Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3919559 A
Publication typeGrant
Publication dateNov 11, 1975
Filing dateJul 12, 1974
Priority dateAug 28, 1972
Publication numberUS 3919559 A, US 3919559A, US-A-3919559, US3919559 A, US3919559A
InventorsEdward J Stevens
Original AssigneeMinnesota Mining & Mfg
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Louvered film for unidirectional light from a point source
US 3919559 A
A process for producing film including radiation-opaque louver-like elements of divergent, or convergent, orientation. Pairs of such films for example, using radio-opaque louvers, are valuable as Bucky grids for X-rays.
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent 1 1 1 ,919,559

Stevens 5] Nov. 11, 1975 l5 l LOUVERED FILM FUR UNIDIRECTIONAL 2133385 1ui'l938 Freeman 25u5us GHT O A pOlNT SOURCE 1336.026 1211943 Millemmn. ZSWSUS 1435.813 Z/l948 Files r r v r v r v 25Ul5ll8 5] Inventor: Edward J- Stevens Luke m 2.5661998 9/1951 Strickmunum 25mins Minn. 173mm W956 Schziefer .v ZSWSHS [73] Assignee: Minnesota Mining and M?nuiactul'lng f s Pilul- Prfnuu' limmiucr-Jumes W, Lawrence ASSLSIUHI Emmz'ncr-T. N Grigsb) [221 Fi Ju 12 974 AImr/u). Agent. or Firm-Alexander. Sell. Steldt &

DeLaHunt [2]] Appl. No.: 487,990

Related US. Application Data [63] Continuation-impart of Ser, No. 184.403. Aug. 28 [57] ABSTRACT l972 which is a c0ntinuntinwin-purt of Ser No. 2 March mw A process for producing film including radiationopuque louver-like elements of divergent. or converl l Cl 250/503; 161/6 gent. orientation. Pairs of such films for example: [Ill-CL2 1 using radio-opaque louvers. are valuable as Buck [58] Field of Search 250/508 505'. 161/6 g id f X-raysr [56] References Cited 10 Claims. 10 Drawing Figures UNITED STATES PATENTS 155L162 8/]915 Loebell ISWSUX US. Patent Nov.l1, 1975 Sheetlof2 3,919,559




U E Q EDWARD J STEVE/vs US. Patent Nov. 11, 1975 SheetZ 0f2 3,919,559

FIG. 10


1, LOUVERED FILM FOR UNIDIRECTIONAL LIGHT FROM A POINT SOURCE This application is a continuation-in-part of my copending application, Ser. No. 284,403, filed Aug. 28, 1972, which was a continuation-in-part of my application, Ser. No. 128,280, filed Mar. 26, 1971, now abandoned.

This invention relates to a process for the production of film or sheet materials having divergent or conver gent radiation-opaque louver-like elements. lt further relates to the sheet materials produced by the process and to laminates of these sheet materials with one another with axes at different angles with or without cover sheets and to laminates of single sheets with one or two cover sheets.

It is known from .U.S. Pat. No. 3,524,789 of Olsen that film materials or sheet materials may be produced including louver-like elements transverse to the plane of the sheet and substantially normal thereto. Such films with parallel louver elements are known to collimate incident light and to be valuable for the control of optical aperture. In this case and elsewhere, parallel indicates parallelism of the planes of the louver elements within i 3 in extremes although usual deviation is much less, of the order of i 05 to i 2. It is also known to produce film in which the louvers are uniformly canted at an angle such that transparency is only apparent when viewed in a particular direction. Fortuitously, at times, sheet film has been produced in which there was a gradualchange in angle of cant of successive louverlike elements; but no control has hitherto been possible such that desired ranges of cant or sequences were possible.

For certain purposes, it is desirable that light rays be made divergent or convergent without the use of lenses. A particular problem in this respect is with regard to X-rays where it is desired to focus" for the purpose of giving sharper pictures by absorption of secondary rays. The focusing of X-rays by the usual optical lense system is, of course, not feasible. Handmade devices known as Bucky grids ha ve been produced for such purposes. Because these are made with considerable difficul'ty by manual operations, they are exceedingly expensive, on the order of $100 or more per square foot. Such grids are usually mounted between the film and patient and oscillated slightly during exposure to avoid producing a shadow of the grid in the negative.

