters, but he is still collecting 400 milliliters of exhaled gas; and thus an unsafe and potentially dangerous condition exists whereby the user will be rebreathing saved gas having a C content above an established safe maximum. Consider now the other extreme, where the user is doing heavy work such that his inspired tidal volume is around 2.5 liters. In that instance, his kinetic dead volume will be in the order of 450 milliliters, yet his apparatus is sized to only collect 400 milliliters, representing a less than efficient operation. To eliminate any potential hazard, the fixed maximum volume may be reduced to, for example, 300 milliliters; however, the apparatus will always be less than efficient for all situations except when the user is at rest.

The apparatus of the present invention is constructed and arranged such that an amount of exhaled gas is collected which closely approximates the kinetic dead volume curve, ideally to track right on it, or practically, to operate in a zone right below it. Thus, when the user is at rest an exhaled volume close to 300 milliliters will be captured, and this volume will increase as the work rate and, accordingly, the inspired tidal volume increases to retain the optimum combination of efficiency and safety regardless of high or low work rates.

One way of accomplishing this variable volume collection of exhaled gas is illustrated in FIG. 3A in block diagram form. A source of breathing gas provides oxygen-containing gas to the user via passageway 12, on demand, and at the ambient pressure. Exhaled gas from the user passes to a gas collector means 16 which may be a flexible bellows arrangement and may, if desired, be constructed in two sections a first section 16a having a fixed maximum volume and a second section 16b having a variable maximum volume and which closes as determined by a volume limiting device 17. The section 16a may have a volumetric capacity equivalent to the at-rest dead volume of the user and the volumetric capacity of section 16b may be such as to accommodate the expected remainder of the kinetic dead volume.

The volume limiting device 17 operates in response to a sensor means 18 disposed relative to passageway 12 to sense the flow rate and volume of an inspired breath to close the volume limiting device at the proper time.

Inhaled gas in FIG. 3A is designated by the solid line arrows and exhaled gas by the dotted line arrows. After the volume limiting device has closed the gas collector 16 in response to a signal from the sensor 18, further exhaled gas is discharged to the ambient medium through a relief valve 20.

For some operations, it may be desired to maintain the breathing gas from the source in a dry condition so as to be useful for defogging purposes. By way of example, FIG. 35 illustrates an arrangement for accomplishing this with the provision of two separate passageways, the inhalation passageway 26 and exhalation passageway 27. A source of breathing gas 28 provides the oxygen-containing gas to the user who also breathes previously collected gas from the gas collector 30 which may, as previously discussed, be comprised of a first secion 30a having a fixed maximum volume and a second section 30b having a variable maximum volume. Sensors 32 and 33 sense the flow rate and volume of inhaled gases in respective passageways 26 and 27 to open the volume limiting device 35 to enable section 30b to capture exhaled gas over and above that captured by section 30a. The remainder of the exhaled gas is discharged to the ambient medium by way of relief valve 36.

For the fluidic embodiments of the invention, an indication of the inspired tidal volume can be obtained by a measurement of the inspiration flow rate over the inhalation period. For very slow breathing or in instances where the user may hold his breath, there is the possibility of alveolar and dead volume gases mixing within the respiratory passages, and the exhaled breath would not be CO free. Accordingly, it is preferable that means be provided to initiate closing off of the variable volume gas collector, should this type of breathing occur. That is, the amount of exhaled gas captured decreases as a function of the time from inhalation to exhalation.

Yet another arrangement for varying the amount of collected exhaled breath in accordance with the users breathing is illustrated in more detail in FIG. 4. The arrangement utilizes a face or head cover 40 closed to the ambient environment when worn by the user in conjunction with an oralnasal mask 42 which fits over the nose and mouth of the user and closely conforms to the facial contours. The oral-nasal mask 42 and head cover 40 may be integrated into one unit; however, they are shown separated in FIG. 4 and connected by a valved passageway 44, for ease of explanation.

Breathing gas is supplied on demand on the head cover 40 by means of inhalation demand valve 46 and then through a venturi passgeway 48.

The gas collector 50 combines into one unit the previously discussed fixed and variable maximum volumes and includes an outer wall portion 51 and an internal cylindrical collapsible bellows 53 normally urged to its extended position by means of spring 54.

