Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3920586 A
Publication typeGrant
Publication dateNov 18, 1975
Filing dateNov 13, 1972
Priority dateOct 16, 1972
Publication numberUS 3920586 A, US 3920586A, US-A-3920586, US3920586 A, US3920586A
InventorsLeo R Bonaparte, J Barry Golliday, H James Zeller
Original AssigneeProcter & Gamble
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Detergent compositions
US 3920586 A
Abstract
Granular, phosphate-free, storage-stable detergent compositions which are mixtures of anionic surfactant-containing, spray-dried granular particles and porous sodium silicate granular particles having a nonionic surfactant absorbed within the pores thereof.
Images(15)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent [191 Bonaparte et al.

[45] Nov. 18, 1975 DETERGENT COMPOSITIONS [75] Inventors: Leo R. Bonaparte, Forest Park; J.

Barry Golliday, Cincinnati; H. James Zeller, Greenhills, all of Ohio [73] Assignee: The Procter & Gamble Company, Cincinnati, Ohio [22] Filed: Nov. 13, 1972 [21] Appl. N0.: 305,742

Related US. Application Data [63] Continuation-impart of Ser. No. 298,l43, Oct. 16,

1972. abandoned.

3,306,858 2/1967 Oberle 252/99 3,654,168 4/1972 Gaiser..... 252/539 X 3,674,700 4/1972 Gaiser 252/539 X 3,703,470 ll/l972 Brennan.. 252/99 3,708,428 2/1973 McDonald. 252/53l X 3,709,837 l/l973 Weldes 252/539 X FOREIGN PATENTS OR APPLICATIONS 812,249 4/1959 United Kingdom 252/D1G. 1

Primary Examiner-Leland A. Sebastian Attorney, Agent, or Firm-Thomas OFlaherty; Julius P. Filcik; George W. Allen 7 [57] ABSTRACT Granular, phosphate-free, storage-stable detergent compositions which are mixtures of anionic surfactant-containing, spray-dried granular particles and porous sodium silicate granular particles having a nonionic surfactant absorbed within the pores thereof.

15 Claims, N0 Drawings DETERGENT COMPOSITIONS CROSS REFERENCE TO RELATED APPLICATION This application is a continuation-in-part of the application of Bonaparte, Golliday and Zeller, Ser. No. 298,143, filed Oct. 16, 1972 now abandoned.

BACKGROUND OF THE INVENTION The instant invention relates to granular laundry detergent compositions containing two distinct types of surfactant-containing granular particles. One particle type is of the conventional spray-dried variety and contains an anionic surfactant. The other particle comprises porous sodium silicate into the pores of which are absorbed particular types of nonionic surfactants.

Commercial synthetic detergent compositions have for years employed substantial amounts of inorganic phosphate salts as builder materials. Such phosphate builder materials serve to sequester or complex mineral ions commonly found in household tap water to prevent such ions from interfering with cleaning performance of the synthetic surfactant of such compositions. However, some recent studies have indicated that the phosphate class of builder materials may present an ecological problem because of the ability of these materials to act as a nutrient that promotes the growth of algae, thereby accelerating the biological aging (eutrophication) of natural water bodies. As a consequence of the possible harmful effects of the continued use of phosphate builder materials in substantial quantities, attempts have been made to materially reduce or eliminate the need for phosphate salts in commercial detergent compositions.

One method for compensating for the absence of mineral sequestering phosphate builder salts in detergent formulations has been to synthesize compositions containing surfactant systems which are particularly insensitive to mineral hardness in laundering solution. Such surfactant systems have, for example, included mineral-insensitive mixtures of anionic and nonionic surfactants. (See U.S. Pat. Nos. 2,543,744; 2,875,153; and 3,528,925 and the copending U.S. Pat. application ofCollins, Ser. No. 222,363, filed Jan. 31, 1972.) However, since many common nonionic surfactants used in these systems are liquid at room temperature, many such formulations containing anionic-nonionic surfactant mixtures have been liquid in nature.

Attempts to achieve granular mixed anionic-nonionic detergent compositions (and the resulting commercial advantages of granular products) have not been entirely successful. Conventional spray drying of some nonionic surfactants may tend to produce air pollution problems which are difficult to overcome. To eliminate need for spray-drying, detergent compositions have also been formulated wherein liquid nonionic surfactant systems are absorbed or adsorbed into or onto solid porous material for use in granular products. (See U.S. Pat. Nos. 2,746,930; 3,285,859; 3,306,858; 3,408,300 and 3,674,700). Utilization of such carrier materials, however, has several disadvantages.

Loading of such material to the surfactant levels necessary for highly effective mixed surfactant systems can result in bleeding of the absorbed or adsorbed material from its carrier during storage, thereby causing packaging, pouring and handling difficulties. Furthermore, in order to load the requisite levels of surfactant necessary for effective fabric laundering, inordinately 2 large proportions of granular compositions of this type must consist of highly alkaline carrier material such as sodium silicate or sodium carbonate. Commercial detergent formulations containing excessive amounts of these highly alkaline materials may be disadvantageous from a safety (ingestion and eye irritation) standpoint.

Accordingly, it is an object of the present invention to provide phosphate-free, mixed anionic/nonionic surfactant-containing detergent compositions which" are effective for fabric laundering in mineral-containing water.

It is a further object of the present invention to provide mixed surfactant detergent compositions in granular form having acceptable storage stability and pourability.

It is a further object of the present invention to provide mixed surfactant-containing detergent compositions containing acceptable levels of the mixed surfactant system without employing inordinately high levels of highly alkaline carrier materials.

It has been surprisingly discovered that by preparing granular detergent compositions containing both spraydried anionic surfactant-containing granular particles and particles of a very particular type of sodium silicate having certain nonionic surfactants absorbed therein, detergent compositions can be formulated which accomplish the above objectives and which are superior in performance and physical characteristics to similar compositions presently known in the art.

SUMMARY OF THE INVENTION v The instant phosphate-free, granular detergent compositions consist essentially of from about 20% to about byweight of the composition of anionic surfactant-containing spray-dried granules and from about 30% to about by weight of the composition of nonionic surfactant-containing carrier granules. The spray- I dried granules of the instant invention comprise from about 5% to about 40% by weight of the spray-dried granules of a conventional anionic surfactant. The carrier granules comprise a water-soluble, porous, amorphous sodium silicate carrier material having a weight ratio of Na. ,O to SiO of from about 1:1 to 113.2 and a moisture content of from about 2% to about 12% by weight of the sodium silicate. The sodium silicate carrier material has absorbed within its pores a nonionic surfactant such that the weight ratio of absorbed nonionic surfactant to sodium silicate carrier material ranges from about 0.421 to 1.2:1. Within the detergent compositions of the instant invention, the concentration of anionic surfactant falls within the range of from about 3% to about 15% by weight of the total composition; the concentration of nonionic surfactant falls within the range of about 17% to 23% by weight and the weight ratio of nonionic surfactant to anionic surfactant within said composition ranges from about 8:1 to 1.13:1. The ratio of the average particle sizes of the spray-dried granules and nonionic surfactant-containing carrier granules varies between 0.511 and 2.0:].

DETAILED DESCRIPTION OF THE INVENTION The instant compositions consist essentially of two distinct types of detergent granules anionic-surfactant containing, spray-dried granules and nonionic-surfactant containing carrier granules. Each of these two granule types, as well as optional composition components and composition preparation, are described more fully as follows.