It is an object and aim of this invention to provide film material capable of divergent or convergent orientation of light and other radiant energy. Other aims and objects will become apparent hereinafter.

It had been found, in accordance with these objects and aims, that difierential distortion of film or sheets having louverlike elements transverse and normal to the surfaces is possible under conditions such that substantially any desired pattern of convergent and/or divergent louvers is feasible. The procedure is illustrated herein with particular reference to simple converging or diverging sheet material, but it will be recognized that variations on this procedure can be introduced quite readily using 'louvers opaque to various wavelengths, variously colored or combinations of convergence and divergence.

The essential procedure is first, to bond the radiation transparent thermoplastic sheet'containing transverse substantially parallel radiation-opaque louver-like elements between relatively rigid or dimensionally stable, but flexible, cover sheets, most suitably of metal, using enough heat to promote adhesion to give a hot laminate, second, to form the still hot laminate produced in the first step around a curved surface so that the louver-like elements of the original thermoplastic sheet are parallel to the axis of the curved surface and remain substantially parallel to one another and third, after cooling, separate the deformed thermoplastic sheet from the cover sheets. Flattening means is then applied as a fourth step. ln many cases the step required is to press the deformed sheet into planarity using heat. ln other cases, where the sheet is relatively very thin, of the order of about 1 mm. or less, it may be usable directly as produced because it then flattens spontaneously to a sufficient extent to give divergence of the elements or it may be mounted so as to maintain an essentially flat configuration.

Without wishing to be bound by the theory, it would appear that the flattening step may introduce strain which must be relieved by thermal flattening in the case of thicker materials, but is not so great as to require relief in the case of thinner materials.

In one variation of the invention. the cover sheets are fastened to each other along one edge so that angle of cant of the louver elements is progressive from one edge to the other of the light diverging sheet. It will be recognized that it is possible to start with a thermoplastic sheet including regularly canted louver elements, that is all canted at the same angle, and by this procedure superpose further progressive cant. For example, starting with a sheet having 15 cant. a progressive cant of 0 to 15 progressive cant to give one having 0-30 or two such sheets can be butted to a sheet having +l5 to l5 cant to give a combination of +30 to 30. Such techniques are useful for preparing very large sheets which have a close point for convergence of elements as will be evident.

The final flattened sheet may, in some instances, be used directly or it may be covered with clear transparent cover sheets on one or both surfaces of two or more may be joined together (back to face) with their louver elements non-parallel and particularly at right angles, either with or without the use of clear transparent cover sheets. It will, of course, be also possible to employ louver-like elements which are colored or which have particular properties. A particularly useful embodiment of the invention is one in which the louverlike elements are composed of a radio-opaque substance, e.g., red lead, or powdered lead in a suitable compatible thermoplastic binder and two such diverging sheets are cemented together at right angles to give a screen which can be employed as a Bucky grid to absorb secondary radiation, i.e., scattered or stray rays. The range of angles of cant is readily controlled so that convergence can be at any desired distance from the screen. The point of convergence is the point at which the radiant energy source, i.e. X-ray source, is placed.

It will be recognized that refractive indices of thermoplastic materials used will affect various radiation differently and visible light will focus differently from X-rays.

I am aware of the procedures proposed for producing Bucky grids described in US. Pat. Nos. 2,122,135 and 2,133,385 which rely on the difficult step of cutting a curved sheet and subsequently flattening it. I am also aware of the disclosures on production of Bucky grids of US. Pat. Nos. 1,551,162, 2,336,926, 2,435,823 and 2,566,998. My procedure using adhered dimensionally stable sheets is quite different from all the above.

