Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3914504 A
Publication typeGrant
Publication dateOct 21, 1975
Filing dateOct 1, 1973
Priority dateOct 1, 1973
Also published asCA1033232A1, DE2446097A1
Publication numberUS 3914504 A, US 3914504A, US-A-3914504, US3914504 A, US3914504A
InventorsWinfred E Weldy
Original AssigneeHercules Inc
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Sized carbon fibers
US 3914504 A
Abstract
Carbon fibers are coated with a sizing composition comprising a polyglycidyl ether, cycloaliphatic polyepoxide or their mixtures. Preferred sizes are mixtures of a liquid diglycidyl ether of bisphenol A and a solid diglycidyl ether of bisphenol A.
Images(1)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [1 1 Weldy Oct. 21, 1975 1 SIZED CARBON FIBERS [75] Inventor: Winfred E. Weldy, Wilmington, Del.

[73] Assignee: Hercules Incorporated, Wilmington,

Del.

[22] Filed: Oct. 1, 1973 [21] Appl. No.: 402,493

139.5 CQ,117/228, 121, DIG. 11; 260/37 EP, 47 EP, 830 TW; 423/447, 460; 8/115.6, 140; 161/176 [56] References Cited UNITED STATES PATENTS 2,735,829 2/1956 Wiles et a1 260/830 TW 4/1959 Reid] et al. 117/161 ZB 8/1963 Wayne 260/830 TW 3,298,859 1/1967 Wong et al. 117/126 3,441,522 4/1969 Soldatos et al. 117/161 ZB 3,512,919 5/1970 Cappuccio et al.. 8/115 6 3,660,140 5/1972 Scola et a1. 117/161 ZB 3,806,489 4/1974 Rieux et a1 260/38 3,837,904 9/1974 Hill 117/139-.5 A

3,839,072 10/1974 Kearsey 8/115.6 3,844,822 10/1974 Boss et a1 117/161 Z Primary Examiner-Michael Sofocleous Attorney, Agent, or Firm-Edith A. Rice; Michael B. Keehan [5 7 ABSTRACT Carbon fibers are coated with a sizing composition comprising a polyglycidyl ether, cycloaliphatic polyelpoxide or their mixtures. Preferred sizes are mixtures of a liquid diglycidyl ether of bisphenol A and a solid diglycidyl ether of bisphenol A.

4 Claims, 1 Drawing Figure US. Patent 0c:. 21,1975 3,914,504

SIZED CARBON FIBERS This invention relates to protective sizing compositions for carbon fibers and in particular to protective sizing compositions for'carbon fibers based on certain epoxy compounds. 1 t I The term carbon fibers is used in this application in its generic sense and includes both graphite fibers and amorphous carbon fibers. Graphite fibers are-defined herein as fibers whichconsist essentially of carbon and have a predominate X-ray diffraction'pattern,characteristic of graphite. Amorphous carbon fibers, on the other hand, are defined-asfibers inwhich the bulk of the fiber weight can be attributed to carbon and which exhibit an essentially amorphous X-ray diffraction pattern. Carbon fibers can be prepared ,by known process from polymeric fibrous materialssuch as polyacrylonitrile, polyvinyl alcohol, pitch, natural and regenerated cellulose, which processes include the steps of carbonizing or graphitizingthe fibers.

Carbon fibers are generally fragile and subject to abrasion during handling. It has now been discovered that sizing compositions based on certain epoxy compounds protect carbon fibers against suchv damage. When carbon fibers are to be used in preparing composite structures with resin matrixsystems they are frequently subjected to a surface pretreatment to improve the adhesion between the carbon fibers and the resin matrix. The fiber surface. is usually oxidized in such a pretreatment, for example by reaction with an oxidizing'agent. Alternatively, the carbon fiber can be oxidiz ed by electrolytic treatment. using an electrolyte which will generate nascent oxygen at the, surface of the carbon fiber during the electrolysis process. The sizing compositions of this invention do not detract from the adhesioni mprovement of such surface treated fibers. v

In accordance with this inventionthere is provided carbon fibers coated with a sizing composition comprising lan epoxy compound, selected from the group consisting of polyglycidyl ethers, cycloaliphatic polyepoxides and mixtures thereof. The sized carbon fibers are compatible with epoxy resin matrix systems used to prepare composite structures. The size can be applied to untreated or surface pretreated carbon fibers to protect them against abrasion damage.