THE SPRAY-DRIED GRANULES about 40%, preferably from about to 25%, by

weight of the spray-dried granules and is exemplified as follows.

Anionic Surfactants Anionic synthetic detergents include water-soluble salts, particularly the alkali metal salts, of organic sulfuric reaction products having in their molecular structure an alkyl group containing from about 8 to about 22 carbon atoms and a moiety selected from the group consisting of sulfonic acid and sulfuric acid ester moieties. (Included in the term alkyl is the alkyl portion of higher acyl moieties.) Examples of this group of synthetic detergents are the sodium and potassium alkyl sulfates, especially those obtained by sulfating the higher alcohols (C,,C carbon atoms) produced by reducing the glycerides of tallow or coconut oil; sodium and potassium alkyl benzene sulfonates, in which the alkyl group contains from about 9 to about carbon atoms in straight chain or branched-chain configuration, e.g. those of the type described in U.S. Pat. Nos. 2,220,099 and 2,477,383 (especially valuable are linear straight chain alkyl benzene sulfonates in which the average of the alkyl groups is about I 1.8 carbon atoms and commonly abbreviated as C LAS); sodium alkyl glyceryl ether sulfonates, especially those ethers of higher alcohols derived from tallow and coconut oil; sodium coconut oil fatty acid monoglyceride sulfonates and sulfates; sodium and potassium salts of alkyl phenol ethylene oxide ether sulfates with about 1 to about 10 units of ethylene oxide per molecule and in which the alkyl groups contain from about 8 to about 12 carbon atoms.

Another class of suitable anionic organic detergents particularly useful in this invention includes salts of 2- acyloxyalkane-l-sulfonic acids. These salts have the formula 0 ll OCR R, H CH SO M where R is alkyl of about 9 to about 23 carbon atoms (forming with the two carbon atoms an alkane group); R is alkyl of l to about 8 carbon atoms; and M is a water-soluble cation.

The water -soluble cation, M, in the hereinbefore described structural formula can be, for example, an alkali metal cation (e.g., sodium, potassium, lithium), ammonium or substituted-ammonium cation. Specific examples of substituted ammonium cations include methyl-, dimethyl-, and trimethyl-ammonium cations and quaternary ammonium cations such as tetramethyl-ammonium and dimethyl piperidinium cations and those derived from alkylamines such as ethylamine, di-

4 ethylamine, triethylamine, mixtures thereof, and the like.

Specific examples of beta-acylox'y-alkane-l-sulfonates, or alternatively 2-acyloxy-alkane-l-sulfonates, useful herein include the sodium salt of 2-acetoxy-tridecane-l-sulfonic acid; the potassium salt of 2-propionyloxy-tetradecane-l-sulfonic acid; the lithium salt of 2-butanoyloxy-tetradecane-1-sulfonic acid; the sodium salt of 2-pentanoyloxy-pentadecane-l-sulfonic acid; the sodium salt of 2-acetoxy-hexadecane-l-sulfonic acid; the potassium salt of 2-octanoyloxy-tetradecane-l-sulfonic acid; the sodium salt of 2-acetoxyheptadecane-l-sulfonic acid; the lithium salt of 2- acetoxy-octadecane-l-sulfonic acid; the potassium salt of 2-acetoxy-nonadecane-l-sulfonic acid; the sodium salt of 2-acetoxy-uncosane-l-sulfonic acid; the sodium salt of 2-propionyloxy-docosane-1-sulfonic acid; the isomers thereof.

Preferred beta-acyloxy-alkane-l-sulfonate salts herein are the alkali metal salts of beta-acetoxy-alkanel-sulfonic acids corresponding to the above formula wherein R is an alkyl of about 12 to about 16 carbon atoms, these salts being preferred from the standpoints of their excellent cleaning properties and ready availability.

Typical examples of the above described betaacetoxy alkanesulfonates are described in the literature: Belgium Patent 650,323 issued July 9, 1963, discloses the preparation of certain 2-acyloxy alkanesulfonic acids. Similarly, U.S. Pat. Nos. 2,094,45l issued Sept. 28, 1937, to Guenther et al. and 2,086,215 issued July 6, 1937 to DeGroote disclose certain salts of betaacetoxy alkanesulfonic acids. These references are hereby incorporated by reference.

Another class of anionic detergent compounds herein are the alkylated a-sulfocarboxylates, containing about 10 to about 23 carbon atoms, and having the formula wherein R is C to C alkyl, M is a water-soluble cation as hereinbefore disclosed, preferably sodium ion, and R is short-chain alkyl, e.g., methyl, ethyl, propyl, and butyl. These compounds are prepared by the esterification of a-sulfonated carboxylic acids, which are commercially available, using standard techniques. Specific examples of the alkylated a-sulfocarboxylates preferred for use herein include:

ammonium methyl-a-sulfopalmitate,

triethanolammonium ethyl-a-sulfostearate,

sodium methyl-a-sulfopalmitate,

sodium ethyl-a-sulfopalmitate,

sodium butyl-a-sulfostearate,

potassium methyl-a-sulfolaurate,

lithium methyl-a-sulfolaurate, as well as mixtures thereof.

Another operable class of anionic organic detergents is that of the fi-alkyloxy alkane sulfonates. These compounds have the following formula:

where R is a straight chain alkyl group having from 6 to 20 carbon atoms, R is a lower alkyl group having from 1 (preferred) to 3 carbon atoms, and M is a watersoluble cation as hereinbefore described.

Specific examples of B-alkyloxy alkane sulfonates, or alternatively 2-alkyloxy-alkane-l-sulfonates, having low hardness (calcium ion) sensitivity useful herein to provide superior cleaning levels under household washing conditions include:

potassium-B-methoxydecanesulfonate. sodium-2-methoxytridecanesulfonate, potassium 2 ethoxytetradecylsulfonate, sodium 2-isopropoxyhexadecylsulfonate, lithium 2-t-butoxytetradecylsulfonate, sodium B-methoxyoctadecylsulfonate, and ammonium B-n-propoxydodecylsulfonate.

Other synthetic anionic detergents useful herein are alkyl ether sulfates. These materials have the formula RO(C H O),SO M wherein R is alkyl or alkenyl of about to about carbon atoms, x is l,to 30, and M is a water-soluble cation as defined hereinbefore. The alkyl ether sulfates useful in the present invention are condensation products of ethylene oxide and monohydric alcohols having about 10 to about 20 carbon atoms. Preferably, R has 14 to 18 carbon atoms. The alcohols can be derived from fats, e.g., coconut oil or tallow, or can be synthetic. Lauryl alcohol and straight chain alcohols derived from tallow are preferred herein. Such alcohols are reacted with l to 30, and especially 3 or 6, molar proportions of ethylene oxide and the resulting mixture of molecular species, having, for example, an average of 3 or 6 moles of ethylene oxide per mole of alcohol, is sulfated and neutralized.

Specific examples of alkyl ether sulfates of the present invention are sodium coconut alkyl ethylene glycol ether sulfate; lithium tallow alkyl triethylene glycol ether sulfate; and sodium tallow alkyl hexaoxyethylene sulfate, and sodium tallow alkyl trioxyethylene sulfate.

