Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3917396 A
Publication typeGrant
Publication dateNov 4, 1975
Filing dateFeb 4, 1974
Priority dateDec 14, 1970
Publication numberUS 3917396 A, US 3917396A, US-A-3917396, US3917396 A, US3917396A
InventorsJames M Donohue, Daniel L Mueller
Original AssigneeXerox Corp
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Control system
US 3917396 A
Abstract
A control system for controlling the processing steps of an electrostatic printing machine including means for generating a series train of clock pulses, means for generating a series train of start or reset pulses and control logic responsive to the reset and clock pulses to generate a plurality of timed control signals for implementing certain of the processing steps. A transfer roller, the linear surface speed of which is synchronized with the moving speed of the photoreceptor, may be used to generate the reset pulses for the successive cycle of processing operation. The intervals between the successive reset pulses, called pitches, are in effect marked by the clock pulses, some of which are by used to generate the timed control signals.
Images(5)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

i United States Patent [191 'Donohue et al.

[ CONTROL SYSTEM [75] Inventors: James M. Donohue, Rochester;

Daniel L. Mueller, Fairport, both of NY.

[73] Assignee: Xerox Corporation, Stamford,

Conn.

[22] Filed: Feb. 4, 1974 [21] Appl. N0.: 438,972

Related US. Application Data [63] Continuation-impart of Ser. No. 244,734, April 12, 1972, Pat. No. 3,796,486, which is a continuation of Ser. No. 97,745, Dec. 14, 1970.

[52] US. Cl. 355/14 [51] Int. Cl. G03G 15/00 [58] Field of Search .L 355/14 [56] References Cited UNITED STATES PATENTS 3,602,589 8/1971 Dietz 355/14 Nov. 4, 1975 Primary Examiner-John M. Horan [57] ABSTRACT A control system for controlling the processing steps of an electrostatic printing machine including means for generating a series train of clock pulses, means for generating a series train of start or reset pulses and control logic responsive to the reset and clock pulses to generate a plurality of timed control signals for implementing certain of the processing steps. A transfer roller, the linear surface speed of which is synchronized with the moving speed of the photoreceptor, may be used to generate the reset pulses for the successive cycle of processing operation. The intervals between the successive reset pulses, called pitches, are in effect marked by the clock pulses, some of which are by used to generate the timed control signals.

17 Claims, 5 Drawing Figures s/ PRINT 62 STOP COUNT ASYN- 64 LOW PAPER 4 s5 FUSER 4 CHRO.

5g CONT m. PLATEN 4 JAM LOGlC 42 COUNTER P I TO TIMED E PROCESS LOG M E. ATR'X 1 jIMPLEMENTING MEANS BILLING METER Sheet 1 of5 US. Patent Nov. 4, 1975 Sheet 3 of 5 3,917,396

US. Patent Nov. 4, 1975 Sheet 4 of5 3,917,396

mm @001 eon WEE E581 SE u Sh.

U.S. Patent Nov. 4, 1975 mZON V QR

US. Patent Nov. 4, 1975 Sheet 5 of5 3,917,396

+ STATION A g q STATION g STATION E ,ks o I J 7 STATION CONTROL SYSTEM This is a continuation-in-part application of a copending application, Ser. No; 244,734, filed on Apr. 12,1972, which was allowed in July' 1973, and was granted on Mar. 12, 1974 as US. Pat. No. 3,796,486. The copending application was; in turn, a continuation application, Ser. No. 97,745, filed on Dec. 14, 1970.

This invention relates to a control system for processing machines and, particularly, to an improved control system for electrostatic reproducing machines.

Electrostatic printing machines of the endless belt type employ various processing stations that uniformly charge, expose, develop, transfer, clean, etc. during any cycle of copying. For high speed operation of these machines, it becomes very important that there be a proper base for the timing sequence of operation of the processing stations in order to maintain proper registration of the processing functions relative to images. In controlling the operation ofthe machine, there must be provisions for efficient and reliable movement of sheets of copy paper along the paper path of the machine and in particular for timely presentation of the sheets in succession to the transfer station of the machine in timed sequence relative to the production of electrostatic latent images for the proper orientation of each sheet of the developed image received at the transfer station, and for assuring timely removal of each sheet at a precise time in order to effect continued movement of each sheet for further processing thereof, and for reliable means to detect jam conditions.

Likewise, there must be provisions for efficient and reliable movement of photoconductor belt or medium past various electrostatographic processing stations such as charging, exposing, developing and transferring stations and controlling the actuation of certain of these stations in a timely manner so that when a developed image is presented for transfer to the paper sheet, it is properly registered.

Therefore, the principal object of the present invention is to provide an improved control means for processing machines in general and, in particular, provide an improved control means for electrostatographic re producing machines.

Another object of the present invention is to maintain proper timing of the operation of the electrostatographic processing stations in the machine so as to effect maximum efficiency in the operation of the machines, especially of the type designed for high speed reproduction.

Yet another object of the present invention is to improve the throughput capacity of the machine.

Still another object of the present invention is to render the machine more versatile, flexible and reliable.

In accordance with the present invention, the forego ing objects of the invention are attained by a control system having means for providing a series train of clock pulses, means for generating reset or start pulses in succesion for each of the processing cycles, and logic means for generating a plurality of timed control signals derived from the start and clock pulses for enabling various processing stations to implement the machine processing steps timely.

In accordance with a feature of the present invention, the timed sequence of control signals for operating certain processing stations is based upon start or reset pulses keyed to the displacement or position of the photoreceptor belt or medium which is sensed by a speed responsiveelement preferably in the form of the transfer roller used for transferring the image to the copy sheet.

According to yet another feature of the invention, the control system is adapted to generate more than one cycle of enabling pulses to process more than one copying process in the machine at any given moment. The foregoing and other objects and features will become apparent from the following detailed description of illustrative embodiments of the present invention in conjunction with the accompanying drawings, in which:

FIG. 1 shows a schematic sectional view of an electrostatic reproduction machine embodying the principles of the invention;

FIG. 2 shows an illustrative example of a control system according to the present invention;

FIG. 3 shows a schematic view similar to the one shown in FIG. 1 simplified to illustrate control principles of the present invention;

FIG. 4 shows graphic illustrations of various aspects of the principles involved in the control system according to the present invention; and

FIG. 5 shows a schematic illustration of a bottling process in which the control system of the present invention may be utilized as illustrative of the broad scope of applicability of the present invention.

DETAILED DESCRIPTION Basic principles and features of the control system according to the present invention will be described principally in terms of operating a xerographic machine, such as the one schematically illustrated in FIG. 1. But is is to be understood clearly from the outset that the nature and the scope of the present invention is not intended to be limited to the operation of xerographic copying machines. It is not only applicable to other types of reproducing machines but also more broadly to any types of processing machines or systems requiring control means. A xerographic machine is used merely for the purpose of facilitating ones understanding of the principles and features of the present invention and is not intended to limit the scope of the present invention to the xerographic copier/duplicator technology.