Polyglycidyl ethers which can be used,-in accordance with this invention, as a protective size for carbon fibers include diglycidyl ethers, triglycidyl ethers, tetraglycidyl ethers and higher polyglycidyl ethers. Mixtures of any of the polyglycidyl ethers can also be used.

Illustrative diglycidyl ethers that can be employed include diglycidyl ether; diglycidyl ether of 1,3- butanediol; 2,6-diglycidyl phenyl glycidyl ether; 1,8- bis(2,3-epoxypropoxy)octane; l,3-bis(2,3-epoxypropoxy)benzene; l,4-bis( 2,3-epoxypropoxy)benzene; l,3-bis(4,5-epoxypentoxy)-5-chlorobenzene; 4,4 bis(2,3-epoxypropoxy)diphenyl ether; 2,2-bis(2,3- epoxypropoxyphenyl)methane; and 2,2-bis[p-(2,3- epoxypropoxy)phenyl] propane, i.e., the diglycidyl ether of bisphenol A.

Illustrative triglycidyl ethers that can be employed include triglycidyl ethers such as the triglycidyl ethers of trihydric alcohols such as glycerol, l, l,l-tri(hydroxymethyl)propane, 1,2,6-hexanetriol and the higher alcohols; and the triglycidyl ethers of trihydric phenols, such as phloroglucinol, the trihydroxydiphenyl methanes and propanes, the trihydroxyaminophenols, the trisphenols; 2,2[2,4,4'-tris(epoxypropoxy)diphenyl]- propane; l, 1 -bis( glycidyloxymethyl )-3 ,4-epoxycyclohexane; and N,N,Otris(epoxypropyl) p-aminophenol.

Illustrative tetraand higher polyglycidyl ethers that can be employed include tetraglycidyl ether of p,p'diaminodiphenylmethane and epoxidized novolac compounds.

Cycloaliphatic polyepoxides which can be used to provide a protective size on carbon fibers in accordance with this invention include bis-2,3-epoxycyclopentyl ether; I,4-bis(2,3-epoxypropoxy)cyclohexane; l,4-bis(3,4-epoxybutoxy)-2-chlorocyclohexane; the di(epoxycyclohexanecarboxylates) of aliphatic diols; the oxyalkylene glycol epoxycyclohexanecarboxylates; the epoxycyclohexylalkyl epoxycyclohexanecarboxylates; epoxycyclohexylalkyl dicarboxylates; epoxycyclohexylalkyl phenylenedicarboxylates; bis(3,4-epoxy- 6-methylcyclohexylmethyl) diethylene glycol ether; dicyclopentadiene dioxide; bis(2,3-epoxycyclopentyl) etheryglycidyl 2,3-epoxycyclopentyl ether; 2,3-epox ycyclopentyl 2-methylglycidyl ether; cycloaliphatic triepoxides; also tetraand higher homologues which contain more than three epoxy groups per molecule. Mixtures of the cycloaliphatic polyepoxides can also be employed.

. Illustrative of the di(epoxycyclohexanecarboxylates) of aliphatic diols which can be employed include the bis(3,4-epoxycyclohexanecarboxylate) of l,5-pentanediol, 3,-methyl-l ,S-pentanediol, 2-methoxymethyl+ 2,4-dimethyl-l,S-pentanediol, ethylene glycol, 2,2- diethyl-l,3-propanediol, l,6-hexanediol and 2-butene- 1,4-diol. g a

. Illustrative of the oxyalkylene glycol epoxycyclohexanecarboxylates which can be employed include bis(2- ethylhexyl-4,5- epoxycyclohexane-l,2-dicarboxylate) of dipropylene glycol, bis(3,4-epoxy-6-methylcyclohexanecarboxylate) of diethylene glycol and bis(3,4-epoxycyclohexanecarboxylate) of triethylene glycol.