Means for limiting the downward stroke of the bellows 53 is provided and takes the form of a sensor actuator 58 also in the form of a cylindrical collapsible bellows which intercepts and halts the movement of the bellows 53. The sensor actuator 58 is communicative with passageway 60 through aperture 61 as long as moveable button 63 is held away from the aperture by spring 64.

Means for sensing the parameters of an inhalation are provided in the form of sensor 67 divided into three chambers 69, 70 and 71 by means of movable diaphragms 73 and 74 connected together by means of rods 75. Spring 78 normally urges the plate 80 of diaphragm 73 against the opening of passageway 60, and passageway 60 is communicative with chamber 71 through a restricted passage sensor orifice 82.

Chamber 69 is communicative with the oral-nasal mask 42 by way of passageway chamber 70 is communicative with the head cover 40 by means of passageway 86; and chamber 71 is connected to the throat 88 of venturi 48 by means of passageway 89. In addition to communication with the head cover 40 and sensor 67, the oral-nasal mask is communicative with the users mouth as indicated by the double-ended arrow, is communicative with the gas collector 50 through valved passageways 92 and 93, and is additionally communicative with the ambient medium through relief valve 95. The operation of the apparatus of FIG. 4 will now be explained with additional reference to FIG. 5 illustrating, by an idealized curve, a single inhalation and exhalation as a function of time. Flow, in terms of liters per minute, is plotted on the vertical axis.

At time the user begins to inhale, through springloaded one-way valve 100, gas saved in the collector 50 from a previous exhalation. This saved gas is confined to the space between the bellows 53 and wall 51 and is shown stippled. As the user continues to inhale the previously exhaled gas, the pressure within the collector 50 continues to decrease and the bellows 53 moves to its extended position. At t, the bellows 53 will have moved to a position such that disc 102 on top of the bellows 53 contacts the tilt lever 104. in so moving, the tilt lever 104 pivoted around point 105 depresses valve disc 107 against the action of spring 108 which was forcing it against the valve seat 110. With the demand valve 46 thus opened, breathing gas at a pressure P, is supplied to the user through venturi 48, head cover 40, passageway 44, and spring-loaded one way valve 112.

A flow straightener, such as a honeycomb section or screen 115, is provided just prior to the converging portion of the venturi in order to provide a more uniform flow. Due to the venturi action, the gas flow causes a pressure reduction at the venturi throat 88 and this pressure P, is low compared to the pressures in the head cover 40 and oralnasal mask 42; this pressure P, is also the pressure in chamber 71 of sensor 67 by virtue of the passageway 89. Similarly, by virtue of pas sageway 86, the pressure P, in chamber 70 is the same as the pressure in head cover 40 and the pressure P;, of chamber 69 is the same as the pressure in the oral-nasal mask 42 by virtue of the communication 85. At this time, pressure P, is lower than pressure P, or F and, consequently, the movable diaphragms 73 and 74 are forced to a position such that the diaphragm plate 80 closes off the opening of passageway 60.

The pressure within the sensor actuator 58 is P, and, by means of passageway 60, this is the same pressure that appears at the left-hand side of sensor orifice 82. From time t, to t, as the user inhales, the pressure drop P,-P, across the sensor orifice 82 results in a flow rate of gas from the sensor actuator 58 being about proportional to the flow rate through the venturi. Since the flow rates occur over the same period of time, the volume change in the sensor actuator 58 is about proportional to the volume inhaled by the user; and so, at the end of inhalation, the sensor actuator 58 is in a somewhat collapsed position indicative of the inhaled volume. Exhalation commences at time t,, and the exhaled breath starts to fill the collector 50 through springloaded one way valve 120. Exhalation continues into the collector from time t, to t at which point the downward stroke of bellows 53 will be stopped by virtue of disc 102 engaging button 63 to force it against the aperture 61. Thus no more gas can be accepted by the collector 50 and the pressure in the oral-nasal mask 42 rises slightly, causing the remainder of the exhalation to be discharged to the ambient medium through the relief valve 95.

The construction and operation of the sensor actuator is such that, if the wearer holds his breath after inhaling, the volume of the sensor actuator 58 and its position will slowly increase because gas will slowly flow through the sensor orifice 82 from the slightly higher pressure P, in the head cover relative to the pressure P, in the sensor actuator. (Since there is no flow through the venturi, the pressure P, will be equal to the pressure P The amount of total possible accumulator volume,

accordingly, will become smaller as the wearer holds his breath and this is desirable because the longer the breath is held, the more time there is for CO, rich gas to mix with the CO, free gas in the pulmonary passages and less gas should be accumulated for rebreathing in such instance.

