Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3916889 A
Publication typeGrant
Publication dateNov 4, 1975
Filing dateSep 28, 1973
Priority dateSep 28, 1973
Also published asCA1014040A1, DE2446055A1
Publication numberUS 3916889 A, US 3916889A, US-A-3916889, US3916889 A, US3916889A
InventorsRussell George K
Original AssigneeSandoz Ag
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Patient ventilator apparatus
US 3916889 A
Abstract
Disclosed herein is a patient ventilator apparatus having a pneumatic control system operable in three different modes wherein the apparatus assists the breathing of the patient, controls the patient's breathing in a timed manner, or operates in a combination assist/control mode according to certain predetermined conditions. Fluidic circuitry controls a valved bellows apparatus, which in turn supplies air to a patient subject to limitations of time, volume, and pressure, wherein the gas supplied to the bellows comprises an adjustable oxygen/air mixture. Fluidic timers are provided for use in the control mode of the circuitry, and identical fluidic circuitry combinations are provided for use in the assist mode to automatically trigger the ventilator apparatus into an inspiratory state according to the patient's breathing requirements and to trigger such apparatus into an exhalation state when a predetermined inspiratory pressure is attained.
Images(6)
Previous page
Next page
Description  (OCR text may contain errors)

A United States Patent 1191 Russell Nov. 4, 1975 PATIENT VENTILATOR APPARATUS [57] ABSTRACT [75] Inventor: George K. Russell, Castle Rock,

Colo' Disclosed herein is a patient ventilator apparatus hav- [73] Assignee: Sandoz, Inc., E. Hanover, NJ. ing a pneumatic control system operable in three different modes wherein the apparatus assists the breath- [22] Flled' Sept' 1973 ing of the patient, controls the patients breathing in a PP 401,739 timed manner, or operates in a combination assistlcontrol mode according to certain predetermined [52] U S C] 128/145 8 conditions. Fluidic circuitry controls a valved bellows In} .Cl .2 pp in turn ppli i t a ti nt ub- [58] Field of Search 128/1458, 145.7, 145.6, hmtatms "i volume and prissure 128/1455 142 188 wherein the gas supplled to the bellows compnses an ad ustable oxygen/a r m1xture. FluldlC timers are pro- [56] References Cited vided for use in the control mode of the circuitry, and identical fluidic circuitry combinations are provided UNITED STATES PATENTS for use in the assist mode to automatically trigger the 3,669,108 6/ 1972 Sundblom 128/ 145.8 ventilator apparatus into an inspiratory state accord- 373O1180 5/ 1973 f f 128/145-3 ing to the patients breathing requirements and to trig- 3,754,550 8/1973 Kipling 128/1458 Such apparatus into an exhalation state when a 3,756,229 9/1973 Olliver 128/1458 Primary ExaminerRichard A. Gaudet Assistant ExaminerHenry J. Recla Attorney, Agent, or FirmGerald D. Sharkin; Robert S. Honor; Walter F. Jewell MEZWEQ MODE 7o SWITCH FILTER predetermined inspiratory pressure is attained.

10 Claims; 9 Drawing Figures 5 p 9 OXYGEN mss PATIENT PRESSURE GUAGE PATIENT REE LINE INSFIRv TIMER I E RATIO REE suns: sen; wmr 78 116511; wnzssunz 4 LIMIT I l i "4 Fur POWER 5g VALVE OXYGEN mar e MIA 92 so wmca'ron PATIENT nmvsn /\TRIGGER mxms DEVICE 3 52 A FILTER I has? NEBgkIZATION 4 Q PATIENT HOSE T0 EXHALATION VALVE on PATIENT Q VOLUME L IMIT U.S. Patent Nov, 4, 1975 Sheet 1 0f 6 3,916,889

U.S. Patent Nov. 4, 1975 Sheet2 of6 3,916,889

I U.S. Patent Nov. 4, 1975 Sheet3of6 3,916,889

US. Patent Nov.4, 1975 Sheet40f6 3,916,889

US. Patent N0v.4, 1975 SheetS 0f6 3,916,889

US. Patent Nov. 4, 1975 Sheet6of6 3,916,889

FIG. 7

FIG. 9

PATIENT VENTILATOR APPARATUS BACKGROUND OF THE DISCLOSURE Certain respiratory apparatus is known in the art wherein fluidic circuits are provided for controlling the exhalation and inhalation cycles of a patient. However, the instant disclosure relates to an improved patient ventilator apparatus utilizing totally pneumatic control circuitry for operating the ventilator apparatus in a plurality of desired modes wherein the breathing of the patient is assisted, completely controlled, or subjected to a combination assist/control operation according to predetermined parameters.

SUMMARY OF THE INVENTION In accordance with the invention there is provided a pneumatic ventilator apparatus utilizing a pressurized source of gas for operating fluidic circuitry, which in turn controls a source of gas supplied to a patient. During the inspiratory cycle air is exhausted from a bellows apparatus, and supplied through an outlet value to a patient breathing hose. The bellows is surrounded by a confined volume, and it is evacuated by supplying oxygen to that confined volume, thus causing the bellows to collapse. A weight is provided in the free lower end of the bellows, so that upon release of the oxygen pressure in the confined area surrounding the bellows, the latter will automatically be exposed under the influence of the weight, thereby pushing the oxygen out from the confined area and through a mixing valve, wherein the oxygen is either vented to the atmosphere or mixed with a supply of room air and then injected into the expanding bellows for use in the next succeeding inhalation cycle. An inlet valve couples the mixing valve to the confined volume surrounding the bellows, and the inlet and outlet valves for the bellows apparatus are actuated alternately during the exhalation and inhalation cycles, respectively, by means of a logic circuit having its input coupled to one output of a master flip flop which in turn is controlled at one input by an exhalation timer signal and an automatic patient trigger signal, and controlled at its other input side by an inspiration timer signal, a pressure limit triggering circuit signal, and a volume limit signal coupled from the bellows apparatus.

The ventilator apparatus is provided with three different modes of operation selectable by means of a manually operable pneumatic switch. First, in an AS- SIST mode the selecting switch is connected to activate the patient trigger circuit which, together with the pressure limit circuit, is responsive to the air pressure in a patient reference line, so that the master flip flop switches states to control the exhalation and respiration cycles of the bellows apparatus in accordance with the patients breathing demands. That is, when the air pressure in the patient reference line drops to a low level indicating the completion of an inspiratory cycle, that low level pressure is detected by the patient trigger circuit which then triggers the master flip-flop to initiate the inspiratory cycle of the bellows apparatus. Then, during the ASSIST mode the pressure limit circuit provides a trigger signal to the master flip-flop to terminate the inspiratory cycle if the pressure in the patient reference line exceeds a predetermined value, while the volume limit detector device in the bellows apparatus also provides a trigger signal to the master flip-flop to terminate the inspiratory cycle after a predetermined maximum amount of air has been supplied to the patient from the bellows apparatus, or a fluidic timing device provides a trigger signal to the master flip-flop to terminate the inspiratory cycle after a predetermined amount of time. Therefore, the first one of the pressure, volume, or time signals to reach its predetermined maximum value is the signal which triggers the flip-flop to terminate the inspiration cycle; and the command from the patient trigger circuit terminates the exhalation cycle.