Illustrative of the epoxycyclohexylalkyl epoxycyclohexanecarboxylates which can be employed include 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 3,4-epoxy-l-methylcyclohexylrnethyl 3,4 epoxy-l-methylcyclohexanecarboxylate, 3,4-epoxy-2- methylcyclohexylmethyl 3,4-epoxy-2-methylcyclohexanecarboxylate, 3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexanecarboxylate, (1- chloro-3,4-epoxycyclohexan-1-yl) methyl l-chloro- 3 ,4-epoxycyclohexanecarboxylate, l-bromo-3 ,4- epoxycyclohexan-l-yl) methyl l-bromo-3,4-epoxycyclohexanecarboxylate) and (l-chloro-2-methyl-4,5- epoxycyclohexan-l-yl) methyl l-chloro-2-methyl-4,5- epoxycyclohexanecarboxylate.

Illustrative of the epoxycyclohexylalkyl dicarboxylates which can be employed include bis(3,4-epoxycyclohexylmethyl) pimelate and oxalate and bis(3,4- epoxy-6-methylcyclohexylmethyl) maleate, succinate, sebacate and adipate.

Illustrative of the epoxycyclohexylalkyl phenylenedicarboxylates which can be employed include bis(3,4- epoxycyclohexylmethyl) terephthalate and bis(3,4- epoxy--methylcyclohexylmethyl) terephthalate.

Illustrative cycloaliphatic triepoxides which can be I employed include tris(3,4-epoxycyclohexanecarboxylate) of I,l,l-trimethylol propane; and tris(3,4-epoxycyclohexanecarboxylate) of 1,2,3-propanetriol.

The sizing composition can be applied to the fiber in a suitable solvent to control the amount of size coated onto the fiber. However, the sizing composition can be applied directly, if desired. The concentration of the size in the solvent is usually in the range of from about 0.1 to about 10.0% by weight based on the total weight of the solution and is preferably from about 0.5 to about 2.0%. Examples of suitable solvents are polar solvents such as the halogenated hydrocarbons, for example, methylene chloride and ethylene dichloride; diacetone alcohol, ketones and esters. If desired, the sizing composition may also contain a lubricant. The lubricant serves to permit more even distribution of .the size on the fiber and aids in more effective wetting of the fiber. Preferred lubricants are fatty acids, amides and esters. Other additives, such as coupling agents can also be added to the size solution.

The sizing compositions can be applied to the fibers by known methods, for example, by drawing the fibers through a bath containing the size or by spraying the size onto the fibers. The drawing illustrates a preferred arrangement for sizing carbon fibers. 1n the drawing, a carbon fiber strand 2 is drawn from supply reel 4 and passed into a tube 6. The arrows indicate the direction the carbon fiber strand 2 travels. The tube 6 is heated by hot air forced through the inlet tube 8 from a suitable source, such as an electric heat gun. The temperature of the hot air is sufficient to heat the tube to above the evaporation temperature of the solvent. The fiber is passed along the tube and down through an opening 9 inthe bottom of the tube 6 and into the sizing bath 10. The fiber-is directed down into the bath 10, through the bath and back through opening 9 into heated tube 6 by guide rollers 12, 14 and 16. The fiber is passed through the heated tube to evaporate the solvent and wound on a conventional take-up roll 18. The amount of size coated onto the fiber is from about-0.4 to about 5.0%, by weight based on the weight of the fiber, preferably from about 0.9 to about 1.6%. The amount of size on the fiber is determined by weighing a given length of sized fiber, then dissolving the size from the fiber using a solvent for the size, drying the fiber and then reweighing the unsized fiber. From the difference in the weights the percentage of size on the fiber, based on the weight of the fiber, is calculated.