Preferred herein for reasons of excellent cleaning properties and ready availability are the alkali metal coconutand tallow-alkyl oxyethylene ether sulfates having an average of about 1 to about l0 oxyethylene moieties. The alkyl ether sulfates of the present invention are known compounds and are described in U.S. Pat. 3,332,876, to Walker (July 25, 1967), incorporated herein by reference.

Additional examples of anionic non-soap synthetic detergents which come within the terms of the present invention are the reaction product of fatty acids esterified with isethionic acid and neutralized with sodium hydroxide where, for example, the fatty acids are derived from coconut oil; sodium or potassium salts of fatty acid amides of methyl tauride in which the fatty acids, for example, are derived from coconut oil. Other anionic synthetic detergents of this variety are set forth in U.S. Pat. Nos. 2,486,921; 2,486,922; and 2,396,278.

Additional examples of anionic, non-soap, synthetic detergents, which come within the terms of the present invention, are the compounds which contain two anionic functional groups. These are referred to as dianionic detergents. Suitable di-anionic detergents are the disulfonates, disulfates, or mixtures thereof which may be represented by the following formulae:

where R is an acyclic aliphatic hydrocarbyl group having 15 to 20 carbon atoms and M is a water-solubilizing cation, for example, the C to C disodium l,2-alkyldisulfates, C to C dipotassiurn-l,2-alkyldisulfonates or disulfates, disodium 1,9-hexadecyl disulfates, C to C20 disodium-l,2-alkyldisulfonates, disodium 1,9- stearyldisulfates and 6,10 -octadecyldisulfates.

The aliphatic portion of the disulfates or disulfonates is generally substantially linear, thereby imparting desirable biodegradable properties to the detergent compound.

' The water-solubilizing cations include the customary cations known in the detergent art, i.e., the alkali metals, and the ammonium cations, as well as other metals in group llA, [18, [11A, lVA and [VB of the Periodic Table except for boron. The preferred water-solubilizing cations are sodium or potassium. These dianionic detergents are more fully described in British Letters Patent 1,151,392 which claims priority on an application made in the USA. (Ser. No. 564,556) on July 12, 1966, now abandoned.

Still other anionic synthetic detergents include the class designated as succinamates. This class includes such surface active agents as disodium N-octadecylsulfosuccinamate; tetrasodium N-( l ,2-dicarboxyethyl)-N- octadecylsulfo-succinamate; diamyl ester of sodium sulfosuccinic acid; dihexyl ester of sodium sulfosuccinic acid; dioctyl esters of sodium sulfosuccinic acid.

Other suitable anionic detergents utilizable herein are olefin sulfonates having about 12 to about 24 carbon atoms. The 'term olefin sulfonates is used herein to mean compounds which can be produced by the sulfonation of a-olefins by means of uncomplexed sulfur trioxide, followed by neutralization of the acid reaction mixture in conditions such that any sultones which have been formed in the reaction are hydrolyzed to give the corresponding hydroxy-alkane-sulfonates. The sulfur trioxide can be liquid or gaseous. and is usually. but not necessarily, diluted by inert diluents, for example by liquid S0 chlorinated hydrocarbons, etc., when used in the liquid form, or by air, nitrogen, gaseous S0 etc., when used in the gaseous form.

The a-olefins from which the olefin sulfonates are derived are mono-olefins having 12 to 24 carbon atoms, preferably 14 to 16 carbon atoms. Preferably, they are straight chain olefins. Examples of suitable l-olefins include l-dodecene; l-tetradecene; l-hexadecene; loctadecene; l-eicosene and l-tetracosene.

In addition to the true alkene sulfonates and a proportion of hydroxy'alkanesulfonates, the olefin sulfonates can contain minor amounts of other materials, such as alkene disulfonates depending upon the reaction conditions, proportion of reactants, the nature of the starting olefins and impurities in the olefin stock and side reactions during the sulfonation process.

A specific anionic detergent which has also been found excellent for use in the present invention is described more fully in the U.S. Pat. 3,332,880 of Phillip F. Pflaumer and Adrian Kessler, issued July 25, 1967, titled Detergent Composition, the disclosure of which is incorporated herein by reference.

Of all the above-described types of anionic surfactants, preferred types include (a) the sodium and potassium salts of fatty alcohols, said alcohols containing from about 8 to 18 carbon atoms; (b) the sodium and potassium salts of alkyl benzene sulfonic acids in which the alkyl group contains from about 9 to 20 carbon atoms; (0) the sodium and potassium salts of sulfuric acid esters of the reaction product of one mole of a higher fatty alcohol containing from about 8 to 18 carbon atoms with from 1 to about 6 moles of ethylene oxidc: (d) compounds of the formula:

OER:

R CH CH. ,SO- ,M

wherein R is alkyl of about 9 to 23 carbon atoms. R is alkyl of l to about 8 carbon atoms and M is a water-soluble cation selected from the group consisting of sodium, potassium, lithium, ammonium and substituted ammonium; (e) compounds of the formula:

i R CH l OR wherein R is an alkyl group of about 8 to 20 carbon atoms, R is an alkyl group of l to about 4 carbon atoms, and M is a water-soluble cation selected from the group consisting of sodium.potassium, lithium, ammonium and substituted ammonium; (f) compounds of the formula:

wherein R is a linear alkyl group of from about 6 to 20 carbon atoms, R is an alkyl group of from 1 to about 3 carbon atoms and M is a water-soluble cation selected from the group consisting of sodium, potassium, lithium, ammonium and substituted ammonium; (g) olefin sulfonates containing from about 12 to 24 carbon atoms; and (h) mixtures of these types of anionic surfactants.

Additional Components of the Spray-Dried Granules In addition to the anionic surfactant, the spray-dried granules of the instant compositions can optionally contain a wide variety of non-surfactant materials. Most commonly, such granules include inorganic filler materials such as sodium sulfate and processing aids such as alkali metal acetate and silicate salts (particularly sodium acetate and sodium silicate). Although inert, such fillers, stabilizers and processing aids generally comprise most of the spray-dried detergent granule.

Other optional components of the spray-dried granule include such minor materials as brighteners and fluorescers, corrosion inhibiting agents, enzymes, bleaching agents, perfumes, coloring agents and moisture.

Preparation of Spray-Dried Granules 60 CARRIER GRANULES From about 30% to about 80%, preferably from about to about by weight of the instant detergent compositions consist essentially of sodium silicate carrier granules having absorbed therein a nonionic surfactant.

The Sodium Silicate Carrier Material Sodium silicate is a common silicon-containing compound and is available commercially in many different physical and chemical forms. Water-soluble sodium silicate can be crystalline or amorphous, hydrated or anhydrous and can have varying ratios of sodium oxide (Na O) to silica (SiO within its structure.

Sodium silicates operable in the instant invention as carrier material are those which are amorphous in form, contain from about 2% to 12% by weight, preferably from about 4% to 8% by weight. of moisture and have a sodium oxide (Na O) to silica (SiO weight ratio of from about 1:1 to about 1:3.2, preferably from about 1:1.7 to 1:2.3. As will be discussed more fully below, the sodium silicate granules of the instant invention are loaded with a nonionic surfactant to form the carrier granules of the instant detergent composition. Hence, another parameter describing the sodium silicate material of the instant invention is its porosity, i.e. the extent to which nonionic surfactant can be absorbed into the silicate material. In general, the sodium silicate carrier material of the instant invention has a porosity of from about 0.4 to 1.2, preferably from about 0.6 to 1.0. Thus for the loaded carrier granules, the weight ratio of nonionic surfactant to sodium silicate varies between 0.4:1 to 1.2:1, preferably between 0.6:1 to 1.0:1.