Now for a general understanding of an electrostatic processing system, in which the invention may be incorporated, reference is had to FIG. 1 in which various components of a xerographic reproducing system are schematically illustrated. As in all xerographic reproducing systems of the type illustrated, a light image of an original to be reproduced is projected onto the sensitized surface of a xerographic plate to form an electrostatic latent image thereon. Thereafter, the latent image is developed with an oppositely charged developing material comprising carrier beads and smaller toner particles triboelectrically adhering thereto to form a xerographic powder image, corresponding to the latent image on the plate surface. The powder image is then electrostatically transferred to a support surface to which it may be fixed by a fusing device whereby the powder image is caused permanently to adhere to the support surface.

The electrostatically attractable developing material commonly used in magnetic brush developing apparatus comprises a pigmented resinous powder referred to here as toner and a carrier of larger granular beads formed with steel cores coated with a material removed in the triboelectric series from the toner so that a triboelectric charge is generated between the toner powder and the granular carrier. The magnetizable carrier also provides mechanical control for the formation of brush bristles by virtue of magnetic fields so that the toner can be readily handled and brought into contact with the exposed xerographic surface. The toner is then attracted to the electrostatic latent image from the carrier bristles to produce a-visible powder image on an insulating surface.

In the illustrated machine, an original D to be copied is placed upon a transparent support platen P fixedly arranged in an illumination assembly generally indicated by the reference numeral 11. While upon the platen, an illumination system flashes light rays upon the original thereby producing image rays corresponding to the informational areas on the original. The image rays are projected by means of an optical system 11 to an exposure station A for exposing the photosensitive surface of a moving Xerographic plate in the form of a flexible photoconductive belt 12. In moving in the direction indicated by the arrow, prior to reaching the exposure station A, that portion of the belt being exposed would have been uniformly charged by a corona device 13 located at a belt run extending between belt supporting rollers 14 and 15. The exposure station extends between the roller 14 and a third support roller 16, and the belt run between these rollers is encompassed entirely by the exposure station for minimizing the space needed for the belt and its supporting rollers.

The exposure of the belt surface to the light image discharges the photoconductive layer in the areas struck by light, whereby there remains on the belt a latent electrostatic image in image configuration corresponding to the light image projected from the original on the supporting platen. As the belt surface continues its movement, the electrostatic image passes around the roller 16 and through a developing station B located at a third run of the belt and in which there is positioned a developing apparatus generally indicated by the reference numeral 17. Suitable means (not shown) such as, vacuum panels or tensioning means, may be utilized for maintaining the belt flat in all three belt runs, and additionally the belt run related to the development zone B is maintained at an inclined plane. The developing apparatus 17 comprises a plurality of magnetic brushes which carry developing material to the adjacent surface of the upwardly moving inclined photoconductive belt 12 in order to provide development of the electrostatic image. i As the developing material is applied to the xerographic belt, toner particles in the development material are attracted electrostatically to the belt surface to form powder images. As toner powder images are formed, additional toner particles are supplied to the developing'material in proportion to the amount of toner deposited on the belt during xerographic processing. For this purpose, a toner dispenser generally indicated by reference numeral 18 is used to accurately meter toner, upon demand, to the developer material in the developing apparatus 17.

The developed electrostatic image is transported by the belt 12 to a transfer station C located at a point of tangency on the belt as it moves around the roller whereat a sheet of copy paper is moved at a speed in synchronism with thevmoving belt in order to accomplish transfer of the developer image. There is provided at this station a transferroller 19 which is arranged on the frame of the. machine for contacting the nontransfer side of each sheet of copy paper as the same is brought into transfer engagement with the belt 12. The roller 19 is electrically biased with sufficient voltage so that a developed image on the belt 12 may be electrostatically transferred to the adjacent side of a sheet of paper S,'as the same is brought into contact therewith, and also for tacking the same on the roller 19.

A stripping finger or air puffing device 21 utilized for stripping the sheet from the roller is provided to permit pickup and continued movement of the sheet by a vacuum conveying system 22. Each sheet of paper travels only a short distance before being stripped therefrom by the stripper 21. Devices such as gripper bars and release elements mounted on the roller 19 may be utilized instead of the stripper 21 for gripping the leading edge of each sheet of copy paper to ensure proper positioning thereon and to effect the release of a copy sheet at a precise time so as to strip the same for pickup by a conveying system. The timing of the release of each edge relative to the sheet separation from the supply stack of sheets may be for the same period of time.

There is also provided a suitable sheet transport mechanism adapted to transport sheets of paper seriatim from a paper handling mechanism generally indicated by the reference numeral 23 to the developed image on the belt being carried around the roller 15. The developed image on the belt 12, presented at the transfer station C in timed sequence and in registration with the arrival of a sheet of paper, is transferred to the sheet. The sheet is then stripped and forwarded toward the fusing station. Since the belt 12 may slip on its sup porting rollers during high speed use, or the belt may have an undesirable transverse seam, it is preferred that the registration be directly related to the belt. This is accomplished by utilizing the transfer roller 19 which is directly applied to the belt and moves at all times directly therewith. A resetting mechanism is operatively coupled with the roller so that it resets for each revolu- .tion of theroller. The diameter of the roller 19 may be dimensioned so as to be slightly greater than the width of a sheet of paper being applied thereto in order to provide for the sheet width and desired spacing between sheets. The application of each sheet to the roller at precisely the same position for all sheets, may be utilized as the point or start, reset, or zero time for timing of each copying cycle. If another diameter is utilized for the roller 19, the circumference must be factored into image length so that reset is accomplished in the space equal to the width of a sheet of copy paper plus a little spacing distance between sheets. Control (FIG. 1: L; FIG. 2), as will be explained more fully below in generating flashing signals so the imaging means 11 form latent images on the belt at the imaging station A in successive sequence in timed relation to the start or reset pulses. Since the photoreceptor belt 12 is continuously being'exposed by flasing imaging rays, it may contain a number of electrostatic latent images, for example, five images between the exposure and transfer stations.

Similarly, the paper path between the paper feeding apparatus 23 and the transfer station may contain two or more sheets. Any number of process cycles are put into control L and register timing means operably cou-- reset time, the stripper 21 may be activated to detack the leading edge of a sheet of paper from the roller 19, this sheet having been previously separated from the paper supply stack and advanced to the transfer station. The next operation in time may involve a flash exposure of the belt at the exposure station. The devel- Oped image being transferred commencing at the zero time of the present cycle may have had its exposure some five timing cycles previously. As the present timing cycle continues, the stripping device 21 may be activated again so as to strip the leading edge of another sheet away from the roller 19. As this roller continues to rotate it provides succession of reset pulses to the timing device T.

After the sheet is stripped from the belt 12, it is con- Veyed by the conveying system 22 into a fuser assembly generally indicated by the reference numeral 24 wherein the developed and transferred xerographic powder image on the sheet material is permanently affixed thereto. After fusing, the finished copy is discharged from the apparatus at a suitable point for collection externally of the apparatus.