At time corresponding to t in the cycle, the user begins to inhale the previously collected gas from the collector through valve 100. This results in a slight pressure drop in the oral-nasal mask 42. With P slightly less than the pressure P: in the head cover 40 (and with P, equal to P the movable diaphragms 73 and 74 will move against the action of spring 78 to thereby allow discharge into the sensor actuator 58 from chamber by way of passageway 60 thereby resetting the sensor actuator to its maximum length position for the next inhalation.

If desired, a manual override may be provided to supply the user with gas and this may be accomplished by the provision of a purge lever 123 which, when pushed up, will open the demand valve 46.

In order to insure a clear passageway through sensor orifice 82, screens 125 on either side of the orifice are provided to prevent blockage thereof. With respect to the various spring-loaded valves illustrated, the spring force relationship is such that, of the two valves conducting gas out of the oral-nasal mask 42, valve 120 will open before valve and with respect to the two valves conducting gas into the oral-nasal mask 42, valve will open before valve 112.

With respect to the idealized curve of FIG. 5, it is to be noted that flow rate vs. time is plotted. The area under the curve therefore, is equal to the volume of gas inhaled (n, to or exhaled (I, to 1,).

The embodiment of the invention illustrated in FIG. 4 is of the type wherein gas is supplied to the user in sequence, that is, first from the gas saver (t to r.) and then from the supply (t, to Flow rate is sensed (and accordingly, volume) only from t, to 1,.

Other arrangements contemplate the simultaneous provision to the user, of saved and supply gas, so that measurement is made of total inhaled gas (e.g. t to t to control the amount of gas saved on exhalation. Addi tionally the volume limiting device can also be actuated in response to not only inhaled gas but to exhaled gas, the inhalation flow rate governing the opening of communication to the gas saver and the exhalation governing the closing of such communication.

The apparatus herein may be utilized in various fields, such as diving, space or rescue work. For example, the apparatus of FIG. 4 is shown in similar form in FIG. 6 as might be used by a fire fighter as illustrated in FIGS. 7 and 8. The components of FIG. 6 are identical to those described in FIG. 4 and have been given like reference numerals. One exception is the gas collector 50, which has now been divided into a first section 50a having a fixed maximum volume and a second section 50b having a variable maximum volume. The operation of FIG. 6 is the same as that described in FIG. 4 in that, after the user inhales the previously exhaled gas from collector 50, bellows 53a will actuate the tilt lever to cause supply gas to flow. The pressure drop P P causes a reduction in the volume of sensor actuator 58 in proportion to the inhaled volume. By making the spring force of spring 54a less than that of spring 54b, as the user exhales into the collector 50, bellows 53a will be collapsed first, after which bellows 53b will collapse to a position determined by the sensor actuator 58, as previously described. The volumes may be sized such that the first section and associated passageways is approximately equal to the at-rest dead volume while the volume of the second section 50b and its associated passageways is equal to the remaining maximum expected dead volume. In order to accommodate a wide variety of users, the apparatus can be designed with gas collector volumes in, for example, a small, me dium and large range. Alternatively, a minimum expected user weight may be determined and the apparatus tailored to that weight, thus adapting to a broad range of individual users and having nearly universal application.

Some components illustrated in FIGS. 7 and 8 have been described with respect to FIGS. 4, 6, and accord ingly, have been given like reference numerals. The gas collector sections 500 and 50b are seen on the fire fighters mask and section 500 has a protective screen 128 and the valve actuator 58 is supported within sec tion 50b by means of a spider 130.

Above the relief valve 95, there is positioned a voice disc I33, whereby the fire fighter may communicate with other personnel.

Demand valve 46 is seen with purge lever 123 and venturi 48, and a gas supplying hose 136 is shown in FIG. 8 as being connected to a source of breathing gas, tank 139, by means of a quick-disconnect 141 and a first stage regulator 143.

Many variations of the breathing apparatus are possible depending upon the specific design of components. The flow/volume sensor and the volume limiting devices could be mechanical, electromechanical or fluidmechanical. The sensor means could be in the form of pressure transducers sensing pressure difference variations to thereby activate a solenoid flow limiting valve to vary the captured exhaled volume.