The initial sheets having transverse radiation-opaque Iouver-like elements are most conveniently made by the process of the aforementioned U.S. Pat. No. 3,524,789. They may therefore include substantially any plastic base although cellulose acetate butyrate is a particularly convenient one. Polyvinyl butyral is also desirable, but somewhat more difficult to handle because of its lower melting point. The rigid but flexible cover sheets employed in the first step of the process are usually thin metal which can be bent readily but is not so ductile that it is stretched under the process of the invention. Suitable commonly available materials include sheets of aluminum of the order of 0.01 to 0.04 inches (0.25 mm.) thick. The exact thickness of these sheets is, of course, not critical provided only that they are sufficiently strong to withstand the subsequent operation in which they are employed. The surfaces are preferably not glossy when very short focal lengths are being produced or when subsequent lamination steps are envisioned. The surfaces should never be exceedingly rough. Ferrotype sheets as used in photography are convenient and useful to provide highly polished surfaces. These sheets are not deformed in the process when the radius of curvature employed is more than about 25 cm. and they may be reused. Usually the radius of curvature is from about 25 to 250 cm. A satiny finish is quite satisfactory for many purposes.

Lamination of the plastic sheet between the two cover sheets is conveniently carried out in a press at pressures of 25 to 100 psi and above at temperatures sufficient to soften the thermoplastic polymer involved, for example, 300 F. in the case of cellulose acetate butyrate. Suitable padding may be applied on either side of the sandwich or laminate being made in order to avoid possible adhesion to the platens, to provide greater uniformity of heating and, possibly, to moderate or distribute pressure more uniformly. The use of padding is not, however, essential to the process of the invention.

The hot sandwich is then deformed by bending over a suitable curved surface, for example, a section of a cylinder having a radius of about 24 inches. Smaller radii and larger radii are also useful from about 25 to 250 cm. Approximately the radius of curvature used is about twice the focal distance desired. A matching platen may be used or a sheet of fabric fastened at one edge of the curved surface may be drawn down taut. After the polymeric material has cooled, the arcuate thermoplastic sheet separates from the metal cover sheets as the result of differential expansion, that is, due to differences in expansion coefficients. The cooled sheet is normally somewhat less curved or arcuate than the cylinder around which it was formed to an extent depending upon a number of factors. The result is that it is not necessary to have a cylinder of large radius to obtain an arcuate thermoplastic sheet of that radius. When the thermoplastic sheet is of the order of 1 mm. or less in thickness, it may fequently be used directly because mounting means may exert sufficient force to serve as flattening means but not in the sense of achieving thermal flattening.

The cool arcuate sheet is thermally flattened by application of pressure and heating to about the extent needed for the initial lamination step and suitably while applying clear cover sheets. The cover sheets obviously can be colored if desired. This additional flattening step is necessary for thicker sheet materials of more than about 1 mm. thickness and optional for thinner sheet materials.

The invention is now further explained by the accompanying drawings which show the process of the invention in an essentially diagramatic manner and also products of the invention.

FIG. 1 shows the hot lamination step to give the hot laminate or sandwich.

FIG. 2 shows placing the hot laminate or sandwich in a press to provide curvature.

FIG. 3 shows the deformation of the laminate or sandwich of FIGS. 1 and 2.

FIG. 4 shows that after cooling, the laminate of FIG. 3 separates so that the metallic sheets are separated. In this and the following figures, the arcuate sheet is shown as fully formed around the cylinder.

FIG. 5 shows placing the deformed sheet of FIG. 4 in a heated flat press, and

FIG. 6 shows the distortion of the louvers after again pressing flat.

FIG. 7 shows a perspective view of the flat sheet of FIG. 6 and FIG. 8 shows a top view thereof.

FIG. 9 shows a laminate of two sheets as in FIG. 7 with axes at right angles and FIG. 10 shows the effect when that laminate is viewed from above.

Referring again to the Figures, thermoplastic lightcontrolling sheet 10 (suitably about 0.3 to 5 mm. thick) in FIG. 1 having louver elements 18 is laminated between 0.50 mm. thick sheets of aluminum 12 by applying pressure (means not shown) to heated plates 16 having non-adhering pads 14. Although some of the desired effect can be obtained by adhering only one cover sheet, it is preferred to use two as here described.