The remaining toner particles remaining as residue on the developed images, background particles and those particles otherwise not transferred are carried by the belt 12 to a cleaning apparatus 25 positioned on the run of the belt between the rollers 14, adjacent the charging device 13. THe cleaning device comprises a rotating brush, a corotron for neutralizing charges remaining on the particles and discharge lamp for dis charging any remaining electrostatic charges on the belt. It will be appreciated that the run of the belt adjacent the cleaning device is at an inclined angle relative to the horizontal as this run leaves the uppermost roller 15 where a developed image is transferred. Such an arrangement maintains the relatively straight line of copy sheet movement which operatively cooperates with the belt 12 at its highest point. The belt is then,uniformly charged again at the charging station 13 for subsequent operations of exposure, development, etc. Now the control system for the electrostatic printing machine described above in conjunction with FIG. 1 will be described in detail in conjunction with FIGS. 2, 3 and 4. But before the system is described, it will be helpful to review briefly prior art control systems for processing machines such as xerographic reproducing machines. Heretofore, the control systems have relied on mechanical or electromechanical control means largely in running its operation. With the advances in electronic technology, more recently, there has been a trend in the industry to use more of electronic control logic circuitry in controlling the machine operations. However, so far the conversion process has tended to be mere substitution of mechanical or electromechanical elem'ehts with functionally corresponding electronic logic elements. Thus, for example, typically, in the older machines for deriving timing signals of the operation of various process steps such as charging, imaging, developing, transferring and fusing, etc., a bank of cams integrally mounted on the drive shaft of the machine apertured discs axially mounted on the shaft that chops a light source and photodetecting means that detects the chopped light were used. Thus, according to the prior art, in deriving the control signals, the control system relied on the machine drive mechanism and slaved the timing of the control signals to the mechanical limitations-ofthe drive mechanism itself and its rotational speed. This is adequate torun a simple processing system with asingleprocess path requiring a drive motor and relatively'simple set of processing steps. But where morethan one process path is involved and/or where any number of process steps must be controlled, the prior art scheme has become inadequate unwieldly and unreliable. The inadequacy gets all the more serious where some of the process paths or parts thereof are asynchronous. The inadequacy gets quite acute when the throughput capacity is increased significantly and some of the process steps take different time durations than others and some steps require precise timing whereas others do not, as is the case with high speed copier/duplicator machines, an example of which is described above in conjunction with FIG. 1.

Now a control system that avoids or overcomes much of the above mentioned and other shortcomings of the prior art will be described with reference to an illustrative embodiment shown in FIG. 2. As illustrated, the control system may comprise two main functional setions; an asynchronous section 41 and a synchronous section 42. The asynchronous section is designed to respond to various input signals of the type that will be described and generate control signals necessary to start, run and shut down the machine process. The synchronous logic section 42 is designed to generate control signals which must be precisely timed so that they implement the processing steps that require precise timing.

Referring to the first section, it includes an asynchronous or untimed control logic 41 of'a suitable conventional design which provides the control signals necessary for the machine to start when a set of predetermined conditions are met or in proper states, shuts the machine down when an undesired condition is encountered or when a programmer 43 that programs copy runs (i.e., number of copies, mode of copy collation, etc.) indicates that the count of the copies made and indicated by a counter42 equals the desired number of copies dialed in or programmed by a copy number selector 45.

The logic 41 is of a design that also provides control signals that are necessary to condition the machine so that the paper can be fed, transported, processed and that are necessary to condition certain of the xerographic processing stations so that they are ready to operate.

The initial conditioning steps may also include housekeeping chores such as getting the fusing station heated up to an operating temperature, checking whether or not there is enough paper supply, getting the paper station (FIG. 1, 46) ready to feed the paper sheets into the paper path, etc. These initializing and housekeeping signals are provided via suitable output path 47 to the corresponding processing or implementing stations (not shown).

When the initializing conditions are met, the asynchronous or untimedjcontrol section 41 initiates the copy run when the print button 61 is pushed. The intitializing conditions may be a set of inputs signifying readiness of the machine such as the fact that the paper is not at alow supply condition (64), that the machine is in the standby mode, that the fuser is up to the temperature (65), that the platen cover is down to a proper position (68), and 'that the jamlconditioh -.(80 fdonot exist. The asynchronous control-logic section 41, operates asynchronously withthe xero'graphiclprocessing steps because. the aforementioned types of initializing conditions or housekeeping 'chores signifying the readi ness of the machine, need notbe in synchronism with the machine operation, Hencethej'logic'4l need not be synchronous with the rest of machine operation. It could be synchronous with the restof: the machine process, if the particular processing system or machine is of such a nature and the initializing and housekeeping chores must be performed synchronously with the processsteps.

The asynchronous control section 41 produces the necessary control signals to start the machine and run it with the help of timed signals from the controlledlogic section 42. It also generates a stop print signal from the programmer 43 when the copy run is complete at which point it initiates the shutdowncycle. The shutdown cycle entails the steps of processing out. the remaining images in the paper path and the xerographicprocessing path. After this the control 41 reverts the machine to the standby mode.

In response to the emergency conditions, such as, low paper supply or platen disengagement, logic 41 initiates the shutdown cycle. The asynchronous logic 4.1 may be of such design that, in the presence of a, jam signal (80),. it will shut down the affected portion of the machine immediately in order to prevent damage to the machine by the jammed sheetof paper. In the presence of, or in the condition that requires an immediate shutdown of the entire machine, it will bring the entire machine to a hard or abrupt stop. Thus, in the case of a jam occurring as a copy sheet is about to reach the fuser station 24 (FIG. 1), it will stop the machine immediately to prevent feeding of the sheet into the fusing'station.

' Suitable interlocking means 87 may be operatively connected in series with a power on/off switch. 88 as a safety measure. v a

The second section includes synchronous or timed logicj42 having a shiftregister 49,- a counter 51, and a logic matrix 53.0peratively connected to provide a plurality of precisely timed control signals for actuating or implementing the various machine processing steps that require precisely timed operation .in their successive cycles of operation.

Referring to FIG. 1, the events or processing stepsthat require the precise timing in the process are, such as, the flashingof the light to form an electrostatic image on the imageing station A and transferring the image to the copy sheet S at the transferring station C by the transfer roller 19, in the xerographic process. 'In the paper path, the paper sheet must be registered or presented, that is, it must arrive at the transferroller at a right moment so that the image being transferred is signals that require .precision. timing. 4