When the manually operable mode switch is positioned to select a CONTROL mode, the exhalation timer is activated and the patient trigger circuit is deactivated, so that the master flip-flop is controlled at one input by the output of the exhalation timer, while it is controlled at its other input by the pressure limit circuit, the inspiration timer, and the volume limit detector. Accordingly, in the CONTROL mode the exhalation cycle is automatically timed, as is the inspiration cycle, but the latter is also terminated prematurely of the inspiration timer output if the pressure limit signal or volume limit signal reach their predetermined maximum values.

The bellows for supplying air to the patient has an adjustable volume which is determined by a movable plate positioned to control the expansion of the bellows and which also contributes to defining the confined volume surrounding the bellows. During the inspiration cycle, the master flip flop controls a power valve which supplies oxygenunder pressure to the confined volume thereby causing contraction of the bellows. Then, upon releasing the pressure in the confined volume, the bellows starts to expand under the force of a weight carried therein and the oxygen is forced out of the confined area and through the inlet valve which is actuated to an open condition by the logic circuit. A mixing valve which receives the oxygen from the inlet valve is adjustable to conduct a controlled amount of the oxygen through to the bellows along with a partial supply of filtered room air. The room air is received at ambient pressure and is drawn into the bellows due to a vacuum caused by its expansion. However, the oxygen is supplied under pressure as a result of its forced expulsion from the confined area so that the mixing valve permits the oxygen content of the gas supplied to the bellows to be varied from 2l-l00%.

Each of the timer devices comprises a bellows housed within a chamber having an input orifice for receiving oxygen at a predetermined pressure to cause a timed contraction of the bellows. A shaft has one end fixed to the movable end of the bellows, while the opposite end of the shaft closes a vent on a back pressure detector which is coupled to the input of the master flip-flop. Therefore, a pair of opposed inputs to the master flipflop are controlled respectively by the movable shafts on the two timer bellows. Furthermore, each of the chambers surrounding the timer bellows have dump valves mounted therein, such valves being actuable by opposed outputs of the master flip-flop, so that as soon as the back pressure detector of one of the bellows provides an output for switching the master flip-flop, the resultant output of the flip-flop is coupled back to that bellows chamber to cause its depressurization, and to prepare it for its next timing cycle. The two bellows devices and their surrounding chambers are mounted side by side and their back pressure sensing elements are movable mounted movably springs, so that they are adjustably positioned by means of a pair of cams fixed on a shaft, so that rotation of the shaft causes movement of the cams and adjustable movement of the two sensing devices. Thus, this movement of the sensing devices changes the timing periods for both the exhalation and inspiration timers which can be adjusted in unison by rotation of the shaft. Furthermore, a by-pass valve is provided in parallel with the input orifice to the inspira-.

tion timer, and that by-pass valve can be opened to decrease the inspiration time, thus adjusting the inspiration/exhalation (I/E time ratio. However, the timing devices are constructed so that the I/E ratio has a maximum value of unity.

The patient trigger circuitry, and the pressure limit circuit have identical configurations, and each comprises a more universal trigger circuit for automatic operation in a patient ventilator. In particular, the universal trigger circuit consists of a six-gate fluidic circuit having three proportional amplifiers connected in series with each other and with three serially connected fluidic flip-flops. In accordance with the invention the universal circuit can be used as the patient trigger and the pressure limit circuit as described above, and depending on the input connections thereto it can function to provide an output in response to a small differential pressure at its inputs; it can function to provide an output in response to pressures slightly below ambient, as would be caused by a patients breathing efforts; it can function to provide an output in response to pressure levels above or below atmospheric, wherein the device is automatically biased so that it can be used in conjunction with end expiratory pressure signals; it can function to provide an output in response to air pressure inputs indicating maximum levels; and it can function to provide an output in response to flow signals, or rate of change of pressure as is sometimes desirable.

In accordance with the use of the universal trigger circuits, as controlled in part by end expiratory pressure signals, the circuit is utilized to provide an output in response to small differential pressures. To allow the Positive End Expiratory Pressures (PEEP) to be used during assisted breathing, without the need for the patients inhalation effort to return the patient hose to ambient pressure, the PEEP pressure is fed through a diaphragm valve to the patient trigger module, to bias that module so that it can be triggered while the patient reference line is still above the ambient pressure level.

BRIEF DESCRIPTION OF THE DRAWINGS One embodiment of the invention is described herein in conjunction in the accompanying drawings. In such drawings:

FIG. I shows a block diagram of a patient ventilator apparatus according to the invention;

FIG. 2 is a schematic view of the fluidic circuitry illustrated in FIG. 1;

FIG. 3 is a front elevation of the mixing device mounted on the bellows apparatus disclosed in FIG. 1;

FIG. 4' is a sectional view taken along the line 4-4 of FIG. 3;

FIG. 5 is a sectional view taken along the line 55 of FIG. 3;

FIG. 6 is a sectional view taken along the lines 66 of FIG. 3;

FIG. 7 is a perspective view of the mixer valve stem illustrated in FIGS. 3-5;

FIG. 8 is a sectional view of the timer devices illustrated schematically in FIG. 2; and

FIG. 9 is a sectional view of a dump valve used with the timer devices of FIG. 4.

DETAILED DESCRIPTION OF AN EMBODIMENT OF THE INVENTION:

An embodiment of the invention is depicted in block diagram form in FIG. 1 of the drawings, and includes a bellows apparatus 10 having a bellows element 12 fixedly held at its upper end within a cylindrically formed chamber 14. The chamber 14 is provided at its upper end with a connecting conduit 16, and is provided at its lower end with an adjustable plate 18 having a seal 20 connected at its periphery for sealing the plate against the sidewalls of the chamber 14. The plate is adjustably movable through the chamber 14 by means of an adjusting device 15, so that when the plate is moved upwardly the confined volume of the chamber within which the bellows can expand and contract is decreased, while such volume is increased when the plate 18 is moved downwardly within the chamber 14. In operation, the bellows element 12 is charged with air through an input duct 22 having a check valve 24 mounted thereon, and the bellows element is connected in communication with an outlet valve 26 for actuation to allow air within the bellows element to be discharged to the patient during the inspiration cycle. The discharge of air from the bellows element 12 is effected by pressurizing the chamber 14 with oxygen supplied through the conduit 16. When the chamber 14 is so pressurized with oxygen, it causes the bellows element 12 to collapse to expel the air previously charged therein.