The sodium silicate carrier granules of the instant detergent compositions can be prepared from aqueous slurries of sodium silicate material. Any convenient commercially-available form of sodium silicate can be employed. Such starting materials include sodium metasilicate, sodium sesquisilicate, and sodium ortho silicate having sodium oxide to silica weight ratios of from about 1:05 to 1:5.0. Although it is preferred to employ a sodium silicate raw material having the appropriate end product sodium oxide/silica ratio (i.e. 1:1 to 113.2), such ratios can be altered during preparation of the carrier granule by utilization of appropriate amounts of caustic or silicon dioxide in the aqueous silicate slurry during granule preparation. A highly preferred sodium silicate starting material for preparation of the instant carrier granules is Britesil CA sodium silicate marketed by the Philadelphia Quartz Company. This material has a sodium oxide/silica weight ratio of about 1:1.8.

The instant carrier granules can be prepared from the sodium silicate starting material by flashing an aqueous liquid dispersion or suspension of the sodium silicate starting material followed by airdrying of the resulting amorphous sodium silicate to yield sodium silicate of the proper moisture content and porosity. The aqueous slurry flashed in this manner generally comprises from about 45% to about 80% by weight sodium silicate, preferably about by weight sodium silicate.

Flashing of the aqueous liquid dispersion or suspension involves superheating the water in the aqueous dispersion or suspension and subsequently forcing such a heated dispersion from a zone of relatively high pressure into a static unheated expansion zone of relatively low pressure. The process of flashing the sodium silicate slurry is described in greater detail in US. Pat. Nos. 3,450,494 and 3,674,700, incorporated herein by reference.

The sodium silicate material resulting from the above-described flashing operation is in the form of solid amorphous material having a moisture content of from about 15% to about 30% by weight. In order to prepare sodium silicate having the desired moisture content and porosity for use in the instant detergent compositions, this flashed material can be dried in conventional air-drying apparatus to reduce the moisture content of the carrier material to within the requisite range of from about 2% to about 12% by weight of sodium silicate. Such a drying operation yields amorphous sodium silicate having aa porosity within the 0.4 to 1.2 range specified above. Drying of the flashed sodium silicate with gases rich in carbon dioxide is preferably avoided inasmuch as CO tends to produce waterinsoluble silicates during the drying process.

Sodium silicate prepared in this manner and having the above-specified physical and chemical characteristics is utilized in the form of particles varying in size between 149 microns to 1410 microns, preferably between 300 microns and 1000 microns. Sodium silicate particles of this size can be obtained by grinding the dried sodium silicate followed by conventional screening of the ground material.

The Nonionic Surfactant The sodium silicate carrier granules prepared as described above are loaded with a nonionic surfactant compound to form the nonionic surfactant-containing carrier granules of the instant detergent compositions. Operable nonionic surfactants of the instant invention are those compounds derived by the condensation of an alkylene oxide (hydrophilic in nature) with an organic hydrophobic compound, which is usually aliphatic or alkyl aromatic in nature. The length of the hydrophilic or polyoxyalkylene moiety which is condensed with any particular hydrophobic compound can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements. Examples of suitable nonionic surfactants are:

l. The polyethylene oxide condensates of alkyl phenols. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to 12 carbon atoms in either a straight chain or branched chain configuration, with ethylene oxide, the said ethylene oxide being present in amounts equal to to 25 moles of ethylene oxide per mole of alkyl phenol. The alkyl substituent in such compounds may be derived, for example, from polymerized propylene, diisobutylene, octene, or nonene. Examples of compounds of this type include nonyl phenol condensed with about 9.5 moles of ethylene oxide per mole of nonyl phenol, dodecyl phenol condensed with about 12 moles of ethylene oxide per mole of phenol, dinonyl phenol condensed with about 15 moles of ethylene oxide per mole of phenol, di-isooctylphenol condensed with about 15 moles of ethylene oxide per mole of phenol. Commercially available nonionic-surfactants of this type include lgepal CO-630 marketed by the'GAF Corporation; and Triton X-45, X-l 14', X-lOO and X- 102, all marketed by the Rohm and Haas Company.

2. The condensation products of aliphatic alcohols with ethylene oxide. The alkyl chain of the aliphatic alcohol may either be straight or branched and generally contains from about 8 to about 22 carbon atoms. Examples of such ethoxylated alcohols include the condensation product of about 6 moles of ethylene oxide with 1 mole of tridecanol, myristyl' alcohol condensed with about 10 moles of ethylene oxide per mole of myristyl alcohol, the condensation product of ethylene oxide with coconut fatty alcohol wherein the coconut alcohol is a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms in length and wherein the condensate contains about 6 moles of ethylene oxide per mole of alcohol, and the condensation product of about 9 moles of ethylene oxide with the above-described coconut alcohol. Examples of commercially available nonionic surfactants of this type include Tergitol l5-S-9, Tergitol 15-5-7 and Tergitol 3- A-6, all marketed by the Union Carbide Corporation. Neodol 23-6.5, Neodol 25- 7 and Neodol 25-9, all marketed by the Shell Chemical Company and Kyro EOB marketed by The Proctor & Gamble Company.

3. The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol. The hydrophobic portion of these compounds has a molecularweight of from about 1500 to 1800 and of course exhibits water insolubility. The addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water-solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation product. Examples of compounds of this type include certain of the commercially available Pluronic surfactants marketed by the Wyandotte Chemicals Corporation.

4. The condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamine. The hydrophobic base of these products consists of the reaction product of ethylene diamine and excess propylene oxide, said base having a molecular weight of from about 2500 to about 3000. This base is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 1 1,000. Examples of this type of nonionic surfactant include certain of the commercially available Tetronic compounds marketed by the Wyandotte Chemicals Corporation.

For use in the detergent compositions of the instant invention, the particular nonionic surfactant employed must have a hydrophilic-lipophilic balance (HLB) of from about 8 to about 15, preferably from about 10 to 14. Specific preferred nonionic surfactants within the range include the condensation product of one mole of Highly preferred nonionic surfactants are the condensation product of one mole of coconut fatty acid with about 6 moles of ethylene oxide and Neodol 23-65. Neodol 23-65 is a nonionic detergent which is a condensation product of 1 mole of primary alcohol containing from l2 to 3 carbon atoms and an average of 6.5 ethylene oxide units. Neodol 25-7 is a nonionic detergent which is a condensation product of 1 mole of primary alcohol containing from 12 to carbon atoms and an average of 7 moles of ethylene oxide.

Carrier Granule Loading The above-described nonionic surfactant can be loaded into the above-described sodium silicate carrier granules merely by spraying the surfactant into a rotating drum containing the sodium silicate carrier granules. As noted above, nonionic sufactant is absorbed within the pores of the sodium silicate granules to an extent sufficient to provide a nonionic surfactant- /sodium silicate weight ratio of from about 0.4:1 to about 1.221, preferably from about 0.6:1 to about 1.0: l.