Referring to FIG. 2,- one train of pulses is derived from a high speed clock pulse generator 50 and the other; from a pulse generator'52 which come at a slower properly centered in the copy sheet. Other signals that I,

may require precise timing may be the monitoring functions, such as, jam detection signals along the paper path so that they are monitored at the right time in the process cycles. 1 e I r I The control system described .broadlyabove is similar in the functional sense to thoseof the prior. artmachine in that it provides a plurality of enablingcontrol signals for implementing their known processirigsteps. However, the present-control system is :uniquely diff'ercut in the manner in which-the implementation't ake place. Generally, stated the system utilizes two trains of rate. Thefirst or higherspeed clock may be derived from any suitable means and. may be relatedv to the drive speed of. the machinemain drive such as the motor M that drivesthe..photoconductor belt 12. The slowerspeed pulse generator 52 may be derived from the timingpulse generator .(FIGJ, T) provided by the roller 19 or a suitable registering means that registers 1 the arrival ofthe lead edge of the paper sheet at a point near the transfer roll 19. a g- 1 While the pulsegenerating means 50 and 52 maybe operatively associated with the machinedrive means or the paper transfer roller, as described above, they need not be so limited or tied down, as shall'be described in detail later. These two trains of pulsesare applied to the logic matrix-53 of the timed logic setion42 via the shift register 49 and the counter 51 respectively and the logic matrix 53, in response, generates the timed-control signals. Aswill be explained in detail hereinafter the timed logic section 42ikeeps track of the sheets and the images in progression in the paper-and photoconductor paths respectively from thetwo trains of pulses and generates the timed control signals and sends them out ,to their. corresponding process step implementing pulse generator 50 may also. be of a photodetecting arrangement of a suitable type that detects the chopped light by an apertured disc that may be mounted axially on thedrive shaft of the main motor M as the shaft ro- I tates. The clock pulses so derived is related to the speed of. the motor M that controls the speed of the photoconductor belt 12. But the clockgenerator 50need notbe coupled to the, drive shaft of the motor. It can be from any suitable source, such as aregular hertz pofwensupply line or even an independent crystal oxcillator. Theimportant thing to note is that the clock pulses generated by the clock 50 maintains its frequency'at a given rate and .maintains a certain fixed relationship 'to the speed of ing of which can be used asa key, start, or bench mark of each of the imaging process cycles. It is importantto.

note that the selectedevent isof such'a nature that it .can be used as a bench mark or a. start of each of the imaging process cycles. Thus, the imaging step or image transferring step in the xerographic process can be used as the reset or start signal since they are keyed tothe xcrographic steps. interrns oftiming. Hence, more specificallyfithe registration of the leadedge of the paper sheet at a point just prior to or at the point any suitof contact between the transfer roller 19 and photoconductor belt 12 may be used, because other xerographic processing steps in the photoconductor belt must be relatedback to this merging step.

In the alternative, the start or reset or registration pulses could be derived from the photoconductor belt 12 itself as, follows: the photoconductor may be provided with a number of equally spacedapertures along an edge thereof to correspond to the spacing of successive images. A photodetecting means TD may be positioned at a suitable location to detect a light beam as it is chopped by the travelling belt 12. This signal may be used as a train of the reset or start signals. Or the reference or the reset pulse may be derived from the timing of the exposure pulses at the imaging stations. These reset or start pulses so generated by the pulse generating means 52 are applied to the shift register 49. Note that each of the pulses represent and correspond to the successive images being formed and traversing through in the xerographic path.

Referring to the shift register, the first stage F l of the process shift register is made a part of the asynchronous logic section 41 and is not clocked by the reset pulses. When the asynchronous control logic decides that the conditions are right and that the machine processing steps can be initiated, it generates and provides an enabling signal in the form of logical 1 to the shift register F1. This sets the shift register 49 in condition to respond to the reset pulses coming from the reset pulse generator 52. In response, the shift register 49 shifts the pulses down to the right in succession in a well known manner. The progression of the logical 1 along the shift register represents the progression or the movement of the leading edges of the images past certain points in the xerographic process. The shift register 49, in turn, provides logical signals to the logic matrix 53 signifying the procession of the images in the xero graphic process path. The logic matrix is of a suitable design that-derives, from the output of the high speed counter 51 and the shift register 49, precisely timed control signals in succession and applies them to the implementing means via the output paths 91, 92, etc.

It is noted here in passing that most of the working components, such as the asynchronous control section 41, the shift register 49, the counter 51 and the logic matrix 53 may be made of digital integrated circuit logic or large scale integrated circuits'(LSI) presently available from any number of manufacturers. Use of such logic circuits offers decided advantages over the prior art mechanical or electromechanical or discrete logic elements from the standpoint of cost, reliability, versatility, power consumption, speed, size, etc.

The aforementioned control system will now be described from another viewpoint in order to highlight and focus on the timing/spatial relationship of the processing steps that recognizes and utilizes of such a relationship in evolving a control system that is superior over the prior art control systems in terms of its reliability, flexibility, cost, etc., or more generally in terms of any usual criteria measuring the quality of such a system.

The relationship will now be'described with reference to' FIGS. 3 and 4. Referring to FIG. 3, there is shown the electrostatic or xerographic processing machine of FIG. '1, stripped of most mechanical and other elements. but retaining the key elements which are necessary'to show the xerographic or phootoconductor and paper paths. FIG. 4 shows conceptual representation of the spatial and timing relationship of the xerographic path and paper path. It also gives a pictorial representation of clocks that illustrate the timing/spatial relationship.

In the xerographic process path, the photoconductor belt 12 is shown rotating counterclockwise at a uniform speed as it is driven by the motor M. The belt passes various processing stations, such as the exposure A, development stations B, the transfer C, charging l3 stations. The paper path is shown to include the paper feeding station 23, transfer station C and the fusing station 24.

In analyzing the processing steps in the paper path and the xerographic path, the following characteristics are found: Certain steps such as, the imaging, the image transferring and feedin ng of the paper at the transferring station are precisely timed. Also the monitoring steps such as the detection of the jam conditions along the paper path or detection of the undesired presence of the sheet on the selenium belt SOS (FIG. 4), are precisely timed during the machine process.

However, there are other events or process steps which have to take place in a certain sequence but which do not require precise timing. Thus, the developing of the image at the imaging station B, the charging of the photoconductor belt at the charging station 13 and the feeding of the paper at the feeding station 23, etc., need not be as'precisely timed as imaging, etc., though they must occur in a certain sequence.

Still another phenomena observed in the processing system is that the movement of the paper in the paper path need not be at the same speed as that of the photoconductor belt 12, except at the point where image is transferred. Notice than in the paper path, the travel of the paper need not be maintained at a uniform speed as the paper traverses its path. Thus, the paper may be brought up very speedily to the registration point. But at the registration point it must be fed into the transfer roller at the same rate as the rate at which the photoconductor belt travels. After the image transfer takes place and the paper leaves the roller, it may then travel at any speed to the fusing station 24 and so on. What is critical is that at the transfer station, the paper travels synchronously with the traveling speed of the image on the photoconductor belt 12.

FIG. 4 graphically represents the foregoing phenomena. Note that the xerographic path and paper path are subdivided into a uniformly spaced sections or pitches. The spatial sections relate to the timing of the images being processed. More specifically, for example, the xerographic path may be divided into a given number of zones, sections I, through VII The paper path may be analogously divided into seven zones, or sections 1,, through VII In the xerographic path thephysical distance tranversed by the image across the successive zones are the same because the belt 12 travels at a constant speed. But the physical spacing in the paper path do not correspond to the speed with which paper travels because the paper travels at different speeds in different zones along its path. In FIG. 4, the actual spacings or distances between the zones in the paper path is in effect shrunk or stretched to correspond to the corresponding photoconductor belt path zones to show their timing relationship. Because or the uniformity involved, the physical spacing or zones in the photoconductor path are used as the reference path in the present control system.