Accordingly, the tidal volume of the system is determined by the placement of the plate 18 which plate also minimizes gas consumption by limiting the confined volume surrounding the bellows element 12. As illustrated, the check valve 24 closes off the input port to the bellows element during its collapse. The output valve 26 also includes a check valve to prevent air from the patient hose 28 from being injected into the bellows element, and the valve 26 is controlled by a diaphragm 30, which in turn is controlled by the fluidic circuitry described below.

The bellows element 12 continues its collapsing movement until the chamber 14 is depressurized in response to one of four different control signals which are adapted to terminate the inspiration cycle. One of these four control signals is initiated by a rod 32 mounted above the bellows element 12 and spring loaded in a downward direction, but movable upwardly due to pressure exerted by the upward movement of the lower portion of the bellows element wherein such upward movement of the rod indicates the total exhaustion of the air previously charged into the bellows element. The rod 32 closes a vent in a pressurized conduit 34, thus providing a back pressure signal along a volume limit conduit 36. The conduit 34 is pressurized by a regulated supply of oxygen fed through an orifice 37.

As stated above, the inspiration cycle is terminated when the chamber 14 is depressurized, and at that time the bellows element 12 automatically expands under the force of a weight 38 housed in its lower extremity. As the bellows element expands it creates a partial vacuum which opens the inlet check valve 24 and draws air inwardly through the conduit 22 which has a filter 40 connected thereto and disposed in communication with room air. Depressurization of the chamber 14 is obtained by opening a bellows inlet valve 42 so that the oxygen which is forced out of the chamber 14 by the expanding bellows element 12 is coupled through the inlet valve 42 to a three port mixing valve 44 as described in detail below in conjunction with FIGS. 37. In operation, the oxygen discharged from the chamber 14 through the valve 42 is vented to atmosphere by the valve 44, or is directed in an adjustablycontrolled volume to the conduit 22 which supplied air to the bellows element 12. Since the oxygen is discharged under pressure from the chamber 14, due to the expansion of the bellows element 12, the pressure of the oxygen exiting the mixer valve 44 is greater than the ambient pressure of the room air coupled through the filter 40, and therefore the oxygen/air mixture can be varied by positioning the valve 44 to a desired position.

The input and output valves 26 and 42 of the bellows apparatus 10, and the supply of oxygen to the chamber 14, are controlled by the fluidic circuitry shown in block diagram form in FIG. 1, such circuitry being energized by a 50 psig oxygen supply source indicated at reference numeral 46. The pressurized oxygen is cou pled through a filter 48 to a power valve 50 which is gated to supply oxygen through an adjustable flow valve 52, and through a silencer-filter 54 to the input conduit 16 for the bellows chamber 14. The output of the filter 48 is also coupled to a regulator 56 wherein the oxygen pressure is reduced so that the oxygen emanating from the regulator 56 can be used as a supply source for the active elements of the fluidic circuitry. The regulated oxygen, which may be at a pressure of about 5 psig, is also coupled through a three position mode selector switch 58, which permits the selection of three modes of operation, including an ASSIST mode, a CONTROL mode, and an ASSIST/CONTROL mode.

The fluidic circuitry includes a master flip flop 60 having a principle output 62 which actuates the power valve 50, and which operates a dual OR/NOR circuit 64 to provide regulated oxygen pressure signals along the respective conduits 66 and 68 to the inlet and outlet valves 42 and 26 of the bellows apparatus 10. In partic ular, when the output 62 of the flip flop 60 provides a positive pressure, the dual OR/NOR circuit provides a positive signal on the output conduit 66 to close the inlet port to the bellows apparatus, while the outlet port 26 is allowed to open so that the inspiration cycle will commence due to collapsing movement of the bellows element 12, which in turn results from pressurization of the chamber 14. Similarly, upon completion of the inspiration cycle, the flip flop 60 will switch to its opposite stable state whereby a positive regulated pressure signal will be coupled along conduit 68 to close the outlet valve 26 while the pressure on conduit 66 will be decreased to allow the valve 42 to open so that he oxygen discharged from the bellows chamber 14 will pass through that input valve 42 to the mixing valve 44.

The flip flop 60 has three inputs which cause it to switch to its inspiration command state wherein it provides an output to conduit 62, and those three inputs are supplied from a manually operable input signal device 70, a patient trigger device 72, and an exhalation timer device 74. On the other hand, the flip flop has four inputs for causing it to terminate its inspiration command, and those inputs are coupled from a manually operable exhalation triggering device 76, a pressure limit circuit 78, an inspiration timer device 80, and the volume limit detector device formed by the elements 32, 34, and 36 disposed in the bellows apparatus 10. A pressure limit display device 82 is actuable to exhibit a red display in response to an indicator signal from a driver device 84 which in turn is energized by the output of the pressure limit circuit 78. The display device 82 utilizes reflected light. Similarly, a red display device 86 is operated by a driver 88 in response to an output from the inspiration timer 80, while a green display light 90 operates in a similar manner under the control of an indicator driver 92 which is energized by an output from the patent trigger circuit 72.

In the operation of the circuitry, when the ASSIST mode is selected, a regulated oxygen pressure signal is applied to the patient trigger circuit through a conduit 93 to put it in an energized condition, and an input con trol port for the patient trigger circuit is coupled through a patient reference line 94 to the patient hose line 28, so that the patient trigger circuit provides an output to switch the master flip flop 60 to its inspiration state when the pressure in the patient reference line 94 decreases to a minimum indicating the completion of an exhalation cycle, While the system is operating in its ASSIST mode, the green light 90 will be actuated at each instance of a patient trigger output signal, which in turn is controlled by the patients breathing in response to a signal coupled along the patient reference line 94.

An additional input to the patient trigger device 72 includes a regulated oxygen signal coupled through an adjustable input port 96 to control the sensitivity of the trigger device 72, and an input signal from a Positive End Expiratory Pressure (PEEP) 98, wherein the patient trigger device 72 is adaptable to provide an output in response to a small differential input pressure between the input coupled along the conduit 94 and the PEEP input. The PEEP circuit 98 has a gate input coupled from an output conduit 100 of the dual OR/NOR circuit 64, and the gate is maintained in a closed condition by the positive regulated oxygen supply coupled through a small orifice 102, an adjustable orifice 104, and a one way valve 106, to the gate input, wherein the junction of the adjustable orifice 104 and the one way valve 106 are vented to the atmosphere through an orifice 108. However, during an exhalation cycle, the pressure in the conduit 100 opens the PEEP driver circuit to permit the regulated pressure coupled through the orifices 102 and 104 to be applied though an offset adjust orifice 110 and a spike damping volumetric chamber 112 to the patient trigger device 72.