The laminate formed may be designated 12-10-12 and in FIG. 2 the still hot laminate 12-10-12 is placed between arcuate forming means 20,22 using adhesion preventing pad (not shown) if desired and pressure is applied as in FIG. 3 to deform the laminate. Because the angular arcs of the upper and lower aluminum sheets 12 are different although the widths as shown are the same, the apparent effect of this step is the vertical displacement of the louver elements 18 although a slight lateral motion of the upper edges may also occur in this step. At the same time as the laminate is deformed (FIG. 3), it is cooling because no heat is applied and adhesion of aluminum sheets 12 relaxes and they are freed as shown in FIG. 4 having the arcuate light-controlling sheet 30. It is within the scope of the invention to provide heat during the step and subsequently cool after deformation. As noted above, if the arcuate light-controlling sheet is sufficiently thin, of the order of 1 mm. or less, it may be used at this point relying on mounting means to provide sufficient flattening means to produce substantial divergence of the louvers.

The arcuate light-controlling sheet 30 is now placed between heated platens 16 and non-adhering pads 14 as shown in FIG. 5. The same apparatus as used in FIG. 1 is shown but, obviously, the exact piece of equipment is not necessary. Pressure and heat are applied as indicated in FIG. 6. Because of the way pressure is applied, there are forces which deform the arcuate sheet 30 into an optically flat sheet 40 having the louver elements variously and progressively inclined as shown. Approximately, the maximum angle of inclination will be a function of the angle in FIG. 5 between the lower platen l6 and the tangent to the lower surface of sheet at the outermost edge Clearly. also the smaller the radius of curvature of sheet 30. the greater will he the maximum inclination of louver elements 18 in sheet 40. The radius of curvature may he controlled by the bending means 20, 22 used for deformation in F565. 2 and 3.

FIG. 7 shows a single sheet having convergent tfroni hottom to top) louver elements 18. The axis of the sheet is parallel to these elements. The top view in FIG. 8 shows top edges of louver elements 18 as full lines and lower edges 52 as hrolten lines. Because the elements are opaque. it will he recognized that from above the sheet 40 will appear more opaque near the edges and more nearly transparent near the center when viewed at a distance. This view corresponds to any distance other than what may he designated the focal length which is the distance aliovc the plane of the sheet at which extensions of all louver elements would meet. Only at this focal point will the eye see through the entire sheet; at all other positions there will he greater or less obscuring along the edges.

HG. 9 shows a laminate (which may be further laminatcd with cover sheets. not shown. as may also sheet 40 of Flt 7t of two sheets 42 and 44 at right angles. l l(i. it) shows a top view but hecause they would be confusing. only upper edges 50 and of louver elements are indicated. The effect is to give a rather square hole in the middle and a focal point from which almost complete transparency is attained except for some distortion along diagonals. A laminate such as shown in Flfji. 10 in which the louver elements comprise sufficient radio -opaque material such as red lead serves to focus Xrays as a Bucky grid. Other uses will also he evident in signals. windows. and other articles depending on optical properties or effects. Thus. a grid of the type shown in FIGS. 9 and 10 may he used for viewing a television or cathode ray screen from one specific position which would not be visible or only limitedly so. from other positions.

What is claimed is:

1. In a process for the production of thermoplastic sheet material having diverging louver elements. the steps of Ell Ill


l. thermally bonding at least one thin sheet of metal to a flat sheet of radiation-transparent thermoplas tic material having substantially parallel radiation opaque louver elements at a uniform angle to its surface to form a hot laminate.

. arcuately deforming said hot laminate forming an arcuate laminate having substantially parallel louvcr elements and cooling said laminates. and

. separating each said sheet ofnietal from said arcuate laminate after cooling to provide an arcuate radiationcontrolling sheet having substantially parallel louver elements.

2. lhe process according to claim 1 additional employing the step of applying flattening means for llattcning said arcuate radiation-controlling sheet to form a light diverging film wherein the substantially parallel louver elements of steps 1). ill and 13) are made mutually divergent.

3. The process according to claim 2 wherein the thermoplastic material is about I mm. thick or less and flattening means is applied hy mounting so as to maintain an essentially tlat configurationv 4. The process according to claim 1 wherein one sheet of metal is bonded to hoth surfaces of the thermoplastic material.