Now note that within each of the zones or sections certain processing steps occur. Thus, referring to FIGS. 3 and 4, in the xerographic path, the exposure takes place at the zone I the development takes place at the zone lll the cleaning takes place at the zone VI and charging at zone VII And, in the paper path, the paper is fed at the zone I,,, the paper is registered at the zone IV,,, the image is transferred at zone V,,, and the fusing takes place at zone VlI Now in terms of timing relationship, note that certain of these events must take place at a particular point and space in time in these zones, as the images are formed and travel with the photoconductor path, transferred to the paper and then travels along the paper path, as noted by the path IMPTH. In terms of timing relationship, note that the events or steps taking place in these zones take place concurrently.

Now in order to highlight this relationship, clocking signals are graphically represented by clocks for each zone in FIG. 4. These clocks may be imagined as a series of clock which clocks the events happening in the respective zones. They are however, set to the same time standard. The hour hand of these seven clocks move synchronously and they signify imaging cycles and hence, their advances to succeeding hours signify new image processing cycles. So when the machine is fully loaded, seven imaging processes or seven copying of processes occur in various stages concurrently at any given moment.

Now referring to each zone, specific events taking place within that zone may be analogized to the minute handle. For example, in zone I, the paper feed takes as the minute arm travels to about 30 angle in the paper path. Sometime later the image exposure takes place at the imaging station A in the xerographic process (or photoconductor) path. This takes place precisely, at a certain point in time, say, for example, as the minute arm travels past 180 position. Sometime later, for example 35 minute position or 310 travel later, a jam sensing or detection operation takes place. Now, in zone IV concurrently with zone I, the registration of the paper takes place at the 25 minute or the 150 position whereas the image transfer takes place, say, at minute position or 300 later. And so on, various events or steps take place concurrently in the seven zones shown.

Now note that sequence of events such as exposure, registration, image transfer, jam detection, and detection of the sheet on the selenium (SOS) take place at precisely timed positions and these steps are signified by the vertical arrows in FIG. 4. On the other hand, there are certain events such as development, cleaning, charging, paper feeding, fusing, etc., that need not be as precisely timed as the exposure or image transfer step and they are shown in broken horizontal lines.

The fore going spatial and timing relationship is utilized in the present control system illustrated in FIG. 2. The control system shown in FIG. 2 will be described again. But this time in the context of the aforementioned systems spatial and timing relationship.

Referring to FIGS. 1 and 2, the reset pulses are derived from the transfer roller 19 or from the paper registration means as stated before. Note that spacing of the reset pulses correspond to the spatial zones in the photoconductor path wherein the registration or transfer points are shown in zone V.

Now in FIG. 2, the flip flops Fl-F7 of the shift register 49 could be considered graduations, each representing a zone in FIG. 4 and analogous to foot markings in a ruler and the high speed pulses from the high speed clock pulse 50 may be analogized to the inch markings within each foot or zone in the ruler. Now on a ruler the inch marking restarts at zero as one progresses to the next foot; likewise the high speed counter which corresponds to the inch markings is reset to zero each time the lower speed counter or the shift register shifts one flip flop or section to the right corresponding to the movement of the image from one zoneto the next. To determine where the location of a point on the ruler is, one looks at the foot section and the inch markings. Analogously, the logic matrix 53 looks at the shift register 49 and the counter 5 l to derive similar information,

i.e., the gross timing, in terms of zone information from the ON/OFF condition of particular flip flop and refined timing from the pulse counts from the counter 51 within the corresponding zone.

So, to determine where an image leading edge is along the belt path, one looks at the shift register and determines which zone it is and looks at the output of the counter 51 which corresponds to the precise positioning of the leading edge.

Another way of perceiving the control system from the point of view of the spatial and timing relationship may be as follows. The xerographic process path and the paper process path are divided into pitches, each pitch corresponding to an image spacing or zone indicated above. Each pitch on the photoconductor belt 12 is at least as wide as the image one wishes to form. Now each zone or each shift register is therefore analogous and corresponds to each pitch whereas the count outputs from the high speedcounter 51 is analogous to a residue within each pitch. So events or steps take place in each zone as the image or the paper that zone or pitch. This precession or progression is signified bythe shifting down of the flip flops Fl-F7 in response to the reset pulses from the counter 51.

It is important to note that the pulses from the clock 50 and 52 represent positions of the images that are being processed in the zones of the belt concurrently, as the belt with electrostatic images on it moves past these zones. But the positions of processing stations, such as the imaging station A, development station B and the transfer station C, etc. themselves to not move any more than the markings on an unmoving ruler move. The point is, that, the images move past the ruler not the ruler past the points. The individual shift registers represent the pitch lengths around the belt path and the content of the individual shift registers signifies the presence or absence of the lead edge of an image in that zone.

It should be noted that both clocks are distance or space dependent and not real time dependent. Since the motor driving the photoconductor belt 12 can vary somewhat in speed, there may not be any direct relationship between these clocks and the drive speed representing the real time. These clocks are also directly related to the travel of the images in the paper path after the transfer. In the paper path, the paper travels at different speeds in different zones but the path is divided so the paper takes the same amount of time in traversing each zone.

The logic matrix 53 compares the conditions of the shift register output and the clock output 51. When the shift register and the clock output indicate that the leading edge of an image has arrived at a point where a timed event or step must take place such as flash image transfer respectively or register, etc., the logic matrix generates a timed control signal therefor.

The matrix senses this fact and sends out a pulse for implementing that step. This takes place for each image. So up to seven images represented by these seven flipflops Fl-F7 are monitored and timed signals are sent out for each of the seven zones or images concurrently.

There are functions that need to come only within the accuracy of pitches such as cleaning, charging and the fusing operations. These control functions may be timed by just looking at the shift register and checking whether they are turned on and off. These functions remain on ON during the steady state operation of the machine. On the other hand, the operations controlled by the logic matrix 53 are of such a nature that they are turned on and off at particular points in time in the processing pitch during the steady state operations of the machine as well as the cycle on and off operations.

The control scheme used in the present control system can be very advantageously used to detect jam conditions by tracing where the leading edge of any sheet of paper should be at any particular time. The control system can monitor or check leading edges of sheets traveling through the paper path and thereby check jam conditions.

Refering to FIG. 3 a certain point x in the paper path may be checked to sense whether or not the paper has been fed. The point Y in the path may be checked to test mispuff or the failure of the paper from coming off of the transfer roller 19, and the point Z just prior to the fusing station, may be checked also. The logic matrix derives the jam condition signal when it checks at these points and fails to detect the presence of the lead edge of the paper itself at these positions. Thus, what the control logic 42 does is that it checks that there is no paper present just before the sheet should arrive at a location and then checks to see that the sheet has arrived when it should. If either of these conditions are not satisfied, then the matrix applies a jam signal to the machine. The machine, in turn, may be hard stopped or cycled out depending upon the position and timing of the jam signal. If the jam occurs before-the paper reaches the fuser, the main machine is made to stop immediately and held to a standby condition,to prevent the paper from being fed into the fuser and cause a fire hazard. On the other hand, if the jam which signifies that the paper is still in the fuser, then the machine is made to cycle out that paper from the fuser before it is stopped and held to a standby condition.