Spraying of the nonionic material onto the carrier granules results in rather inefficient absorption of the nonionic material into the pores of the sodium silicate. In order to enhance absorption of nonionic surfactant into the granule interior and thereby reduce the extent to which the carrier granule is coated with nonionic surfactant, the carrier granules can either be sprayed with nonionic surfactant under vacuum conditions or the granules which have had the nonionic surfactant sprayed onto their surfaces can be subjected to a vacuum. Subsequent exposure of the vacuum treated granules to atmospheric pressure then completes the surfactant loading process. Use of a pressure driving force in this manner promotes the absorption of nonionic surfactant into the carrier granule and thereby improves the flow properties of detergent compositions containing such granules.

Sodium silicate granular particles prepared and loaded in the manner described above provide the means for introducing into the instant detergent compositions the requisite amount of nonionic surfactant. Such loaded carrier granules have excellent flow properties when incorporated into the instant detergent compositions. When the sodium silicate carrier granules have the nonionic surfactant absorbed within the carrier granule interior (as opposed to when carrier granules are merely coated with nonionic surfactant on their surfaces), such granules exhibit little bleeding of the nonionic sufactant and are thus relatively stable and free flowing after storage for extended periods of time.

In a preferred embodiment of the instant invention, bleeding of the nonionic surfactant (and thus deterioration of storage and flow properties of the instant detergent compositions) can be retarded even further by mixing with the liquid nonionic surfactant (before it is introduced into the carrier granules) an agent to harden (i.e. raise the melting point of) the nonionic surfactant. Hardening agents operable in this preferred embodiment of the instant invention are selected from the group consisting of fatty acid amides, fatty acids and mixtures thereof. The acyl moiety of operable fatty acid amides generally contains from about 10 to about 18 carbon atoms, preferably from about 12 to about 16 carbon atoms. Examples of suitable fatty acid amide hardening agents include lauric monoand diethanol amides, stearic monoand diethanol amides, dimethyl lauryl amide, myristic n-methylethanolamide, tallow acyl monoethanolamide, tallow acyl diethanolamide, coconut acyl ethanolamide, and coconut acyl amide. Preferred fatty acid amide hardening agents are those 12 which have 12 to 16 carbon atoms in the acyl group and which are primary amides. These include middle cut coconut acyl primary amide, tallow acyl primary amide, stearic primary amide, palmitic primary amide and oleic primary amide.

Operable fatty acid hardening agents contain from about 8 to about 24 carbon atoms, preferably from about 10 to about 20 carbon atoms. Suitable fatty acids can be obtained from natural sources, such as, for example, plant or animal esters (e.g. palm oil, coconut oil, babassu oil, soybean oil, safflower oil, tall oil, castor oil, tallow, whale and fish oils, grease, lard, and mixtures thereof). The fatty acids can also be synthetically prepared (e.g., by the oxidation of petroleum or by hydrogenation of carbon monoxide via the Fischer- Tropsch process). Examples of suitable fatty acids for use as hardening agents in the instant invention include caproic acid, lauric acid, myristic acid, palmitic acid, stearic acid and palmitoleic acid. Preferred fatty acids include the fatty acids derived from coconut oil and tallow. Examples of commercially available fatty acids for use as hardening agents in the instant invention include C-l05, C-108, C-1 10, T-l0, T-l l and OL-9l0, all marketed by The Procter & Gamble Company, and Hyfac, a hydrogenated fish oil fatty acid marketed by Emery Industries, Inc. Fatty acids are not preferred hardening agents since they tend to render the sodium silicate carrier material less soluble. Generally, therefore, if fatty acids are employed as hardening agents, they are admixed with the above-described amides.

When the optional hardening agent is employed, it is admixed with the liquid nonionic surfactant prior to introducing the nonionic surfactant liquid into the sodium silicate carrier material. Hardening agent is generally added to the nonionic surfactant to the extent of from about 5% to about 25% by weight of the nonionic surfactant-hardening agent mixture. As noted, the function of the hardening agent is to raise the melting point of the nonionic surfactant-hardening agent mixture to thereby improve physical stability of the loaded sodium silicate carrier granules. Accordingly, when such a hardening agent is employed, the surfactanthardening agent mixture is preferably sprayed into the chamber containing the sodium silicate carrier granules (which, as noted. can be vacuum treated) at elevated temperatures, i.e. those temperatures exceeding the melting point of the nonionic surfactant-hardening agent mixture. Generally, such elevated temperatures are above F.

OPTIONAL pH ADJUSTMENT AGENT GRANULE In a preferred embodiment of the instant invention, substances can optionally be added to the mixture of spray-dried and carrier granules which serve to lower the pH of aqueous laundering solutions of the present compositions. Laundering solutions having pHs within the range of from about 7 to 8.5 are desirable from several detergency performance standpoints. Furthermore, solution pHs within the 7 to 8.5 range are desirable to enhance the stain-removal activity of other optional components of the instant composition such as enzymes and organic peraeid bleaches. Such enzyme and bleach materials generally reach their point of maximum effectiveness within this near-neutral pH range.

Since the silicate carrier granule material essentially present in the present composition tends to render laundering solutions of such compositions somewhat component of the instant composition is a solid acidic pH adjustment agent sufficient to lower the pH of a 0.12% by weight aqueous solution of said composition to within the pH range of from about 7 to 8.5. Such a solid acidic pH adjustment agent can be any material which tends to neutralize the silicate-produced alkalinity of solutions of said composition but which does not tend to interact with the dry silicate carrier material to form insoluble material. Thus, operable pH adjustment agents are those solid" organic or inorganic acids or acid mixtures which are in dry or solid form at room temperature, i.e. about 68F.

Examples of suitable pH adjustment agents include citric acid, tannic acid, tartaric acid, oxalic acid, maleic acid, gluconic acid, boric acid, glutamic acid, acetic acid, sulfamic acid, mixtures of citric acid and lauric acid and 'acid salts such as sodium bisulfate and sodium bicarbonate. A highly preferred pH adjustment agent is citric acid by virtue of its relatively low toxicity and its surprising compatibility with the silicate carrier material within the dry composition.

When employed, the optional solid acidic pH adjustment agent comprises from about 1% to 35% by weight, preferably from about to 20% by weight, of the composition of the instant invention. Such materials necessarily do not comprise a portion of either the spray-dried, anionic surfactant-containing granules or the nonionic surfactant-containing silicate carrier granules. Rather the solid acidic pH adjustment agent represents a third distinct type of granular particle which is admixed with the essential spray-dried and carrier granules. The pH adjustment granules are preferably of approximately the same size as the essential spray-dried and carrier-granules, i.e. the ratio of the average pH adjustment agent granule size in microns to the average particle sizes in microns of the spray-dried and loaded carrier granules, preferably falls within the range of from about 0.521 to about 2.0:1.

COMPOSITION PREPARATION The mixed surfactant detergent compositions of the instant invention are prepared simply by admixing the above-described anionic surfactant-containing, spraydried granules and nonionic surfactant-containing carrier granules (and optionally the pH adjustment agent granules) in amounts sufficient to provide the requisite composition concentration of each granule type in the final formulation. It has been surprisingly discovered that under laundering solution conditions provided when compositions of the instant invention are dissolved in water to the extent of from about 0.06% to about 0.18% by weight, detergency performance is maximized when both the amounts of anionic and nonionic surfactant and the weight ratio of nonionic to anionic surfactant fall within particular ranges.