Whereas the embodiments thus far described operate with a previous history of the user's breathing, the embodiment illustrated in block diagram form in FIG. 9 operates on a breath-by-breath examination of the exhaled gas. Operation is accomplished by the provision of a sensor I47 operable to provide an output signal indicative of the instantaneous CO content of the exhaled breath. The output signal from sensor I47 is received by electronic circuit 149 to activate a valve 151 to a closed position, thus shutting off exhaled gas flow to gas collector [52. Operation can be such that the valve will be shut off when the output of sensor 147 indicates that alveolar gas is present, or alternatively, the output of sensor 147 can be integrated such that the electronic circuit 149 will shut the valve 151 when a total accumulated CO, content reaches a predetermined, dangerous level.

We claim:

1. Breathing apparatus comprising:

a. means for providing a user with a gas to be breathed;

b. a gas saver means for the capture of the user's exhaled breath;

c. sensing means for sensing an indication of the volume of an inhalation by the user; and

d. means responsive to said sensing means for closing off said gas saver means, as a function of said inhalation so that no more exhaled gas will be accepted thereby during the exhalation.

2. An apparatus according to claim 1 which includes:

a. means for decreasing the amount of exhaled gas captured as a function of the time from inhalation to exhalation.

3. Breathing apparatus comprising:

a. means for providing a user with the gas to be breathed;

b. a gas saver means for the capture of the users exhaled breath and having a variably volumetric capacity defined by a moveable portion;

c. sensing means for establishing a flow rate of gas proportional to the flow rate of an inhalation by the user;

d. a moveable actuator means connected to said sensing means and moveable in proportion to said flow rate of gas;

e. said moveable actuator means being positioned relative to said gas saver means for limiting the capture capacity of said gas saver means to define a maximum volumetric capacity for the subsequent exhalation.

4. Apparatus according to claim 3 wherein:

a. said moveable actuator means is positioned to intercept and halt the movement of said moveable portion of said gas saver means.

5. Apparatus according to claim 4 wherein:

a. said gas saver means is defined by two separate sections, the first section having a fixed maximum volumetric capacity and the second section having a variable maximum volumetric capacity.

6. Apparatus according to claim 4 wherein:

a. said gas saver means includes a rigid outer wall portion and a flexible inner portion, the volume between them being for reception of exhaled breath;

b. said moveable actuator means is a collapsible bellows positioned within said flexible inner portion of said gas saver means.

7. Apparatus according to claim 6 wherein:

a. the interior of said bellows is communicative with said sensing means so that gas flow may be established between them;

b. the volume of said bellows being decreased as the user inhales, in proportion to the inhalation.

8. Apparatus according to claim 7 which includes:

a. means for resetting said bellows to an initial posi tion prior to the next inhalation.

9. Apparatus according to claim 3 which includes:

a. an inlet for the supply of said gas to be breathed;

b. a venturi section connected to said inlet;

c. said sensing means including an orifice;

(I. one side of said orifice being communicative with the throat of said venturi section;

e. the other side of said orifice being communicative with said moveable actuator means.

10. Breathing apparatus comprising:

a. a face cover closed to the ambient environment when worn by a user;

b. an oral-nasal mask in valved communication with said face cover;

c. a gas inlet for supplying breathing gas to said face cover;

d. a venturi section having an input portion connected to said gas inlet and an output portion connected to said face cover;

e. a gas saver means in valved communication with said oral-nasal mask for capturing a portion of the users exhaled breath and supplying it to the user on the subsequent inhalation;

f. a moveable actuator means positioned with respect to said gas saver for limiting the volume of gas captured by said gas saver means;

g. sensor means connected between said moveable actuator means and the throat of said venturi section for establishing a flow rate of gas proportional to the users inhalation, to proportionally move said moveable actuator means.

11. Apparatus according to claim 10 wherein:

a. said gas saver means includes means for opening said gas inlet after inhalation by the user of the previously saved exhaled gas.