In operation, as apparent from the foregoing descrip tion, the controller system monitors and senses various sets of inputs, certain of which are used by the asynchronous logic section in generating signals'that are necessary to initialize and start the machine, run the machine with the help of the output of the timed control signals from the synchronous logic section and put the machine into the shut down cycle when appropriate. Thus, the control system is designed so that the processing paths are treated as if they comprise a given number of sections or zones and key timing of the control signals to the imaging cycles on the revolving photoconductor belt, in terms of spatial and timing relationship described above. The control system is designed so that when the machine is loaded fully with a given number of images for example, seven images, it monitors simultaneously all the images in progression at various stages in various zones or pitches; the synchronous control logic section looks at each of the zones concurrently and generates timed control signals for use in each zone or for each imaging cycle in progression in each zone. Thus, when the processing machine is fully loaded the timed control logic section derives the timed control signals for the various zones concurrently, where the timing of the control signals in each zone is in effect timed by separate clocks, while all of the clocks are held to the same time standard. Thus, referring to FIG. 4, for example, during a particular pitch or imaging cycle the timed control logic section generates the following sequence of timed control signals all in one pitch time interval or imaging cycle; transfer control signal in zone V for transferring the image to a corresponding sheet at the transfer station C, paper feed signal zone I in the paper path and jam sense signal in zone VII in the paper path, and the sensing signal for the sheet on selenium in zone VI, the exposure signal forming the image in zone V on the photoconductor belt, and jam detect signal in the paper path in zone I, and so forth. Note here that an imaging cycle is merely intended to mean a cyclical time interval that corresponds to a time period for a lead edge of the image to traverse a particular zone.

Another phenomenon observed is that while. the pitch intervals are fixed by the reset or start pulses and are keyed to the imaging cycle on the photoconductor belt, the high speed pulse train need not be precisely keyed. Thus, for example, the high speed pulses may be 1,000 pulses i a given number, say 5 or 10 pulses per pitch interval, that is all of the pitch intervals need not be precisely divided equally. What is important is that the count clock starts at the beginning of each pitch and that the high speed counter and the logic matrix counts these pulses and at particular counts the timed control derive signals. The number of pulses within each pitch time interval depends upon the degree of resolution with which one wishes to obtain in giving the precision to the timing of the control signals.

While the control system according to the present invention has been described in the context of the electrostatographic copying machine and copying processes above with reference to FIGS. 1 through 4, clearly the nature of the Applicants control system is such that it is not limited in terms of its applicability, to controlling the copying machine processes. It may very well be applied to any type of processes that entail the controlling of the process steps and events. Thus, as represented in FIG. '5, a bottling process involving filling of bottles, labeling them, counting the labeled bottles and then putting a predetermined number of bottles in successive containers may also be controlled by the Applicants control system with some modifications. Looking at FIG. 5 more closely, the bottling processes may be for bottling high priced perfumes or liquors. Suppose it is bottling of high priced precious perfume and it is important to measure out or dispense very precise amounts into each bottle, cap them and label them precisely with fancy multi-colored labels, count them and package them into packages each, say 12 each in boxes. This may entail steps of advancing bottles in succession, to the dispensing station A where the precise amount of perfume is measured and put labeling them at station C, counting and packing them at stations D and E; 1 I

While the FIG. 5 shows schematically thatthebottles in process are conveyed'by a conveyor'b'elt, it need not be so limited obviously. It could very well be-that' these bottles are transported along peripheral locations of one or more turret type conveying means where" the movement of the bottles are maintained at uniform speeds at the respective conveying" means. Y I

Referring to FIG. 5 closely, the bottles are, however, not always in motion. At the working stations either they may be held in a stationary position for a given period of time as is the case when the bottles are filled at the station A and capped at the station B, in succession they may be rotated about their axis in succession while held urgingly against a planar surface holding the labels fed by a suitable means feeding the labels in succession one at a time to coincide with the arrival of the bottles in succession. At this station when the bottle arrives', the label for that bottle is held at a stationary position and the bottle is gripped and rotated against the label clockwise as shown so that the label is wrapped around the bottle. The labels may be pre-gummed so that when the bottle is rotated therearound, they 'will adhere to the bottle. Note that at the labeling station a number of timed events take place that must be prop erly sequenced and accurately timed. The foregoing bottling process involves the following general phenomena. Some of the process steps have to be precisely timed whereas other steps need be timed only grossly. For example, the filling of the bottles require precise measurement; this may be done by precisely timing the start and stop of filling operation and controlling the flow rate of the liquid. Likewise, the labeling operation where the labels have to be brought in succession and each label has to be stopped for a precise duration while another mechanism holds and rotates the bottle against the labels. Some of the events or stepsneed not be timed as precisely; thus, for example, the counting and packing at stations D and E need not be precisely timed.

Realizing the foregoing, one may divide the entire process path into a given number of zones or pitches, for example, five, as illustrated in FIG. 4. So looking at the five zones or'pitches, what is taking place is that at zone I, the arrival of the bottle is detected and then the bottle is placed at the filling station A and the filling is started at a precise time and is stopped at a precise given time interval later. At zone I the bottle is filled and at zone II the bottle is capped, and at zone III the bottle is labeled where the precise timing of a sequence of steps are required as stated before. At zone or pitch V, the bottles are counted four at a time and pushed forward in sets into a waiting box and when three sets are placed, the filled box is moved out of the way.

Now referring to an application of the Applicants control system, the eventsor steps such as capping and counting of the bottles'may be grossly timed by the shift register 49 output. Various precisely timed control 'filli ng station may beused. For high resolution timing, "any suitable clock may be used within any number of clock pulses per each pitchinterval the number of j clockor pulses being dependent entirely on the precision or resolution with which one wishes to control these timed events. The logic matrix 53 is adapted to provide, in response to the reset and clock count signals pulses, output signals which areprecisely timed to control these precisely timed process steps such as certain steps required in the measuring and the labeling stations;

In summary the present invention is directed to a control system 'where' a process system may comprise one or more process paths, the input components parts are processed through the paths andmerged in producing final products, and some of the process need to be timed in a gross sense whileothers; must'be precisely timed in any one or more of the process paths. In controlling these events or processing steps, the present control system provides-one train of pulses set to provide pitch signals that'correspond to gross timing and that represent subdivisions or processing paths into zones or pitches where events or steps occur concurrently in various stages of progression and another another train of pulses the frequency'of which is related to the resolution or accuracy with whcih the timing of the certain'events or process events in the various zones or pitches must be precisely timed and controlled. Made of a set of flip-flop are used for deriving the pitch information and a highspeed counter anda logic matrix are used to respond to the two pulse trains and derive the precisely timed control signals.

While the invention has been described primarily in terms of an electrostatographic copying process and then briefly in terms of its applicability to a bottling process, the present invention invention isbroadly applicable to mariy different machine processing systems. Therefore, other modifications 'or changes maybe made by a person of ordinary skill without departing from the spirit and scope of the principles of the invention described above.