The anionic surfactant concentration within the instant detergent compositions must range from about 3% by weight to about by weight, preferably from about 8% by weight to about 12% by weight. The nonionic surfactant concentration within the instant detergent composition must range from about 17% to about 23% by weight, preferably from about 19% to 21% by weight. The weight ratio of nonionic surfactant to anionic surfactant in the total composition must fall within the range of from about 8:1 to about 1.13:1. Preferably, the weight ratio of anionic to nonionic surfactant varies 14 from about 2.5:] to 1.511, most preferably. it is about 2.011.

It has been further discovered that flow properties of the granular concentrated detergent compositions of the instant invention can be maximized by utilizing spray-dried and carrier granules of approximately the same size. Accordingly. in the instant detergent compositions the ratio of the average particle size in microns of the spray-dried granules to the average particle size in microns of the loaded sodium silicate carrier granules must fall within the range of from about 0.5:1 to about 2.0:1. Preferably, this particle size ratio varies between 08:1 and 1.211.

The detergent compositions of the instant invention are added to water to provide a laundering liquor containing the instant dissolved compositions to the extent of from about 0.06% to about 0.18% by weight. This concentration is approximated when about 0.5 to 1.5 cups of the instant composition are added to the 17-23 gallons of water generally held by commercially-available washing machines. Washing solution pH provided by the instant compositions generally varies between 7.5 and 10. When no pH adjustment agent is employed. washing solution pH generally varies between 9.5 and 10.5. Optional low pH embodiments generally provide washing solution pH's between 7 and 8.5. Soiled fabrics are added to the laundering liquor and cleansed in the usual manner.

The mixed surfactant granular detergent compositions of the instant invention are illustrated by the following examples EXAMPLE 1 SPRAY-DRIED GRANULE Component Wt. of Granule Sodium tallow alkyl sulfate 20% Sodium sulfate 74% Water 6% Average granule size (microns) 500 The sodium silicate carrier granules have the following composition:

CARRIER GRANULE Component Wt. of Granule Sodium silicate (N21 O/SiO wt. ratio 122.0; 50%

7% by wt. bound moisture) Condensation product of one mole of secondary aliphatic alcohol containing about 15 carbon atoms with about 9 moles of ethylene oxide (HLB 13.3) 50% Wt. ratio surfactant/carrier 1:1

Average granule size (microns) 500 These two granule types are admixed to form a granular composition containing 40% by weight of the composition of the loaded nonionic granules and by weight of the composition of the spray-dried granules. Anionic surfactant concentration in the composition is thus 12% by weight of the composition. Nonionic surfactant concentration in the composition is thus by weight of the composition. The weight ratio of nonionic surfactant/anionic surfactant in the composition is 1.66:1. The ratio of average particle sizes of the two granule types is 1:1.

Such a composition provides excellent fabric cleaning when dissolved in conventional laundering solution to the extent of about 0.11% by weight (0.9 cup/17-23 gal. wash water). The composition, furthermore, has excellent flow properties and exhibits minimal bleeding from the carrier granule upon prolonged storage.

Substantially similar performance results and physical properties are realized when the sodium tallow alkyl sulfate in the Example 11 composition is replaced with an equivalent amount of sodium linear alkyl benzene sulfonate wherein the alkyl chain averages about 12 carbon atoms in length; 3-acetoxytridecane-l-sulfonic acid; sodium methyl-a-sulfopalmitate; sodium B- methoxyoctadecylsulfonate; sodium coconut alkyl ethylene glycol ether sulfonate; the sodium salt of the sulfuric acid ester of the reaction product of one mole of tallow alcohol and three moles of ethylene oxide; or mixtures of these surfactants.

Substantially similar performance results and physical properties are realized when the secondary alcohol condensation product in the Example I composition is replaced with an equivalent amount of the condensation product of one mole of nonyl phenol with about 9.5 moles of ethylene oxide (HLB 13.5 the condensation product of one mole of tallow fatty alcohol with about 11 moles of ethylene oxide (HLB 12.98), Neodol 23-6.5 (HLB =12.0).Neodol-9 (HLB 13.1 Pluronic L-43 (HLB 12.0), Triton X-45 (HLB 10.4), Tetronic 1504 (HLB 12.5), Tergitol 15-S-9 (HLB 13.3), or Kyro EOB (HLB =13.3).

EXAMPLE 11 SPRAY-DRIED GRANULE Component Wt. of Granule Sodium linear alkyl benzene sulfonate wherein the alkyl group averages about 11.8 carbon atoms in length 18.18% Sodium silicate (Na O/SiO wt. ratio 1:2.4) 5.0% Sodium sulfate 65.59% Sodium acetate 5.0% Brighteners 1.23% Moisture 5.0%

Average granule size (microns) 500 microns The sodium silicate carrier granules have the following composition:

CARRIER GRANULES Component Sodium silicate (Na O/SiO wt. ratio 121.8; 4% wt. bound moisture) 51.12% Condensation product of about 6 moles of ethylene oxide with coconut fatty alcohol (HLB 12.0) 44.44% Middle cut coconut alkyl primary amide Wt. of Granule CARRIER GRANULES-continued Wt. ofGranulc The two granule types are admixed to form a granular composition containing 45% by weight of the composition of the loaded carrier granules and 55% by weight of the composition of the spray-dried granules. Anionic surfactant concentration in the composition is thus 10% by weight of the composition. Nonionic surfactant concentration in the composition is thus 20% by weight of the composition. The weight ratio of nonionic surfactant to anionic surfactant in the composition is 2:1. The hardening agent comprises 9.2% by weight of the nonionic-hardening agent mixture. The ratio of average particle sizes of the two granule types is 1:1.

Such a composition provides excellent fabric cleaning when dissolved in conventional laundering solution to the extent of about 0.1 1% by weight (0.9 cup/17-23 gal. wash water). The composition, furthermore, has excellent flow properties and exhibits minimal bleeding from the carrier granule upon prolonged storage.

Substantially similar performance results and physical properties are realized when in the Example 11 composition the sodium linear alkyl benzene sulfonate is replaced with an equivalent amount of sodium tallow alkyl sulfate; sodium 2-acetoxytridecane-l-sulfonate; sodium methyl-a-sulfopalmitate; sodium B-methoxyoctadecylsulfonate; sodium coconut alkyl ethylene glycol ether sulfonate; the sodium salt of the sulfonic acid ester of the reaction product of one mole of tallow alcohol and three moles of ethylene oxide; or mixtures of these surfactants.

Substantially similar performance results and physical properties are realized when the coconut alcohol condensation product in the Example 11 composition is replaced with an equivalent amount of the condensation product of one mole of secondary fatty alcohol containing about 15 carbon atoms with about 9 moles of ethylene oxide (HLB 13.3 the condensation product of one mole of nonyl phenol with about 9.5 moles of ethylene oxide (HLB 13.5), the condensation product of one mole of tallow fatty alcohol with about 11 moles of ethylene oxide (HLB 12.98), Neodol 23-65 (HLB 12.0), Neodol 25-9 (HLB =13.1), Pluronic L-43 (HLB 12.0), Triton X-45 (HLB 10.4), Tetronic 1504 (HLB 12.5), Tergitol 15-S-9 (HLB 13.3) or Kyro EOB (HLB 13.3)

Substantially similar storage stability and flow properties are realized when in the Example 11 compositions, the middle coconut alkyl primary amide hardening agent is replaced with an equivalent amount of tallow acyl primary amide, stearic primary amide, palmitic primary amide, oleic primary amide, tallow acyl monoethanolamide, tallow acyl diethanolamide, tallow fatty acid, coconut fatty acid or mixtures of these hardening agents.