12. Apparatus according to claim 10 wherein:

a. said moveable actuator means is a gas containing moveable bellows;

b. said sensor means includes a plurality of chambers, 21 first chamber being communicative with said throat of said venturi, a second chamber being communicative with said face cover and a third chamber being communicative with said oral-nasal mask;

c. a plurality of moveable diaphragm members separating said chambers from one another;

d. a passageway communicating the interior of said bellows with said second chamber, one of said dia' phragm members normally closing said passageway;

e. an orifice connected between said passageway and said first chamber whereby when said passageway is closed by said diaphragm member and the user inhales, gas will flow from the interior of said bellows, through said passageway, through said orifice, into said first chamber and venturi section;

f. said passageway being open to said second chamber when the pressure in said second chamber is greater, by a predetermined amount, than the pressure in said third chamber, to allow gas flow back into the interior of said bellows to reset said moveable actuator means to an initial position,

13. Apparatus according to claim 10 wherein:

a. said gas saver means is in two sections, a first section having a fixed maximum volumetric capacity, the second section having a variable maximum volumetric capacity;

b. said first and second sections being carried by said face cover.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2633843 *Jun 27, 1950Apr 7, 1953Glasser Charles JMetabolism testing apparatus
US2743167 *Oct 10, 1950Apr 24, 1956Cherry Robert HInstrument for measuring carbon monoxide in oxygen bearing atmosphere
US3021839 *Aug 31, 1956Feb 20, 1962Marsh De Loss LUnderwater breathing apparatus
US3266869 *Sep 30, 1963Aug 16, 1966Dengler Oskar ECarbon dioxide analyzer
US3309684 *Jun 9, 1964Mar 14, 1967Kahn Elliott HBio-instrumentation monitoring and display device
US3358681 *Oct 22, 1965Dec 19, 1967SpirotechniqueBreathing apparatus with control means for the inhaled gas mixture
US3396723 *Mar 17, 1966Aug 13, 1968Drager Otto HBreathing apparatus with periodic volume change
US3523527 *Feb 20, 1967Aug 11, 1970Watson W & Sons LtdElectronically controlled variable mode respirator
US3548821 *Aug 23, 1967Dec 22, 1970Perelmutr Alexandr SemenovichApparatus for artificial ventilation of lungs
US3557785 *Feb 28, 1968Jan 26, 1971Dow Chemical CoGas administration apparatus
US3680556 *Oct 22, 1969Aug 1, 1972U S Divers CoDiving helmet
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4054133 *Mar 29, 1976Oct 18, 1977The Bendix CorporationControl for a demand cannula
US4108171 *Jun 9, 1976Aug 22, 1978Roland John NymanBreathing apparatus
US4622963 *Apr 15, 1985Nov 18, 1986Figgie International Inc.Self-contained portable single patient ventilator/resuscitator
US4784130 *Dec 4, 1986Nov 15, 1988The John Bunn CompanyFlow controller
US4879996 *Jan 13, 1987Nov 14, 1989Harwood Jr Van NClosed circuit breathing apparatus
US4926855 *Jan 29, 1987May 22, 1990Interspiro AbRespirator
US4998529 *Sep 27, 1989Mar 12, 1991Xenex CorporationDecompression and toxic fume protection apparatus
US7578293 *Mar 9, 2006Aug 25, 2009Dräger Safety AG & Co. KGaACompressed air respirator
US7681573Mar 9, 2006Mar 23, 2010Dräger Safety AG & Co. KGaACompressed air respirator
US20060260610 *Mar 9, 2006Nov 23, 2006Drager Safety Ag & Co. KgaaCompressed air respirator
US20060260612 *Mar 9, 2006Nov 23, 2006Drager Safety Ag & Co. KgaaCompressed air respirator
US20080251080 *Apr 13, 2007Oct 16, 2008George SimmonsSecond stage regulator
DE102005023392B3 *May 20, 2005Jun 8, 2006Dräger Safety AG & Co. KGaACompressed air breathing apparatus, has compressed air supply and air reservoir and reversible inhaled gas reservoir with rate of admission of inhaled gas reservoir recorded
DE102005023393A1 *May 20, 2005Dec 14, 2006Dräger Safety AG & Co. KGaADruckluft-Atemgerät
DE102005023393B4 *May 20, 2005Feb 15, 2007Dräger Safety AG & Co. KGaADruckluft-Atemgerät
Classifications
U.S. Classification128/204.25, 128/204.28
International ClassificationA62B7/02, B63C11/24, A62B7/04, A62B7/00, B63C11/02
Cooperative ClassificationA62B7/02
European ClassificationA62B7/02