What is claimed is:

l. A processing system for producing copies of an original having'an endless movable photoreceptor belt including, p i

means for producing latent images on said belt,

development means for applying developing material I to each of the latent images to develop the same,

a transfer station adjacent the moving belt, means for feeding seriatim sheets of copy material at the'rate of one sheet per actuation thereof from a supply thereof and to said transfer station at which each developed image is transferred to said sheets,

means for generating in equal cycles series of control pulses, said generating means including means associated with said-image producing means and said sheet feeding means forcontrolling actuation of the latter intimed sequence relative to the production of each latent image by said image producing 'means'for each of said cycles, wherein said generating means is a timing device, and

means responsive to the speed of movement of the belt for resetting each of said time cycles wherein said pulse generating means is arranged to respond to a preselected one of the processing steps that is dependent upon and related to the speed of the machine drive. i

2. A processing system for reproducing copies of an original having an endless movable photoreceptor belt including, i

means for producing electrostatic latent images on said belt,

development means for applying developing material to each of the latent images to develop the same,

a transfer station adjacent the moving belt,

means for feeding seriatim sheets of copy material at the rate of one sheet per actuation thereof from a supply thereof and to said transfer station at which each developed image is transferred to said sheets,

means for generating in equal cycles series of control pulses, said generating means including means associated with said image producing means and said sheet feeding means for controlling actuation of the latter in timed sequence relative the production of each latent image by said image producing means for each of said cycles,

a transfer roller adjacent the transfer station for supporting each sheet of material in contact with the belt during transfer of developed images, said roller having a peripheral rotative speed equal to the speed of movement of the belt,

said generating means being operatively connected to said roller for producing operation of the former during rotation of the latter, wherein said set signal generating means is arranged to respond to a selected one of the processing steps that is independent of and unrelated to the speed of the machine drive.

3. An electrostatographic system for making copies on copy sheets comprising:

a machine including means for implementing a plurality of electrostatographic copying steps for making copies;

means for driving said machine at a given speed;

means for generating a train of clock pulses related to said speed of said drive means;

means for generating set signals determined by at least one recurring state of said machine;

control means responsive to said clock pulses and said set signals for generating a series of control signals said control signals occurring after a predetermined number of clock pulses are counted starting from an occurrence of a one of said set signals, each of said control signals activating a related one of said electrostatographic step implementing means.

4. The system according to claim 3, wherein said control means is adapted to process a plurality of processing steps necessary to increase throughput to make a plurality of copies at any given moment to increase throughput capacity of the machine.

5. The system according to claim 3, said means for generating said set signals is adapted to respond to a selected one of the processing steps occurrence of which is time independent of the machine drive speed so that the process is rendered flexible and independent of the machine drive speed.

6. In an electrophotographic apparatus having an elongated electrophotosensitive member adapted to have an electrostatic image formed, on a surface thereof, and means for transferring information contained in such image to a receiver sheet in image transfer relation with the member, the combination comp g v a. aplurality of actuable work stations operative when actuated for forming an electrostatic image on the surface portion of the member, and for feeding the receiver sheet into image transfer relation with such electrostatic image formed on the member;

b. means for moving the member along an endless path relative to said plurality of actuable work stations; and

c. means for sequentially actuating and de-actuating said work stations in timed relation to movement of the member past predetermined positions along said path comprising:

i. a shift register coupled to said electrophotosenstive member moving means and having a plurality of states, the present state of which is a function of the position of the member along the endless path;

ii. means coupled to said moving means and effective to produce clock signals in response to movement of the member along the path;

iii. counter means independent of said shift register and responsive to said clock signals and having a plurality of states, the present state of which is representative of the total cumulative number of said clock signals; and

iv. means coupled to said counter means and said shift register and responsive to particular ones of the present states of said shift register and particular ones'of the present states of said counter means to effect sequential operation of said work stations with respect to said surface of the member during movement of the member along the endless path respectively.

7. The electrophotographic apparatus according to claim 6 in which one of said work stations comprises an exposure station operative when actuated to form an electrostatic image on said member.

8. The electrophotographic apparatus according to claim 6 in which one of said work stations comprises an actuable sheet feeder operative when actuated for feeding said receiver sheet.

9. In an electrostatographic apparatus having a photoreceptor means adapted to have an electrostatic image formed thereon and means for transferring such image to a support member, the combination comprismg:

a. a plurality of actuable work stations including exposure, transfer stations and a support member feeding station,

b. means for moving said photoreceptor means along an endless path past said actuable work stations, and

c. control means for actuating at least one of said actuable work stations in timed relation to the movement of said photoreceptor means therepast, said control means comprising:

i. means for generating a train of set pulses at the rate the images are to be made,

ii. a shift register responsive to said train of set pulses and having a plurality of states, the present state of which is function of the positions of the images on said photoreceptive means,

iii. means responsive to the movement of said photoreceptor means and effective to produce a train of clock pulses at a frequency which is a function of the movement of said photoreceptive means and faster than repetition rate of said set pulses by at least an order of magnitude,

iv. counter means independent of said shift register and responsive to said clock signals and reset in response to each of said set pulses and having a plurality of states, the present state of which is representative of selected cumulative counts of said clock pulses, and

v. logic means responsive to selected ones of the present states of said shift register and said counter means for generating control signals to operate selected ones of said plurality of said actuable stations timed operation in sequence.

10. In a reproducing machine wherein a plurality of actuable means are used to implement steps for making copies in succession, the improvement which comprises control means having:

means for generating a train of pitch pulses the repetition rate of which is a function of the rate at which the machine is configured to make the copies,

means for generating a train of clock pulses at a rate which is higher than the rate of said train of pitch pulses by an order of magnitude,

means responsive to said train of pitch and clock pulses for counting said clock pulses per pulse period of said train of pitch pulses and deriving timed control signals for actuating at least one of said actuable means once per said pulse period of said train of pitch pulses in successive cycles for making the copies, and

a driven photoreceptive member on which images of an original are formed in succession and a driven roller the peripheral speed of which travels at substantially the same speed as the driven photoreceptive member for transferring the images onto copy sheets in succession, said means for generating said train of pitch pulses operatively coupled to said roller for generating said pitch pulses.

11. The machine according to claim 10, including means for driving said photoreceptive member, means operatively coupled to said driving means for generating said train of clock pulses related to the distance of travel of said member.

12. The machine according to claim 10, including means for driving said photoreceptive member, means operatively coupled to said driving means for generating said train of clock pulses related to the movement of said photoreceptive member.

13. ln a reproducing machine wherein a plurality of actuable means are used to implement steps for making copies in succession, the improvement of which comprises control means;

means for generating a train of pitch pulses the repetition rate of which is a function of the rate at which the machine is configured to make the copies,

means for generating a train of clock pulses at a rate which is higher than the rate of said train of pitch pulses by an order of magnitude, and

means responsive to said train of pitch and clock pulses for counting said clock pulses per pulse period of said train of pitch pulses and deriving timed control signals for actuating at least one of said actuable means once per said pulse period of said train of pitch pulses in successive cycles for making the copies,

a driven photoreceptive means, said plurality of actuable stations having means for forming and developing electrostatic latent images in succession on said photoreceptor means,

means for transferring the images onto a copy substrate,

means for feeding the copy substrates in succession onto said transferring means said rate at which said machine is configured to make copies determining a rate of feeding said copy substrates onto said transferring means.