The pressure limit circuit is identical in construction to the patient trigger circuit, but provides an output in response to a high pressure sensed on the patient reference line 94, and the sensitivity of the device is adjustable by means of a variable orifice 114 coupled as a second input thereto. Also, a pressure gauge 116 is connected at the second input to the pressure limit circuit 78 for displaying the selected pressure limit adjustment to which the circuit is sensitive, and a second pressure gausge 118 is connected to the patient reference line so that the actual pressure such line can be monitored. An adjustment is provided but not shown in FIG. 1 wherein the periods of the exhalation timer and the inspiration timer can be simultaneously adjusted, and an adjustable orifice 120 is provided in the input line to the inspiration timer, so that the inspiration/exhalation (I/E) ratio can be adjusted. These adjustments are desireable since medical ventilation systems require a matching of the I/E ratio to the needs of individual patents, and since it is usually considered detremental to use I/E which is greater than unity. Also, controlled breathing required uniform cycle rates, but such rates should be adjustable to permit changes in the minutevolume, without disturbing the selected I/E ratio. The above-mentioned controls satisfy these requirements.

An additional function of the ventilator apparatus disclosed herein is provided by a conduit 122 for coupling to a nebulizer device wherein that conduit 122 is connected through an adjustable orifice 124 to an OFF position, an INTERMITTENT position wherein the nebulizer is operated by the output of the power valve 50, and a CONTINUOUS position wherein the nebulizer is operated by the supply source of oxygen as coupled through an orifice 128.

In summary, in the ASSIST mode the inspiration cycle is terminated by the pressure limit circuit 78, by the manually operable signal device 76, by the volume limit signal coupled along the conduit 36, or by the inspiration timer 80, and the exhalation cycle is termi nated by the patient trigger circuit 72, or the manually operable signal device 70.

In the CONTROL mode the regulated oxygen supply is coupled throgh the selecting switch 58 to energize the exhalation timer, while the patient trigger circuit 72 is deenergized. Therefore, in the CONTROL mode the inspiratory command generated in the conduit 62 is initiated by the exhalation timer 74 or the manual signal device 70, while the inspiratory cycle is terminated by any one of the four inputs to the master flip-flop 60 from the manually operable device, such inputs including signal pressure limit circuit 78, the inspiratory timer 80, or the volume limit signal conducted along conduit 36. During normal operation of the CONTROL mode, the master flip-flop may be operated during both the inspiratory and exhalation cycles in a timed manner determined by the timers 74 and 80, respectively. However, the inspiratory cycle is terminated prematurely of its timed duration if either pressure limit or the volume limit exceeds its maximum predetermined value.

Then, in the ASSIST/CONTROL mode, the selector switch 58 energizes both the patient trigger circuit 72 and the exhalation timer 74 through the use of a pair of one way valves 58A and 58B, so that the circuitry operates as described above with respect to the CON- TROL mode with the exception that flip-flop 60 will be triggered to generate its inspiratory command along conduit 62 by the patient trigger signal from the device 72, as well as by the exhalation timer 74.

The actual circuitry included in the blocks of FIG. 1 is shown in greater detail in FIG. 2, wherein a preferred form of the patient trigger circuit 72 is shown as comprising a six section fluidic device incorporating three proportional amplifiers 130A, 130B, 130C, connected in series with each other and in series with three serially connected flip flops 132A, 132B, 132C. Each of the six circuits has its supply input coupled along the conduit 73 to the mode selector switch 58 while each of circuits 130B, 130C, 132A, 1328, and 132C, have their control inputs coupled to the respective outputs of the preceeding stage; while the control inputs to the first proportional amplifier 130A are coupled respectively to the output of the PEEP circuit 98 and to the patient reference line 94. Furthermore, the adjustable sensitivity orifice 96 is coupled to a second control input to the proportional amplifier 1308, and this configuration permits a stable sensitivity adjustment from +1 to more than l0 cm H O with respect to ambient pressure. The fourth input to the amplifier 1303 is vented. The gating device for the PEEP driver 98 which is shown schematically in FIG. 2 comprises a diaphragm 134 which closes off the conduit leading to the PEEP input for the proportional amplifier 130A, and it is seen that the PEEP driver 98 is maintained in a closed condition by that diaphragm 134 due to pressure from conduit 100 during inspiration. The pressure through the one way valve 106 is negated by a signal from the dual OR/- NOR circuit 17 during the inspiration cycle. Diaphragm 134 permits oxygen flow'from the valves 102 and 104 and then through the adjustable valve and the damping chamber 112 through to the proportional amplifier A during exhalation. Also, during exhalation the pressure through 106 is delivered to conduit 100 where it is used to hold the patient circuit exhalation valve at the PEEP pressure.

In operation, an end expiratory pressure which remains higher than ambient pressure is generated by bleeding a small amount of the driving gas into the exhalation exhaust line through the one way valve 106. This keeps the diaphragm 134 of the PEEP device 98 at a slight positive pressure. Then, since most exhalation valves hold patient hose pressures slightly higher than their actuation pressures, the OR/NOR output pressure with PEEP will usually be less than the PEEP pressure shown on the patient pressure gauge. Therefore, variations in the obtainable PEEP pressures will be experienced with exhalation manifolds of different manufacturers. To allow PEEP to be used during assisted breathing, without the need for the patients inhalation effort to return the patient hose to ambient conditions, the PEEP pressure is fed to the patient trigger module to bias that module so that it can be triggered while the patient hose pressure is still above the ambient pressure level. The amount of pressure differ ence required to switch the trigger module is preset by the offset-adjust valve 110. During inspiration, the diaphragm 134 is closed to remove the bias signal from the patient trigger module so that high exhalation valve pressures will not hold the ventilator in an inspiration condition. However, during exhalation, the diaphragm 134 opens and allows the PEEP pressure to reach the patient trigger module circuit 130A. The system is ususally preset so that the pressure difference required to trigger the patient trigger module is relatively large as compared to that normally required without PEEP to compensate for leaks. The offset-adjust valve 110 is provided to function as a leak compensator for desensitizing the patient trigger module during PEEP operation. I

The pressure limit circuit 78 is identical to the abovedescribed patient trigger circuit 72 in its construction, with the exception that the source supplied for each of the six individual circuits is coupled to the regulated source of oxygen provided at the output of the regulator 56, while the control inputs to the pressure limit circuit 78 are as described above in conjunction with FIG. 1.