Carbon fibers sized with the epoxy compound sizing compositions of this invention can be used to prepare fiber reinforced composite structures. Any of the known methods for preparing such composites can be employed. For example, carbon fibers can be used to prepare filament wound composites. The epoxy sizing compositions of this invention protect the fibers from abrasion during the filament winding process. The sizing of the fiber also permits a smoother delivery of the carbon fiber during. the filament winding. In another common method, the reinforced composite structure can be prepared by incorporating chopped sized carbon fibers into the matrix resin and then forming the composite structure, for example, by press molding.

Since the sizing compositions of this invention are based on epoxide compounds, carbon fibers sized therewith are compatible with and do not interfere with adhesion between the carbon fibers and the epoxy resin-hardener systems used as the matrix resin of the composite. This is especially true when both the size composition and the matrix resin are both based on diglycidyl ethers of bisphenol A.

The following examples will illustrate the sizing of carbon fibers using the sizing compositions of this invention and the preparation of composites using said sized fibers. 1n the examples, parts and'percentages are by weight unless otherwise specified.

EXAMPLES l-9 Commercially available surface treated graphite fiber was sized with epoxy compounds in accordance with this invention in a suitable application process. The particular size and application solvent used in each example are shown in Table 1. In each case the fiber was sized by drawing the fiber through a heated tube and sizing bath as shown in the drawing. The fiber was pulled through the size solution at a rate of 2-4 feet per minute. The take-up was a typical Leesona take-up driver with a motor. The size produced on the fiber ranged from soft to hard, as determined by the hand or feel of the resulting sized fiber. The term soft" is used to describe a sized fiber which retains its limp hand and the term hard applies to a sized fiber having a stiff hand.

Table 1 (Carbon Fiber Sizes) Concentration size Based Size in on the Weight Example Size Solvent Solution) of the Fiber Remarks 1 76% Compound A Diacetone 1.5 1.6 Hard size 24% Compound B alcohol 1 2 76% Compound A 1.1 1.0

24% Compound 8 3 74.7% Compound A 1.1 1.0

23.6% Compound B 1.7% Compound C 4 74.7% Compound A 1.5 1.6

23.6% Compound B 1.7% Compound C 5 37.5% Compound A 1.0 1.0 Medium soft 62.5% Compound B size 6 36.9% Compound A 1.0 0.9

61.4% Compound B 1.7% Compound C I 7 Compound D Cl-l,Cl 1.05 1.0 Soft size 8 Mixture E Ethylene 1.0 1.4

9 Compound B Compound A diglycidyl ether of bisphenol A Compound B diglycidyl ether of bisphenol A having a molecular weight Compound C The amide of pelargonic acid.

1 Table l-continued (Carbon Fiber Sizes) Concentration size Based Size in on the Weight Solvent Solution) of the Fiber H Remarks Example Size Compound o= 2,6-diglycidyl phenyl glycidyl ether.

Mixture E a mixture of 35% by wt. of bis-2,3-epoxycyclopentyl ether and 65% by wt. of the diglycidyl ether of bisphenol A; commercially available as ERLA 2256 from Union Carbide Corp.

EXAMPLE The carbon fibers sized as describe d in Examples 1-9 were used to prepare composites employing each of the following epoxy matrix resin-hardener systems:

1. A matrix resin-hardener systemco'mprising 100 parts by weight of 2,6-diglycidyl phenyl glycidyl ether (see footnote D of Table 1) and parts by weight of a hardener comprising a eutectic mixture of metaphenylene diamine and methylene dianiline. A

Table 2 Resin Matrix- NOL Ring Composites: lnterlaminar Shear Strength Using Sized Carbon Fibers Size on Fiber, lnterlaminar Shear Strength Hardener I Curing Sized Based on Wt. of (p.s.i.) v

System Conditions Fiber Y the Fiber Dry Wet* l I 16 hours at .l 10C Unsized 12,500

H followed by' Ex. 1 1.6 14,000 .l1,600 4 hours at 145C. Ex. 2 1.0 13,600 y r 1 "Ex.3 1.0 1 13,400