5. The process according to claim 1 wherein one sheet of metal is honded to each surface of the thermoplastic material.

6. The process according to claim 1 wherein the hot laminate is arcuately deformed in Step [2 l against a cylindrical surface with the lengths of louver elements parallel to the axis of the cylinder.

7. The process according to claim 6 wherein the thermoplastic sheet material is cellulose acetate hutyrate.

8. The process according to claim 1 wherein the louver elements are radioopaquer 9. A radiant energy diverging film of thermoplastic material of about 1 mm. or less in thickness. produced by the process of claim 1, and st'iontancously flattened to have divergent radiationcpat ue elements.

10. A radiant energy diverging film according to claim 9 having radio-opaque louver elements. com prised of radio-opaque suhstance and compatible thermoplastic hinder.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US1551162 *Mar 29, 1924Aug 25, 1925Maurice LoebellGrid for protecting rontgen images against secondary rays
US2133385 *May 8, 1937Oct 18, 1938Antony P FreemanX-ray grid and method of making same
US2336026 *May 23, 1940Dec 7, 1943Richardson CoX-ray grid and the like
US2435823 *Jun 28, 1946Feb 10, 1948Allison M FilesRoentgenological method and apparatus
US2566998 *Nov 5, 1948Sep 4, 1951Charles E BloomBucky grid and method of making same
US2731713 *Nov 23, 1951Jan 24, 1956Gen ElectricMethod of making a focused multicell
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4221867 *Feb 2, 1979Sep 9, 1980Minnesota Mining And Manufacturing CompanyOptical microbiological testing apparatus and method
US4340818 *May 14, 1980Jul 20, 1982The Board Of Trustees Of The University Of AlabamaScanning grid apparatus for suppressing scatter in radiographic imaging
US4764410 *Sep 18, 1986Aug 16, 1988Minnesota Mining And Manufacturing CompanyLouvered plastic film and method of making the same
US4766023 *Jan 16, 1987Aug 23, 1988Minnesota Mining And Manufacturing CompanyMethod for making a flexible louvered plastic film with protective coatings and film produced thereby
US4951305 *May 30, 1989Aug 21, 1990Eastman Kodak CompanyX-ray grid for medical radiography and method of making and using same
US4959547 *Jun 8, 1989Sep 25, 1990Care Wise Medical Products CorporationApparatus and methods for detecting, localizing, and imaging of radiation in biological systems
US5008920 *Nov 27, 1989Apr 16, 1991Liebel-Flarsheim CompanyX-ray film cassette with flexible grid bonded to prestressed cover
US5142415 *Jun 15, 1989Aug 25, 1992Minnesota Mining And Manufacturing CompanyBack-lit display
US5147716 *Jun 16, 1989Sep 15, 1992Minnesota Mining And Manufacturing CompanyMulti-directional light control film
US5204160 *May 28, 1991Apr 20, 1993Minnesota Mining And Manufacturing CompanyLight-collimating film
US5254388 *Dec 20, 1991Oct 19, 1993Minnesota Mining And Manufacturing CompanyLight control film with reduced ghost images
US5259016 *Oct 22, 1992Nov 2, 1993Eastman Kodak CompanyAssembly for radiographic imaging
US5376314 *Apr 29, 1993Dec 27, 1994Illinois Tool Works Inc.Method of making a laser ablated formed cap
US5477024 *Jul 29, 1994Dec 19, 1995Illinois Tool Works Inc.Back-lit button assembly
US6125167 *Nov 25, 1998Sep 26, 2000Picker International, Inc.Rotating anode x-ray tube with multiple simultaneously emitting focal spots
US6470072 *Aug 24, 2000Oct 22, 2002General Electric CompanyX-ray anti-scatter grid
US6510336Mar 3, 2000Jan 21, 2003Intra Medical Imaging, LlcMethods and devices to expand applications of intraoperative radiation probes