EXAMPLE III A phosphate-free, low-pH granular detergent composition is prepared by admixing spray-dried granular particles containing anionic surfactant, sodium silicate granules having nonionic surfactant absorbed within 17 the pores of the silicate carrier material and acidic pH adjustment agent granules.

The spray-dried granules have the following composition:

SPRAY-DRIED GRANULE Component Wt. "/1 of Granule Sodium linear alkyl benzene sull'onate wherein the alkyl group averages about 11.8 carbon atoms in length 24.39071 Sodium silicate (Na OISiO wt. ratio 112.4) 6.707% Sodium acetate 20.0007: Sodium sulfate 43.25471 Brighteners 1.649'71 Moisture 4.000%

Average Granule Size (microns) 500 microns The nonionic surfactant-containing sodium silicate carrier granules have the following composition:

CARRIER GRANULES Component Sodium silicate (Na O/SiO wt. ratio 121.8; 4% wt. bound moisture) 51.11 "/1 Condensation product of about 6 moles of ethylene oxide with coconut fatty alcohol (HLB 12.0) 44.44571 Middle cut coconut alkyl primary amide 4.445'71 Wt. ratio nonionic/silicate 0.867 Average granule size (microns) 500 The acidic pH adjustment agent granules have the following composition:

pH ADJUSTMENT AGENT GRANULES Component Wt. /z of Granule Citric acid Average Granule Size (microns) 500 microns cal properties are realized when the coconut alcohc Wt. 7! of Granule 10% by weight of the composition. Nonionic surfactant concentration in the composition is thus 20% by weight of the composition. The weight ratio of nonionic surfactant to anionic surfactant in the composition is 2:1. The hardening agent comprises 9.1% by weight of the nonionic-hardening agent mixture. The ratio of average particle sizes of the three granule types is 121:1.

Such a composition provides excellent low-pH fabric cleaning when dissolved in conventional laundering solution to the extent of about 0.1 1% by weight (0.9 cup/- 17-23 gal. wash water). The composition, furthermore, has excellent flow properties and exhibits minimal bleeding from the carrier granule upon prolonged storage.

Substantially similar performance results and physical properties are realized when in the Example 111 composition the sodium linear alkyl benzene sulfonate is replaced with an equivalent amount of sodium tallow alkyl sulfate; sodium 2-acetoxytridecane-l-sulfonate; sodium methyl-a-sulfopalmitate; sodium B-methoxyoc- 'tadecylsulfonate; sodium coconut alkyl ethylene glycol condensation product of the Example 111 composition i replaced with an equivalent amount of the condensa tion product of one mole of secondary fatty alcohc containing about 15 carbon atoms with about 9 mole of ethylene oxide (HLB 13.3), the condensatio: product of one mole of nonyl phenol with about 9.. moles of ethylene oxide (HLB 13.5), the condensa tion product of one mole of tallow fatty alcohol witl about 11 moles of ethylene oxide (HLB 12.98). Neo dol 23-6.5 (HLB 12.0), Neodol 25-9 (HLB 13.1]

Pluronic- L-43 (HLB 12.0), Triton X-45 (HLB 10.4), Tetronic 1504 (HLB 12.5), Tergitol l5-S- (HLB 13.3) or Kyro EOB (HLB 13.3).

Substantially similar storage stability and flow prop erties are realized when in the Example Ill composi tions, the middle coconut alkyl primary amide harden ing agent is replaced with an equivalent amount of tal low acyl primary amide, stearic primary amide, palmi tic primary amide, oleic primary amide, tallow acy monoethanolamide. tallow acyl diethanolamide, tallov fatty acid, coconut fatty acid or mixtures of these hard ening agent.

Substantially similar performance results and physi cal properties are realized when the citric acid pH ad justment agent in the Example [[1 composition is re placed with-an equivalent amount of tannic acid, tar taric acid, maleie acid, gluconic acid. boric acid, glu tamic acid, acetic acid, sulfamic acid. oxalic acid. mix tures of citric acid and lauric acid, sodium bisulfate 0 sodium bicarbonate.

CLEANING PERFORMANCE TEST The ability of the compositions of the instant inven tion to clean fabrics is demonstrated by a cleaning per formance test. Such a test involves measurement of re moval of a particular type of soil from standard polyes ter/cotton swatches using laundering solutions contain ing the instant detergent compositions. The swatche tested are soiled with a mixture of air conditioner filte soil and an artificial lipid soil consisting of equal weigh parts of oleic acid, octadecane and trioleum. Such soil mixture simulates the type and amount of particu late and oily material commonly encountered in th( washing liquor when a typical household laundry bun dle iswashed.

Swatches are washed in a mini-washer for 10 minute under typical U.S. laundering conditions (F., grains/gal. hardness). The laundering solution contain 0.12% by weight of the composition to be tested (cor responding to a concentration to about 1 cup/17-l. gallons of water).

Increase in swatch whiteness is taken as an accuratt indication of the effectiveness of soil removal by solu tions of the detergent compositions tested. Whitenes increase is measured by means of a commercially avail able, photoelectric trichromatic colorrneter, i.e. a Hun ter Color and Color Difference Meter manufactured b Henry A. Gardner Laboratory, Inc. Hunter Mete whiteness measurements, confirmed by visual evalua tion, indicate that compositions of the instant inventiot having the particular essential anionic and nonionit surfactant levels and anionic/nonionic surfactan weight ratios (the Examples" and [I compositions) provide excellent removal of the air conditioner filter soil/artificial lipid soil mixture from the swatches. Compositions having anionic and nonionic surfactant levels and/or nonionic/anionic weight ratios outside those of the instant invention are less effective in such soil removal as determined by the above-described test.

STORAGE STABILITY TEST mine (1) how well the compositions flow from the cartons when poured, (2) the extent to which liquid nonionic surfactant is wicking into the container cardboard. and (3) composition solubility in water.

Comparisons of these factors are made between the composition of Examples [I and Ill above and l similar compositions which have substantial amounts of nonionic surfactant adsorbed on the surfaces of the carrier granules, (2) similar compositions which have nonionic surfactant loaded into the sodium silicate carrier granules at higher levels than those of the instant invention, and (3) compositions of the instant invention which have no hardening agent added to the nonionic surfactant.

Such storage tests indicate that the compositions of the instant invention (Examples ll. lll and IV) having the nonionic surfactant absorbed within the pores of the sodium silicate carrier material are superior in flowability and wicking performance to similar compositions having nonionic surfactant adsorbed on the surfaces of the sodium silicate carrier material.

Compositions of the instant invention (including those of Examples ll, Ill and IV) having nonionic surfactant/sodium silicate weight ratios within the specified 0.4:l to l.2:l range are superior in flowability and wicking properties to similar compositions having nonionic surfactant/sodium silicate weight ratios above thisrange.