Ex. 5 1.0 13,400 r 10,800, EX. 6 0.9 13,400 Ex. 7 1.0 12,000 2 1 hour at 125C. Unsized 14,000

followed by Ex. 1 1.6 14,100 12,100 4 hours at 175C. Ex. 2 1.0 13,000 Ex. 3 1.0 13,900 EX. 4 1.6 12,800 EX. 5 1.0 12,100 11,100 Ex. 6 0.9 11,900 Ex. 8 1.4 13,100 3 2 hours at 125C. Unsized 12.700 followed by Ex. 9 1.4 12,600 4 hours at 160C.

'Aflfl 12 hour boil in distilled water.

2. A matrix resin-hardener system comprising 100 EXAMPLE 1 1 parts by weight of a mixture of by weight of bis- 2,3-epoxycyclopentyl ether and 65% by weight of the diglycidyl ether of bisphenol A (see footnote E of Table l) and 29 parts by weight of a hardener comprising a eutectic mixture of metaphenylene diamine and methylene dianiline.

"Eutectic mixture of metaphenylene diamine and methylene dianiline; commercially available as Tonox 6040 from Uniroyal, Inc.

3. A matrix resin-hardener system comprising 100 parts by weight of N,N,N-tris(epoxypropyl)-p,p'- diaminophenyl methane and 49 parts by weight of the hardener 4,4-diaminodiphenyl sulfone.

The composite specimens were made in the form of an NOL ring containing about 60% by volume of sized carbon fiber. In preparation of the composite the carbon fiber is passed through the epoxy resin system, through a tensioning device and onto a rotating mold. The whole system is enclosed in a vacuum chamber to provide a low void composite specimen. The mold is removed from the NOL winding device and placed in a curing oven to cure the resin. The time and temperature of curing each of the resin matrix-hardener systems is shown in Table 2. A discussion of NOL ring specimens and their manufacture may be found in PlasticsTechnology, November 1958, pp. 1017-1024, and

Carbon fibers sized with soft, medium soft, and hard sizes as described in Example 1-9 were tested for abra sion resistance. A typical filament winding delivery system was set up to assess the effect on size on the abrasion resistance of carbon fiber during filament winding. The system consisted of a CTC Tensioner, commercially available from Compensating Tension Controls, Inc., set at 3 pounds tension. The fiber was taken over an aluminum wheel, a carbon wheel, and onto a 2.6 inch diameter mandrel on a filament winding machine. The degree of abrasion was measured by percent retention of original carbon fiber tensile strength. The results, shown in Table 3, show the improvement in abrasion resistance of carbon fibers when sized with the epoxy size compositions.

Table 3 Abrasion Resistance of Sized and Unsized Carbon Fibers Tensile Strength Retention after The preferred sizing compositions of this invention are selected from the group oonsisting of (a) a liquid diglycidyl ether of bisphenol A having a molecular weight of about 340 to about 380; (b) a mixture of a solid diglycidyl ether of bisphenol A having a molecular weight of about 380 to 1400 and a liquid diglycidyl ether of bisphenol A having a molecular weight of about 340 to about 380; (c) a mixture of bis-2,3-epoxycyclopentyl ether and the diglycidyl ether of bisphenol A; and (d) 2,6-diglycidyl phenyl glycidyl ether. The application of the different sizing compositions produce a different feel or hand on the fiber ranging from soft to hard. For example, a soft size is obtained when the fiber is treated with 2,6-diglycidyl phenyl glycidyl ether, the diglycidyl ether of bisphenol A having a molecular weight in the range of 340 to about 380 or a eutectic mixture of 35% by weight of bis-2,3-epoxycyclopentyl ether and 65% by weight of the diglycidyl ether of bisphenol A. A hard size is obtained when the fiber is treated with a mixture of about 50 to about 80% by weight, preferably 76% by weight of the solid diglycidyl ether of bisphenol A having a molecular weight of about 380 to about i400 and from about 20 to about 50% by weight, preferably 24% by weight of the liquid diglycidyl ether bisphenol A having a molecular weight in the range of about 340 to about 380. A medium soft size is obtained when the carbon fiber is treated with a mixture of about 20 to about 50% by weight, preferably 37.5% by weight of the solid diglycidyl ether of bisphenol A having a molecular weight of about 380 to 1400 and about 50 to about 80% by weight, preferably 62.5% by weight of the liquid diglycidyl ether of bisphenol A having a molecular weight in the range of about 340 to 380.