It is seen, therefore,that the circuits 72 and 78 as illustrated in FIG. 2' of the drawings are identical, although their input signals may be connected in different ways to make the circuit responsive to different input parameters. In addition to the responses described above with respect to FIG. 2 of the drawings, the inputs to the six-state circuit can be coupled in at least three different configurations so that the circuit may be described as a universal trigger circuit. In this regard, for example, the inputs can be connected as illustrated at 72 in FIG. 2, while the PEEP input is replaced by an ambient pressure input so that the circuit will be sensitive to small negative pressures. As another example, the PEEP input to the circuit 72 as illustrated in FIG. 2 may be connected to be automatically biased to allow triggering at pressure levels above or below atmospheric pressure. For example, the input may be connected to a three-position switch so that when PEEP pressures are used, a pressure slightly above atmospheric is applied, while with negative endexpiratory pressures (NEEP), a pressure slightly below atmospheric is applicable through a second position of the switch. In such NEEP applications, the referenceadjust gas is used to drive a venturi for evacuating the patient hose, thereby generating the vacuum necessary for the negative bias. The third position of the switch may provide for normal operation so that the universal trigger circuit may be switched from NORMAL, to PEEP, to NEEP without requiring readjustment of the sensitivity control. A further example of the responsiveness of the universal circuit results when a suitable restriction is placed in the patient hose input, while a feedback connection is coupled to the circuit 72 in place of the PEEP input so that the ventilator will be cycled as a function of flow, or as a function of the rate of change of pressure. That is, the feedback connection can be used to sense flow since the pressure differential across the restriction in the patient hose will give an indication of such flow. This last-described configuration can be used to turn on the ventilator due to a slight patient breathing effort, and if a time delay circuit such as a fluidic RC circuit is provided in a parallel feedback line, the patient trigger signal can be extended.

The OR/NOR circuit 64 is also depicted in schematic form in FIG. 2 and comprises a two stage device, wherein the first stage 136 provides a positive pressure output along the conduit 66 in response to an input signal received from the flip flop 60 along the conduit 62. Similarly, the second stage 138 provides an output along conduit 100 during the inspiration cycle to maintain the exhalation valve on the patient hose in a closed condition during such inspiration cycle.

In the past, fluidic timers for respiratory equipment have been constructed to allow a certain volume (capacitance) of fluid to slowly increase or decrease to a desired switching pressure level. However, it is difficult to repeat such pressures, and elaborate circuitry is usually required to provide the necessary repeatability. Another type of known timer comprises a fluidic oscillator combined with complex digital counter stages, and this configuration also has obvious drawbacks.

In the present invention accurate and relatively simple timers are provided wherein each of the timing devices 74 and 80 comprises a logic circuit 74A and 80A, and a bellows device 748 and 808, respectively. When the flip flop 60 is switched to provide an inspiration command along the conduit 62 the logic circuit 80A provides a regulated pressure output coupled through an orifice 80C to the chamber of the bellows device 808, and causes the bellows element thereof to collapse. A rod 80D is fixed to the moveable portion of the bellows element, and is mounted to engage a sensor E for causing a back pressure along a conduit 80F which is connected as an inspiration cycle terminating signal of the flip flop 60. Similarly, the timing device 74 has the input of its logic circuit 74A connected for actuation by the opposing output of the flip flop 60 while the sensor device 74E couples a signal along the conduit 74F to terminate the exhalation cycle of the apparatus by switching the flip flop 60. Additionally, the ad justable orifice is connected in parallel with the orifice 80C to vary the [IE ratio as described above.

Various additional details of the construction of the valving apparatus are shown in FIGS. 3-7. Particularly, FIG. 3 shows an embodiment of the valve construction utilized with the bellows apparatus 10 wherein the room air is drawn through the filter 40, the oxygen/air mixture is controlled by the valve knob 44A, and the patient output hose is connected to the output port 28A. The internal configuration of the valve apparatus is shown in FIGS. 4-6 which comprise sectional views wherein the opening 140, as shown in FIG. 4, comprises the port opening of the bellows element 12, while the input check valve 24 is shown in communication with a duct 22 corresponding with the duct 22 illustrated in FIGS. 5 and 6. Similarly, the air filter 40 is also shown in FIG. 4, and the duct 16, communicating with the bellows chamber 14 and valve 42, is shown in FIG. 5. Also, the adjustable flow control orifice 52, and the oxygen filter 54 are shown in FIG. 6, while the valve stem for the mixing valve 44 is shown as element 448 in FIGS. 5 and 7. When the valve stem 44B is rotated by means of the valve knob 44A to its extreme counterclockwise position, all of the oxygen forced out of the chamber 14 by the expanding bellows element 12 is vented to the atmosphere through a vent opening 142 as illustrated in FIG. 3. As the knob 44A is rotated clockwise, however, increasing quantities of oxygen are permitted to flow through the conduit 22, first through a slit portion 44C in the valve stem 44B, and then through the full open orifce 44D thereof so that when the valve knob 44A is turned completely clockwise, the entire quantity of oxygen forced out of the chamber 14 is drawn into the bellows element 12. The bladder elements 26A and 42A shown respectively in FIGS. 4 and 5 are controlled by the pressure signals coupled through conduits 68 and 66, respectively, as described above in conjunction with FIG. 1.

Since the oxygen/air mixture is effected by the expanding bellows, and proportioned by the valve 44, the oxygen concentration is unaffected by the patients breathing, the inspiratory flow rate, the tidal volume, the patient hose pressure, or the cycle time, thereby providing an accurately controllable system in this regard.

The timing devices 748 and 808, shown schematically in FIG. 2, are illustrated in FIG. 8, wherein the device 74B, is depicted in a partially sectional view. The timing devices include sealed cannisters 150, 151, each having a sealed collapsible bellows device 152 mounted therein. As shown, the sensor device 74E is supported on a spring 154 and its elevation position is determined by the pressure exerted thereon by a cam 156 mounted on a shaft 158. Similarly, the sensor device 80E is positioned by a corresponding cam 160 mounted on the shaft 158. In the operation of the timers, a regulated air pressure is selectively applied through one of the orifices 74C and 80C to the cannisters and 151. Then,

for example, if the cannister 150 is charged, the bellows 152 will collapse causing the spring-loaded rod 74D attached thereto to move upwardly untilvit engages the sensor 74E, thus closing a vent in the line 74F so that the flip flop 60 receives an input signal for switching it to provide an inspiratory command along conduit 62 as shown in FIGS. 1 and 2. The bellows 152 and the spring loading on the rod 74D. are so proportioned that the movement of the rod does not require a large pressure change, so that the travel time for the rod canbe accurately established. During calibration procedures, the adjustable orifice 120, as shown in FIGS. land 2 is completely closed, whereupon the cam 156 and 160 are adjusted to provide the necessary exhalation and inspiratory time periods so that the desired maximum value for the quantity I/E .is defined. Then, the timing periods for both of the timers 74B and 80B can be sis multaneously adjusted by rotating the shaft 158 to reposition the sensing devices 74E and 80E by means of the cams 156 and 160. Subsequently, the I/E ratio can be decreased by opening the valve 120 to a desired position.