US6707885 *Dec 20, 2001Mar 16, 2004Koninklijke Philips Electronics N.V.Method for producing a grid structure
US7180982Jan 17, 2003Feb 20, 2007Koninklijke Philips Electronics N.V.Grid for the absorption of X-rays
US7206382 *Jun 23, 2003Apr 17, 2007Mecal S.R.I.Device for adjustment of the anti-scattering grid to the focal length for radiological equipment
US7236286Jul 19, 2005Jun 26, 2007Brilliant Film LlcDevice having reflective and transmissive properties
US7345824Aug 1, 2005Mar 18, 2008Trivium Technologies, Inc.Light collimating device
US7480101Mar 14, 2007Jan 20, 2009Brilliant Films LlcLight collimating device
US7518801Jun 16, 2006Apr 14, 2009Brillant Film LlcMethod for making collimating or transflecting film having a reflective layer
US7573642Feb 26, 2008Aug 11, 2009Brilliant Film LlcSystem for collimating backlight
US7595934Sep 29, 2006Sep 29, 2009Brilliant Film LlcIntegrated sub-assembly having a light collimating or transflecting device
US7916241Oct 3, 2007Mar 29, 2011Nec Lcd Technologies, Ltd.Method for manufacturing optical element
US8057715Aug 28, 2008Nov 15, 2011Reflexite CorporationMethod for making an optical device and system for privacy or contrast enhancement
US8149350Oct 3, 2007Apr 3, 2012Nlt Technologies, Ltd.Optical element, and lighting device, display device and electronic device that use the optical element
US8205995Aug 7, 2008Jun 26, 2012Reflexite CorporationOptical device and system for privacy or contrast enhancement and methods of use thereof
US8226253Feb 27, 2009Jul 24, 2012Lubart Neil DConcentrators for solar power generating systems
US8233114Feb 7, 2011Jul 31, 2012Nlt Technologies, Ltd.Method for manufacturing optical element
US8269919Sep 23, 2011Sep 18, 2012Nlt Technologies, Ltd.Optical element, and lighting device, display device and electronic device that use the optical element
US8395726 *Sep 27, 2010Mar 12, 2013Nlt Technologies, Ltd.Optical element manufacturing method, optical element exposure device, optical element, lighting optical device, display device, and electronic apparatus
US8780300Jun 23, 2006Jul 15, 2014Nlt Technologies, Ltd.Optical member, light source apparatus, display apparatus, and terminal apparatus
US8848139Oct 24, 2013Sep 30, 2014Nlt Technologies, Ltd.Optical member, light source apparatus, display apparatus, and terminal apparatus
US9047999 *Oct 11, 2011Jun 2, 2015Turtle Bay Partners, LlcThree-dimensional focused anti-scatter grid and method for manufacturing thereof
US9048002Mar 15, 2013Jun 2, 2015Turtle Bay Partners, LlcThree-dimensional focused anti-scatter grid and method for manufacturing thereof
US9111655 *Jun 26, 2013Aug 18, 2015Canon Kabushiki KaishaRadiation generating apparatus and radiation imaging system
US9442600Dec 19, 2005Sep 13, 20163M Innovative Properties CompanyTouch sensitive projection screen
US20020176538 *Dec 20, 2001Nov 28, 2002Reinhold Wimberger-FriedlMethod for producing a grid structure
US20050123099 *Jan 17, 2003Jun 9, 2005Koninklijke Philips Electronics N.VGrid for the absorption of x-rays
US20050152500 *Jun 23, 2003Jul 14, 2005Luigi BesanaDevice for adjustment of the anti-scattering grid to the focal length for radiological equipment
US20050259198 *Aug 1, 2005Nov 24, 2005Trivium Technologies, Inc.Light collimating device
US20060023289 *Jul 19, 2005Feb 2, 2006Clikeman Richard WDevice having reflective and transmissive properties
US20060233486 *Dec 31, 2002Oct 19, 2006Daniele FaccioIntegrated optical add/drop device having switching function
US20060291243 *Jun 23, 2006Dec 28, 2006Nec CorporationOptical member, light source apparatus, display apparatus, and terminal apparatus
US20070139397 *Dec 19, 2005Jun 21, 2007Cross Elisa MTouch sensitive projection screen