What I claim and desire to protect by Letters Patent l. A carbon fiber having coated on the surface thereof from about 0.4 to about 5.0% by weight, based on the weight of the fiber of a sizing composition selected from the group consisting of polyglycidyl ethers, cycloaliphatic polyepoxides and mixtures thereof.

2. A carbon fiber as set forth in claim 1 wherein the sizing composition is selected from the group consisting of:

a. a liquid diglycidyl ether of bisphenol A;

b. 2,6-diglycidyl phenyl glycidyl ether;

c. a mixture of a solid diglycidyl ether of bisphenol A and a liquid diglycidyl ether of bisphenol A; and

d. a mixture of bis-2,3-epoxycyclopentyl' ether and the diglycidyl ether of bisphenol A.

3. A carbon fiber as set forth in claim 1 wherein the sizing composition comprises a mixture of about 50 to about by weight of a solid diglycidyl ether of bisphenol A having a molecular weight of about 380 to about 1400 and about 20 to about 50% by weight of a liquid diglycidyl ether of bisphenol A having a molecular weight of about 340 to about 380.

4. A carbon fiber as set forth in claim 1 wherein the sizing composition comprises a mixture of about 20 to about 50% by weight of a solid diglycidyl ether of bisphenol A having a molecular weight of about 380 to about 1400 and about 50 to about 80% by weight of a liquid diglycidyl ether of bisphenol A having a molecular weight of about 340 to about 380.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2735829 *Jul 5, 1952Feb 21, 1956 Compositions containing a mixture of
US2881090 *Mar 13, 1957Apr 7, 1959Union Carbide CorpImpregnation of carbonaceous materials
US3100756 *Apr 15, 1958Aug 13, 1963Union Carbide CorpComposition consisting essentially of a polyglycidyl ether and a liquid diepoxide and cured product
US3298859 *Mar 10, 1966Jan 17, 1967Owens Corning Fiberglass CorpEpoxide additive for amylaceous forming size compositions
US3441522 *Aug 16, 1965Apr 29, 1969Union Carbide CorpCurable,tacky polymers of water and a polyepoxide and process for the preparation thereof
US3512919 *Sep 28, 1966May 19, 1970Montedison SpaDiglycidyl glycol treatment of polyacrylonitrile or polyvinyl chloride with polyalkyleneimine dispersed therein
US3660140 *Jun 18, 1970May 2, 1972United Aircraft CorpTreatment of carbon fibers
US3806489 *May 24, 1973Apr 23, 1974Rhone ProgilComposite materials having an improved resilience
US3837904 *Feb 29, 1972Sep 24, 1974Great Lakes Carbon CorpA method of sizing carbon fibers
US3839072 *Jul 26, 1971Oct 1, 1974Nat Res DevCarbon fibre tow
US3844822 *Dec 23, 1971Oct 29, 1974Celanese CorpProduction of uniformly resin impregnated carbon fiber ribbon
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4044540 *Mar 4, 1976Aug 30, 1977Toray Industries, Inc.Elastomer coated carbon filament reinforcing yarn or cord, method and article
US4145472 *Sep 6, 1977Mar 20, 1979HitcoFibrous carbonaceous material sized with a glycidylhydantoin sizing
US4216262 *May 23, 1979Aug 5, 1980Great Lakes Carbon CorporationSurface treatment of carbon fibers
US4220686 *Mar 12, 1975Sep 2, 1980Desoto, Inc.Encapsulated impregnated rovings
US4269876 *May 14, 1980May 26, 1981Rolls-Royce LimitedTreatment of carbon fibre