The dump valves described above in conjunction with FIG. 2, are shown in FIG. 8, and a sectional view of the dump valve 74G is illustrated in FIG. 9 wherein it is seen that a bladder 162 maintains a valve seat 164 in a closed position on a discharge opening in the side wall of the cannister 150. Then, when the master flip flop is actuated by the exhalation timer 74 to provide an inspiratory command along the output conduit 62, the opposing output of the flip flop 60 is coupled to the bladder 162 to provide a slight negative pressure thereto so that the oxygen stored in the timer cannister 150 is exhausted to the atmosphere through the port 166 by the released valve seat 164.

. The dump valve seals the outlet opening in the cannister 150 when the flip flop is switched out of its inspi-- ratory command state.

i In summary, the apparatus disclosedin the foregoing specification, and in the accompanying drawings, provides a patient ventilator which is controlled solely by fluidic circuitry to function manually, automatically, or semiautomatically, in response to the breathing requirements of a patient.

- What is claimed is:

l. A fluidically controlled patient ventilator apparatus comprising:

a patient breathing hose;

means for supplying a predetermined quantitiy of air to the patient breathing hose;

a fluidic flip flop circuit switchable into first and second states, said flip flop circuit having opposed input ports for controlling said switching, and having at least one output port providing a pressure signal while said flip flop circuit is switched into said first stable state;

means coupled between said flip flop circuit output port and said air supply means to actuate the latter to supply air to the breathing hose in reponse to said pressure signal, thereby defining an inspiratory period of operation;

a first fluidic timing means actuable during said inspi- ,ratory period and a second fluidic timing means ac- .tuable during an exhalation period, said first and second timing means having respective output ports coupled;to said opposed input ports of said flip flop for controlling said flip flop to switch be tween said stable states, wherein an output signal from said first timing means actuates said flip flop to switch from its first to its second stable state, nd an output from said second timing means actuates said flip flop to switch from its second to its first I stable state;

a fluidic trigger circuit having an input coupled to said patient breathing hose for providing a trigger signal at an output port thereof in reponse to a minimum pressure in said patient breathing hose corresponding to the termination of a patient exhalationcycle and means coupling said trigger signal to one of said input ports of said flip flop to control said flip flop to switch from its second to its first stable state to initiate said inspiratory period;

a fluidic pressure limit circuit having an input port coupled to said patient breathing hose for providing a limit signal at an output port thereof in reponse to a predetermined maximum pressure in the patient breathing hose, andmeans coupling said limit signal to one of said input ports of said flip flop to control said flip flop to switch from its first to its second stable state to terminate said inspiratory period;

a volume limit signal generating means coupled to said patient breathing hose for providing a trigger output signal in response to the sensing of a predetermined quantity of air supplied to the patient breathing hose by the air supply means, and means coupling said trigger signal to one of said input ports'of said flip flop to control said flip-flop to switch from its first to its second stable state to terminate said inspiratory period;

and mode selecting means for selectively deenergizing said trigger circuit and said first timing means, one at a time.

2. A fluidically controlled patient ventilator apparatus as set forth in-claim 1 further comprising an adjustable oxygen/air mixing valve means coupled between said inlet valve and said bellows element for selective positioning-to control the oxygen content of the air within-the bellows, element wherein said mixing valve means is coupled to a source of room air, and is coupled through said inlet valve means to a source of oxygen.

3. A fluidically controlled ventilator apparatus as set forth in claim 2 wherein said bellows chamber comprises a fixed volume surrounding said bellows element, and further comprising means responsive to said pressure signal from said one output port of said flip flop circuit for charging said bellows chamber with oxygen to collapse said bellows and discharge the air therein through said outlet valve means;

said bellows element having a weight mountedtherein for causing its expansion upon depressurization of said bellows chamber; and further comprising conduit means interconnecting said bellows chamber and said inlet valve means wherein said oxygen charged into said bellows chamber escapes through said inlet valve for selective coupling through said mixing valve means to said expanding bellows element.

4. A fluidically controlled patient ventilator apparatus as set forth in claim 1 wherein said flip flop circuit has a second output port for generating a pressure signal while said flip flop is switched into its second stable state defining an exhalation period of the apparatus,

and wherein said first and second timing means comprise respective first and second fluidic logic switching circuits, first and second sealed cannisters, and first and second pressurized bellows members disposed within said sealed cannisters, said first switching circuit having output port means coupled for actuation by the pressure signal from said second output port of said flip flop circuit to charge a regulated quantity of air into said first cannister, and said second switching circuit having output pot means coupled for actuation by the pressure signal of said first output port of said flip flop circuit to charge said second cannister, wherein said charging of said cannisters causes the bellows members therein to collapse, and first and second sensing means for generating said timing means output signals in response to said collapse of said respective bellows after a predetermined air charging time of said cannisters, said sensing means being coupled to said opposed input ports of said flip flop circuits.

5. A fluidically controlled patient ventilator apparatus as set forth in claim 4 wherein said first and second sensing means are movably mounted, and wherein movement thereof changes said predetermined air charging times at which said output signals are generated, and further comprising a rotatable shaft having a pair of cams mounted thereon in a spaced relation for engaging said first and second sensing means, whereby rotation of said shaft and cams moves said sensing means and changes the timing periods of said first and second timing means.

6. A fluidically controlled patient ventilator apparatus as set forth in claim 5 further comprising an adjustable by-pass valve connected to change the charging time of said first cannister for independently adjusting the timing period of said first timing means.

7. A fluidically controlled patient ventilator apparatus as set forth in claim 6 further comprising first and second dump valve means mounted respectively on said first and second cannisters for depressurizing said cannisters in response to input signals received respectively from said second output port and said one output port of said flip flop circuit.

8. A fluidically controlled patient ventilator apparatus as set forth in claim 1 wherein said trigger circuit and said pressure limit circuit are constructed identically and comprise three proportional amplifiers con nected in series, and three fluidic flip flops connected in series with each other and in series with an output of said three fluidic amplifiers, and wherein said trigger circuit further comprises means for connecting inputs of one of said three fluidic amplifiers to a pressure source for adjusting the sensitivity thereof, and for connecting inputs of another one of said fluidic amplifiers to a positive end expiratory pressure signal and to said patient breathing hose.

9. A fluidically controlled patient ventilator apparatus as set forth in claim 1 further comprising a positive end expiratory pressure circuit having an output coupled to an input port of said patient trigger circuit for providing a bias signal thereto, said end expiratory pressure circuit including a fluidic capacitance having an output port coupled as said input to said trigger circuit; an adjustable offset pressure valve having an output coupled as an input to said fluidic capacitance; a pressure actuated gate valve having an output coupled to the input of said offset valve, having an input coupled to a source of positive end expiratory pressure sinals, and having a gate'input coupled for actuation by said flip flop circuit during said inspiratory period.