US20070153396 *Mar 14, 2007Jul 5, 2007Brilliant Film, LlcLight colliminating device
US20080088905 *Oct 3, 2007Apr 17, 2008Nec Lcd Technologies, LtdOptical element, and lighting device, display device and electronic device that use the optical element
US20080089068 *Oct 3, 2007Apr 17, 2008Nec Lcd Technologies, Ltd.Method for manufacturing optical element
US20090213593 *Feb 26, 2008Aug 27, 2009Reflexite CorporationOptical device and system for black level enhancement and methods of use thereof
US20100033827 *Aug 7, 2008Feb 11, 2010Reflexite CorporationOptical device and system for privacy or contrast enhancement and methods of use thereof
US20100051176 *Aug 28, 2008Mar 4, 2010Reflexite CorporationMethod for making an optical device and system for privacy or contrast enhancement
US20110080538 *Sep 27, 2010Apr 7, 2011Nec Lcd Technologies, Ltd.Optical element manufacturing method, optical element exposure device, optical element, lighting optical device, display device, and electronic apparatus
US20110176312 *Feb 7, 2011Jul 21, 2011Nec Lcd Technologies, Ltd.Method for manufacturing optical element
US20120087477 *Oct 11, 2011Apr 12, 2012Beck Thomas JThree-dimensional focused anti-scatter grid and method for manufacturing thereof
US20140023176 *Jun 26, 2013Jan 23, 2014Canon Kabushiki KaishaRadiation generating apparatus and radiation imaging system
US20140185133 *Jan 1, 2014Jul 3, 2014Hanoch ShalitControlled transmission and reflection in windows
CN101169491BOct 23, 2007Jun 22, 2011Nec液晶技术株式会社Optical element
CN101231461BOct 9, 2007Jul 25, 2012Nlt科技股份有限公司Method for manufacturing optical element
CN102033434A *Sep 29, 2010Apr 27, 2011Nec液晶技术株式会社Optical element manufacturing method, optical element exposure device, optical element, lighting optical device, display device, and electronic apparatus
CN102033434B *Sep 29, 2010Mar 18, 2015Nlt科技股份有限公司Optical element manufacturing method, optical element exposure device, optical element, lighting device, display device, and electronic apparatus
DE4305475C1 *Feb 23, 1993Sep 1, 1994Siemens AgScattered radiation grid for an X-ray diagnostic device
DE112007000488T5Feb 16, 2007Jan 15, 20093M Innovative Properties Co., Saint PaulVermindern des Moiré-Effekts in einer LCD-Vorrichtung mit einem Lichtsteuerungsfilm
EP0196861A2 *Mar 25, 1986Oct 8, 1986Minnesota Mining And Manufacturing CompanyMethod of supporting a louvered plastic film
EP0196861A3 *Mar 25, 1986Jan 28, 1987Minnesota Mining And Manufacturing CompanyMethod of supporting a louvered plastic film
EP1028451A1 *Nov 5, 1999Aug 16, 2000Picker International, Inc.X-Ray tube assembly and method of generating a plurality of X-ray beams
WO2002052579A1 *Dec 10, 2001Jul 4, 2002Koninklijke Philips Electronics N.V.A method for producing a grid structure
WO2003016982A2 *Jul 19, 2002Feb 27, 2003Schneider Laser Technologies AgProjection arrangement
WO2003016982A3 *Jul 19, 2002Nov 20, 2003Schneider Laser TechnologiesProjection arrangement
WO2003063182A1 *Jan 17, 2003Jul 31, 2003Philips Intellectual Property & Standards GmbhGrid for the absorption of x-rays
WO2005057255A2 *Dec 8, 2004Jun 23, 2005Koninklijke Philips Electronics N.V.Collimator
WO2005057255A3 *Dec 8, 2004Jul 28, 2005Dirk BurdinskiCollimator
WO2017081038A1 *Nov 9, 2016May 18, 2017Bayerische Motoren Werke AktiengesellschaftLuminous element for a motor vehicle and shielding layer for a luminous element
U.S. Classification378/154, 428/464, 976/DIG.429
International ClassificationG03B42/02, G21K1/02, A61B6/06
Cooperative ClassificationG02B17/006, G03B42/02, G21K1/025, A61B6/06
European ClassificationG02B17/00L, G21K1/02B, A61B6/06, G03B42/02