14. The system according to claim 13, wherein said photoreceptor means includes an endless photoreceptive belt, and including means for driving said photoreceptor belt at a constant speed,

means for forming images in succession on said driven photoreceptive belt,

means for feeding copy sheets in succession,

means for transferring said images onto corresponding copy sheets in succession, and

said timed control signal deriving means is adapted to generate said timed control signals in successive cycles, wherein cycle of control signals started by a corresponding one of pitch pulses and wherein timing of each of the control signals is derived from said train of clock pulses which relate to the travel distance of said photoreceptive belt.

15. The system according to claim 14, wherein said timed control signal deriving means includes a counting means, a shift register, and logic means operatively connected to derive said timed control signals in response to said clock and pitch pulses.

16. A process control system for controlling an operation of a system designed to produce end products in succession at a given production rate wherein component parts that form the end products are fed past actuable stations positioned along a process path and wherein selected ones of actuable stations have to be actuated in a timed sequence wherein the said process path is divisible in terms of zones so spaced that the parts traversing through respective zones at the production rate of the system, comprising:

'means for generating a train of set pulses the repeti I tion rate of which is set at the production rate and wherein each of the set pulses is timed so that they occur at the start of each of the successive cycles,

means for providing a train of clock pulses, the repetition rate of which is set substantially faster than that of said train of set pulses,

means responsive to said train of set pulses and clock pulses for deriving control signals timed to occur in successive cycles for actuating said selected ones of said actuable stations, whereby the end products are made in succession wherein said system is adapted to control an electrostatographic copier/- duplicator machine including a copy sheet path along which copy sheets are transported and a xerographic path with a plurality of actuable stations positioned therealong for implementing process events of forming, developing and transferring of latent electrostatic images onto the copy substrates in succession, means for driving said photoreceptor means to traverse along said xerographic path at a given speed, wherein said means for generating said train of set pulses is adapted to generate said set pulses timed to occur at the rate the developed 17. The control system according to claim 16, including asynchronous logic means for generating control signals for actuating certain selected ones of actuable stations asynchronously with said set and clock pulses. l=

Disclaimer 3,917,396.James M. Donahue, Rochester and Daniel L. Mueller, Fail-port, N.Y. CONTROL SYSTEM. Patent dated Nov. 4, 1975. Diselalmer filed Apr. 21, 1980, by the assignee, Xerox Oarpomtion. The term of this patent subsequent to Mar. 12, 1991, has been disclaimed.

[Ofiicial Gazette, J um; 17, 1980.]

Disclaimer 3,917,396.James M. Donahue, Rochester and Daniel L. M uelle r, Fairport, N.Y. CONTROL SYSTEM. Patent dated Nov. 4, 1975. Disclallner filed Apr. 21, 1980, by the assignee, Xerom Oarpomtion. The term of this patent subsequent to Mar. 12, 1991, has been disc-laimed.

[Ofiioial Gazette, June 17, 1980.]

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3602589 *Dec 3, 1968Aug 31, 1971Stromberg Datagraphics IncSynchronization system for a controlled operation on a moving web
US3732005 *Jan 12, 1972May 8, 1973Eastman Kodak CoIntegrated circuit sequencer
US3741406 *Jun 22, 1971Jun 26, 1973Miner EnterprisesFriction draft gear
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4082443 *Jan 8, 1976Apr 4, 1978Xerox CorporationSystem for superposition of color separation images
US4099860 *Nov 8, 1976Jul 11, 1978Eastman Kodak CompanyCopier/duplicator priority interrupt apparatus
US4117316 *Jun 14, 1977Sep 26, 1978Ryobi, Ltd.Apparatus for controlling operation cycle of duplicating machine
US4122462 *Nov 10, 1977Oct 24, 1978Canon Kabushiki KaishaImage information recording apparatus
US4139300 *Oct 20, 1975Feb 13, 1979Canon Kabushiki KaishaCopying apparatus with variable stop position
US4257701 *Aug 22, 1978Mar 24, 1981Canon Kabushiki KaishaImage information recording apparatus
US4287461 *Dec 6, 1979Sep 1, 1981International Business Machines CorporationMotor driving system
US4305654 *Nov 27, 1978Dec 15, 1981Canon Kabushiki KaishaApparatus for controlling image formation
US4332461 *Dec 6, 1979Jun 1, 1982Ibm CorporationElectrical drive for scanning optics in a continuously variable reduction copier
US4367943 *Mar 17, 1981Jan 11, 1983Konishiroku Photo Industry Co., Ltd.Apparatus for providing recording compensation for rotating drum speed fluctuations in an information recording apparatus
US4410263 *Mar 1, 1982Oct 18, 1983Eastman Kodak CompanySheet handling device for image transfer in an electrographic copier
US4448513 *Nov 19, 1980May 15, 1984Canon Kabushiki KaishaImage information recording apparatus
US4521099 *Sep 22, 1981Jun 4, 1985Canon Kabushiki KaishaCopying apparatus
US4529294 *Mar 16, 1984Jul 16, 1985Xerox CorporationDocument scanning drum and flash exposure copier
US4588284 *Sep 2, 1983May 13, 1986Xerox CorporationControl system
US4627710 *Mar 4, 1985Dec 9, 1986Xerox CorporationIn a printing machine
US5025323 *Jan 23, 1989Jun 18, 1991Minolta Camera Kabushiki KaishaDeveoloping unit switching device for a printer
US5130750 *Dec 21, 1990Jul 14, 1992Xerox CorporationCross-pitch scheduling of documents and copy sheets in a copy system
US5216256 *Jun 11, 1991Jun 1, 1993Minolta Camera Kabushiki KaishaBelt position detecting device using timing measurement
US5239878 *Nov 9, 1990Aug 31, 1993Ireneo OrlandiDevice for restraining bottles and supporting a bottle alignment mark reading system, in labeling machinery
US7389943Jun 29, 2005Jun 24, 2008S.C. Johnson & Son, Inc.Electromechanical apparatus for dispensing volatile substances with single dispensing mechanism and cartridge for holding multiple receptacles
US7469844May 18, 2005Dec 30, 2008S.C. Johnson & Son, Inc.Diffusion device and method of diffusing
US7622073Jun 29, 2006Nov 24, 2009S.C. Johnson & Son, Inc.Apparatus for and method of dispensing active materials
US8320751Oct 22, 2008Nov 27, 2012S.C. Johnson & Son, Inc.Volatile material diffuser and method of preventing undesirable mixing of volatile materials
DE3535790A1 *Oct 7, 1985Apr 24, 1986Xerox CorpBlatteinfuehrvorrichtung zur verwendung mit einem kopier/sortiersystem
EP0155804A2 *Mar 11, 1985Sep 25, 1985Xerox CorporationElectrostatographic printer system
EP0709752A2Oct 24, 1995May 1, 1996Xerox CorporationAutomatic variable pitch reconfiguration control in an electrostatographic printing machine
Classifications
U.S. Classification399/78
International ClassificationG03G21/14, G05B19/07
Cooperative ClassificationG03G21/145, G05B19/07, G05B2219/25267
European ClassificationG03G21/14B, G05B19/07