10. A fluidically controlled patient ventilator apparatus as set forth in claim 1 further comprising first and second manually operable pressure switches connected respectively to said opposed inputs of said flip flop for switching said flip flop from one of its stable states to its other stable state, and first, second and third indicator displaymeans coupled respectively to the outputs of said patient trigger circuit, said pressure limit circuit, and said first timing means for indicating the presence of signals at the outputs thereof.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3669108 *Oct 20, 1969Jun 13, 1972Veriflo CorpVentilator
US3730180 *Oct 21, 1970May 1, 1973Mine Safety Appliances CoPneumatically operated ventilator
US3754550 *Sep 15, 1970Aug 28, 1973Pye LtdCyclically operated medical respirators
US3756229 *Dec 14, 1970Sep 4, 1973Veriflo CorpVentilator
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4003377 *Aug 21, 1975Jan 18, 1977Sandoz, Inc.Patient ventilator
US4057059 *Jul 29, 1975Nov 8, 1977Oklahoma State UniversityIntermittent positive pressure breathing device
US4060078 *Aug 18, 1975Nov 29, 1977Bird F MVentilator and method
US4098272 *Sep 25, 1975Jul 4, 1978Bio-Med Devices Inc.Respirator
US4141356 *Nov 18, 1977Feb 27, 1979Bourns, Inc.Respirator system and method
US4155357 *Feb 27, 1978May 22, 1979Sandoz, Inc.Patient ventilator disconnect alarm
US4197843 *Apr 3, 1978Apr 15, 1980Minnesota Mining And Manufacturing CompanyVolume limiting ventilator
US4452242 *Jun 23, 1982Jun 5, 1984Dragerwerk AktiengesellschaftRespirator for use in pressure chambers
US4459982 *Sep 13, 1982Jul 17, 1984Bear Medical Systems, Inc.Servo-controlled demand regulator for respiratory ventilator
US4702240 *Jul 22, 1986Oct 27, 1987Bear Medical Systems, Inc.Demand-responsive gas blending system for medical ventilator
US4931285 *Apr 28, 1988Jun 5, 1990Alza CorporationAqueous based pharmaceutical coating composition for dosage forms
US5086767 *Sep 26, 1990Feb 11, 1992Canadian Aging & Rehabilitation Product Development CorporationVentilator for assisting the breathing of a patient
US5111809 *Dec 1, 1988May 12, 1992Avstar Aerospace CorporationBreathing system
US5411745 *May 25, 1994May 2, 1995Euro-Celtique, S.A.Powder layer beads for sustained release analgesics
US5564416 *Sep 30, 1994Oct 15, 1996Pneupac LimitedVentilators for promoting lung function
US5879705 *Apr 18, 1997Mar 9, 1999Euro-Celtique S.A.Analgesics for administering twice a day
US6068855 *Nov 3, 1995May 30, 2000Euro-Celtique S. A.Mechanically working a mixture of a drug and a hydrophobic and/or hydrophilic fusible carrier in a high speed mixer so as to form an agglomerates, extruding the agglomerate to form an extrudate
US6077533 *Jan 12, 1998Jun 20, 2000Purdue Pharma L.P.Powder-layered oral dosage forms
US6103261 *Jan 6, 1999Aug 15, 2000Purdue Pharma LpOpioid formulations having extended controlled release
US6143322 *Apr 8, 1997Nov 7, 2000Purdue Pharma L.P.Method of treating humans with opioid formulations having extended controlled release
US6143328 *Mar 8, 1999Nov 7, 2000Euro-Celtique, S.A.Sustained release compositions and a method of preparing pharmaceutical compositions
US6221396Jul 7, 1999Apr 24, 2001Development Center For BiotechnologyOral cisapride dosage forms with an extended duration
US6270787Dec 22, 1998Aug 7, 2001Alza CorporationOsmotic delivery system with membrane plug retention mechanism
US6283953Dec 22, 1998Sep 4, 2001Alza CorporationOsmotic drug delivery monitoring system and method
US6733783Oct 30, 2001May 11, 2004Euro-Celtique S.A.Controlled release hydrocodone formulations
US6806294Apr 23, 2002Oct 19, 2004Euro-Celtique S.A.Formulated for sustained (rapid or delayed) release of tramadol (hydrochloride); uniformity
US6899887May 17, 2001May 31, 2005Micron Technology, Inc.Controlling supply; insert capsules
US6976981May 17, 2001Dec 20, 2005Alza CorporationOsmotic delivery system with membrane plug retention mechanism
US7172767Oct 27, 2003Feb 6, 2007Purdue Pharma L.P.Opioid agonist / antagonist combinations
US7267120Aug 19, 2002Sep 11, 2007Allegiance CorporationSmall volume nebulizer
US7384653Sep 23, 2004Jun 10, 2008Purdue Pharma L.P.Oral dosage form comprising a therapeutic agent and an adverse-effect agent
US7387123Nov 30, 2001Jun 17, 2008Viasys Manufacturing, Inc.Gas identification system and volumetrically correct gas delivery system
US7419686Dec 26, 2006Sep 2, 2008Purdue Pharma L.P.For preventing oral abuse of an oral opioid formulation; provides a negative, "aversive" experience when a large amount of the opioid, e.g., about 2-3 times the usually prescribed dose, is taken by or administered to a physically dependent subject
US7514100Sep 11, 2003Apr 7, 2009Purdue Pharma L.P.Controlled release hydrocodone formulations
US7682633Mar 6, 2009Mar 23, 2010Alpharma Pharmaceuticals, LlcMultilayer pellets containing water-soluble core, antagonist layer comprising naltrexone HCl coating, cationic sequestering polymer layer, agonist layer comprising morphine sulfate, and osmotic pressure regulating agent layer comprising sodium chloride
US7682634Mar 6, 2009Mar 23, 2010Alpharma Pharmaceuticals, LlcMultilayer pellets containing water-soluble core, antagonist layer comprising naltrexone HCl coating, cationic sequestering polymer layer, agonist layer comprising morphine sulfate, and osmotic pressure regulating agent layer comprising sodium chloride
US7740881Jul 24, 2000Jun 22, 2010Purdue Pharma LpMethod of treating humans with opioid formulations having extended controlled release
US7749542Jul 28, 2008Jul 6, 2010Purdue Pharma LpFor preventing oral abuse of an oral opioid formulation; provides a negative, "aversive" experience when a large amount of the opioid, e.g., about 2-3 times the usually prescribed dose, is taken by or administered to a physically dependent subject