US4364993 *Jul 14, 1980Dec 21, 1982Celanese CorporationSized carbon fibers, and thermoplastic polyester based composite structures employing the same
US4394467 *Jun 22, 1981Jul 19, 1983Celanese CorporationSized carbon fibers capable of use with polyimide matrix
US4443566 *Apr 25, 1983Apr 17, 1984Celanese CorporationSized reinforcing fibers suitable for use in composites of improved impact resistance
US4446255 *Dec 29, 1982May 1, 1984Celanese CorporationSized carbon fibers suitable for use in composites of improved impact resistance
US4526940 *Jul 5, 1984Jul 2, 1985Ciba-Geigy CorporationHydroxyl terminated polyfunctional epoxy curing agents
US4531354 *Feb 9, 1984Jul 30, 1985Desoto, Inc.Thermally curable wet-impregnated rovings
US4555446 *Jun 28, 1983Nov 26, 1985Toray Industries, IncorporatedCarbon fiber and process for preparing same
US4654264 *Jun 4, 1986Mar 31, 1987Mitsubishi Rayon Co., Ltd.Method of sizing carbon fiber and a carbon fiber composition
US4861855 *Mar 31, 1987Aug 29, 1989Amoco CorporationPolyamide-imide compositions from bisphenoxyphenyl diamine tricarboxylic anhydride and tetracarboxylic dianhydride
US4940740 *Apr 21, 1989Jul 10, 1990Basf AktiengesellschaftSingle phase toughened heat-curable resin systems exhibiting high strength after impact
US4981942 *Jul 13, 1989Jan 1, 1991Amoco CorporationPolyamide-imide composition based on bisphenoxyphenyl diamines
US5227238 *Oct 24, 1991Jul 13, 1993Toho Rayon Co., Ltd.Carbon fiber chopped strands and method of production thereof
US5229202 *May 20, 1991Jul 20, 1993Mitsubishi Kasei CorporationCarbon fiber and carbon fiber-reinforced resin composition using it
US5462799 *Aug 22, 1994Oct 31, 1995Toray Industries, Inc.Carbon fibers and process for preparing same
US5587240 *Jun 5, 1995Dec 24, 1996Toray Industries, Inc.Carbon fibers and process for preparing same
US5589055 *Jun 5, 1995Dec 31, 1996Toray Industries, Inc.Method for preparing carbon fibers
US5691055 *Jun 13, 1996Nov 25, 1997Toray Industries, Inc.Carbon fibers and process for preparing same
US6248443 *Mar 28, 1994Jun 19, 2001Hitco Carbon Composites, Inc.Process for the preparation of flexible carbon yarn and carbon products therefrom
US8309644 *Aug 29, 2011Nov 13, 2012GM Global Technology Operations LLCMethods of treating carbon fibers, fiber-reinforced resins, and methods of making the fiber-reinforced resins
US20090092831 *Apr 19, 2007Apr 9, 2009Toho Tenax Europe GmbhCarbon Fiber
DE3233230A1 *Sep 7, 1982Apr 7, 1983Toho Beslon CoWaessriges schlichtemittel vom emulsionstyp fuer kohlenstoffasern, verfahren zu dessen herstellung und anwendungsverfahren
EP0045574A1 *Jul 10, 1981Feb 10, 1982Celanese CorporationSized carbon fibers and thermoplastic polyester based composite structures employing the same
WO1995026433A1 *Mar 24, 1995Oct 5, 1995Bp Chemicals Hitco IncProcess for the preparation of flexible carbon yarn and carbon products made therefrom
Classifications
U.S. Classification428/367, 528/99, 528/98, 528/418, 528/87, 528/103, 525/524, 528/104, 523/205
International ClassificationC08J5/06, D01F11/14, D06M13/02, C08L63/00, D06M13/11, D06M13/165, D06M101/00, D06M15/55
Cooperative ClassificationC08L63/00, D01F11/14
European ClassificationC08L63/00, D01F11/14