US7914818Aug 6, 2002Mar 29, 2011Purdue Pharma L.P.Prevent drug abruse; side effect reduction; administering mixture of opioid antagonist, releasable form and sequestering agent
US7943174Jun 9, 2004May 17, 2011Purdue Pharma L.P.Extended duration pain relief with rapid onset; twice daily dosage; tablets, capsules
US8105631May 24, 2010Jan 31, 2012Purdue Pharma L.P.Opioid agonist/antagonist combinations
US8142811Feb 17, 2009Mar 27, 2012Purdue Pharma L.P.Controlled release hydrocodone formulations
US8158156Jun 19, 2007Apr 17, 2012Alpharma Pharmaceuticals, LlcAbuse-deterrent multi-layer pharmaceutical composition comprising an opioid antagonist and an opioid agonist
US8231898Oct 28, 2010Jul 31, 2012Purdue Pharma L.P.Controlled release hydrocodone formulations
US8231901Mar 8, 2011Jul 31, 2012Purdue Pharma L.P.Opioid agonist formulations with releasable and sequestered antagonist
US8337888Jan 12, 2012Dec 25, 2012Purdue Pharma L.P.Pharmaceutical formulation containing gelling agent
US8354124Feb 3, 2012Jan 15, 2013Durect CorporationOral drug delivery system
US8361499Jun 28, 2012Jan 29, 2013Purdue Pharma L.P.Controlled release hydrocodone formulations
US8389007Oct 30, 2008Mar 5, 2013Purdue Pharma L.P.Pharmaceutical composition containing gelling agent
US8420120Feb 3, 2012Apr 16, 2013Durect CorporationOral drug delivery system
US8465774Feb 13, 2006Jun 18, 2013Purdue Pharma L.P.Sequestered antagonist formulations
US8518443Jun 28, 2012Aug 27, 2013Purdue Pharma, L.P.Opioid agonist formulations with releasable and sequestered antagonist
US8518925Jun 8, 2005Aug 27, 2013Euro-Celtique S.A.Opioids for the treatment of the chronic obstructive pulmonary disease (COPD)
US8529948May 30, 2013Sep 10, 2013Purdue Pharma L.P.Pharmaceutical formulation containing gelling agent
US8551520Dec 20, 2012Oct 8, 2013Purdue Pharma L.P.Controlled release hydrocodone
US8609683May 30, 2013Dec 17, 2013Purdue Pharma L.P.Pharmaceutical formulation containing gelling agent
US8623418Dec 16, 2008Jan 7, 2014Alpharma Pharmaceuticals LlcPharmaceutical composition
US8647667May 24, 2013Feb 11, 2014Purdue Pharma, L.P.Controlled release hydrocodone formulations
US8673355Dec 27, 2011Mar 18, 2014Purdue Pharma L.P.Opioid agonist/antagonist combinations
US8685443Apr 23, 2010Apr 1, 2014Alpharma Pharmaceuticals LlcSequestering subunit and related compositions and methods
US8685444Apr 23, 2010Apr 1, 2014Alpharma Pharmaceuticals LlcSequestering subunit and related compositions and methods
US8715721May 23, 2013May 6, 2014Purdue Pharma L.P.Controlled release hydrocodone
US8758825May 22, 2013Jun 24, 2014Purdue Pharma L.P.Sequestered antagonist formulations
EP0916357A2 *Nov 4, 1998May 19, 1999Instrumentarium CorporationMethod and arrangement in connection with ventilator
EP1685839A1Dec 22, 1998Aug 2, 2006Euro-Celtique S.A.Pharmaceutical oral dosage form comprising a combination of an opioid agonist and opioid antagonist
EP1894562A1Aug 15, 2003Mar 5, 2008Euro-Celtique S.A.Pharmaceutical compositions
EP1935421A1Feb 8, 2001Jun 25, 2008Euro-Celtique S.A.Controlled-release compositions containing opioid agonist and antagonist
EP1961421A1Jun 8, 2005Aug 27, 2008Euro-Celtique S.A.Opioids for the treatment of the chronic obstructive pulmonary disease (COPD)
EP2092936A2Feb 8, 2001Aug 26, 2009Euro-Celtique S.A.Tamper-resistant oral opioid agonist formulations
EP2255808A2Jun 1, 2005Dec 1, 2010Euro-Celtique S.A.Opioids for the treatment of the restlessness of the lower limbs
EP2266564A1Dec 22, 1998Dec 29, 2010Euro-Celtique S.A.Pharmaceutical oral dosage form comprising a combination of an opioid agonist and an opioid antagonist
EP2269587A1Oct 30, 2000Jan 5, 2011Euro-Celtique S.A.Controlled release hydrocodone formulations
EP2277521A1Feb 8, 2001Jan 26, 2011Euro-Celtique S.A.Tamper-resitant oral opioid agonist formulations
EP2283842A1Feb 8, 2001Feb 16, 2011Euro-Celtique S.A.Tamper-resitant oral opioid agonist formulations
EP2295043A1Oct 30, 2000Mar 16, 2011Euro-Celtique S.A.Controlled release hydrocodone formulations
EP2298303A1Sep 9, 2004Mar 23, 2011Euro-Celtique S.A.Pharmaceutical combinations of hydrocodone and naltrexone
EP2339328A2Dec 24, 2003Jun 29, 2011Transform Pharmaceuticals, Inc.Pharmaceutical co-crystal compositions of celecoxib
EP2422772A2Sep 22, 2003Feb 29, 2012Alpharma, Inc.Sequestering subunit and related compositions and methods
EP2422773A2Sep 22, 2003Feb 29, 2012Alpharma, Inc.Sequestering subunit and related compositions and methods
EP2422775A2Sep 22, 2003Feb 29, 2012Alpharma, Inc.Sequestering subunit and related compositions and methods
EP2517710A1Feb 8, 2001Oct 31, 2012Euro-Celtique S.A.Tamper-resistant oral opioid agonist formulations
EP2526932A1Jun 19, 2007Nov 28, 2012Alpharma Pharmaceuticals, LLCPharmaceutical composition
WO2005060968A1Dec 8, 2004Jul 7, 2005Sepracor IncCombination of a sedative and a neurotransmitter modulator, and methods for improving sleep quality and treating depression
Classifications
U.S. Classification128/204.24, 128/205.11, 128/205.15
International ClassificationA61H31/00, A61M16/00, A61H31/02
Cooperative ClassificationA61M2016/0081, A61M2016/0009, A61M16/0075, A61M16/00, A61M2205/42
European ClassificationA61M16/00
Legal Events
DateCodeEventDescription
May 26, 1981AS02Assignment of assignor's interest
Owner name: HOSPAL MEDICAL CORPORATION
Owner name: MONAGHAN MEDICAL CORPORATION, FRANKLIN BUILDING, R
Effective date: 19810511
May 26, 1981ASAssignment
Owner name: MONAGHAN MEDICAL CORPORATION, FRANKLIN BUILDING, R
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:HOSPAL MEDICAL CORPORATION;REEL/FRAME:003854/0064
Effective date: 19810511