A preferred embodiment of the instant invention containing an amide hardening agent in the nonionic surfactant (Example ll. Ill and IV compositions) is superior in wicking performance to similar compositions not employing such a hardening agent.

After such storage tests, compositions of the instant invention demonstrate flow properties. wicking performance properties, and product solubility which meet standards of consumer acceptability.

What is claimed is:

l. A granular detergent composition consisting essentially of:

A. from about to 70% by weight of the composition of spray-dried granules comprising from about 5% to about 40% by weight of said spray-dried granules of an anionic surfactant; and

B. from about 30% to 80% by weight of the composition of nonionic surfactant-containing carrier granules comprising:

i. a water-soluble, porous amorphous sodium silicate carrier material having a weight ratio of 20 Na O to SiO of from about l:l to 1:32 and a moisture content of from about 2% to about 12% by weight of the sodium silicate; and ii. a nonionic surfactant derived by the condensation of alkylene oxide with an organic hydro-' philic compound and having a hydrophilic-lipophilic balance between 8 and 15, said nonionic surfactant being absorbed within the pores of said sodium silicate carrier material in an amount sufficient to provide a weight ratio of nonionic surfactant to silicate carrier material of from about 0.4:l to 12:1; said spray-dried granules and said nonionic surfactantcontaining carrier granules being present in said detergent composition in amounts sufficient to provide an anionic surfactant concentration within said composition of from about 3% by weight to about 15% by weight; a nonionic surfactant concentration within said composition of from about 17% to about 23% by weight and a nonionic surfactant to anionic surfactant weight ratio of from about 8zl to about 1.13: l the ratio of the average particle sizes of said spray-dried granules and said anionic surfactant-containing carrier granules varying between 0.5:] to 20:1.

2. A composition in accordance with claim 1 wherein the anionic surfactant is selected from the group consisting of a. the sodium and potassium salts of sulfated fatty alcohols, said alcohols containing from about 8 to 18 carbon atoms;"

b. the sodium and potassium salts of alkyl benzene sulfonic acids in which the alkyl group contains from 9 to 20 carbon atoms;

c. the sodium and potassium salts of sulfuric acid esters of the reaction product of one mole ofa higher fatty alcohol containing from about 8 to 18 carbon atoms with from 1 to about 6 moles of ethylene oxide;

d. compounds of the formula R, CH CH SO M.

wherein R, is alkyl of about 9 to 23 carbon atoms, R is alkyl of l to about 8 carbon atoms and M is a water-soluble cation selected from the group consisting of sodium. potassium, lithium, ammonium and substituted ammonium;

e. compounds of the formula:

R CH C OR SO;,M

wherein R is an alkyl group of about 8 to 20 carbon atoms, R is an alkyl group of l to about 4 carbon atoms, and M is a water-soluble cation selected from the group consisting of sodium, potassium. lithium, ammonium and substituted ammonium; f. compounds of the formula wherein R is a linear alkyl group of from about 6 to 20 carbon atoms, R is an alkyl group of from 1 to about 3 carbon atoms, and M is a water-soluble cation selected from the group consisting of sodium. potassium, lithium, ammonium and substituted ammonium; and

g. olefin sulfonates containing from about 12 to 24 carbon atoms; and

wherein the nonionic surfactant has a hydrophilic-lipophilic balance between about and 14."

3. A composition in accordance with claim 2 wherein a. the ratio of sodium oxide to silicate in the sodium silicate carrier material ranges from about 111.7 to

b. the sodium silicate carrier material contains from about 4% to about 8% moisture on a silicate-mois ture basis;

c. the weight ratio of absorbed nonionic surfactant to sodium silicate carrier material ranges from about 0.611 to about 1.021; and

d. the weight ratio of nonionic surfactant to anionic surfactant in the detergent composition ranges from about 1.5:1 to 2.521.

4. A composition in accordance with claim 3 wherein a. the anionic surfactant is selected from the group consisting of sodium linear alkyl benzene sulfonate wherein the alkyl chain averages from about 10 to 18 carbon atoms in length, sodium tallow alkyl sulfate; sodium 2-acetoxy-tridecane-l-sulfonate; sodium methyl-a-sulfopalmitate; sodium B-methoxyoctadecylsulfonate; sodium coconutalkyl ethylene glycol ether sulfonate; the sodium salt of the sulfuric acid ester of the reaction product of one mole of tallow alcohol and three moles of ethylene oxide; and mixtures thereof, and

b. the nonionic surfactant is selected'from the group consisting of the condensation product of one mole of secondary fatty alcohol containing about carbon atoms with about 9 moles of ethylene oxide. the condensation product of one mole of nonyl phenol with about 9.5 moles of ethylene oxide. the condensation product of one mole of coconut fatty acid with about 6 moles of ethylene oxide, the condensation product of one mole of tallow fatty alcohol with about 11 moles of ethylene oxide, a condensation product of one mole of primary alcohol containing from 12 to 13 carbon atoms and an average of 6.5 moles of ethylene oxide, a condensation product of one mole of primary alcohol containing from 12 to 15 carbon atoms and an average of 7.0 moles of ethylene oxide.

5. A composition in accordance with claim 4 wherein the anionic surfactant is sodium linear alkyl benzene sulfonate with the alkyl group averaging about 12 carbon atoms in length, and wherein the nonionic surfactant is selected from the group consisting of the condensation product of one mole of coconut fatty alcohol and with about 6 moles of ethylene oxide and a condensation product of one mole of primary alcohol containing from 12 to 13 carbon atoms and an average of 6.5 moles of ethylene oxide.

6. A composition in accordance with claim 2 wherein the nonionic surfactant contains a hardening agent selected from the group consisting of fatty acid amides containing from about 10 to about 18 carbon atoms in the fatty acid acyl'moiety; fatty acids containing from about 8 to about 24 carbon atoms and mixtures thereof; said hardening agent being present in the nonionic surfactant to the extent of from about 5% to about 25% by weight of the nonionic surfactant-hardening agent mixture.

7. A composition in accordance with claim 6 wherein a. the ratio of sodium oxide to silicate in the sodium silicate carrier material ranges from about l:l.7 to

b. thesodium silicate carrier material contains from about 4% to about 8% by weight moisture on a sili- Cate-moisture basis;

c. the weight ratio of absorbed nonionic surfactant to sodium silicate carrier material ranges from about 0.6:1 to about 1.0:1; and l d. the'weight ratio of nonionic surfactant to anionic surfactant in the detergent composition ranges from about 1.5:1 to 2.521.

8. A composition in accordance with claim 7 wherein a. the anionic surfactant is selected from the group consisting of sodium linear alkyl benzene sulfonate wherein the alkyl chain averages from about 10 to 18 carbon atoms in length. sodium tallow alkyl sulfate; sodium 2-acetoxy-tridecane-l-sulfonate; sodium methyl-a-sulfopalmitate; sodium B-methoxyoctadecylsulfonate; sodium coconut alkyl ethylene glycol ether sulfonate; the sodium salt of the sulfuric acid ester of the reaction product of one mole of tallow alcohol and three moles of ethylene oxide; and mixtures thereof; and

b. the nonionic surfactant is selected from the group consisting of the condensation product of one mole of secondary fatty alcohol containing about 15 carbon atoms with about 9 moles of ethylene oxide. the condensation product of one mole of nonyl phenol with about 9.5 moles of ethylene oxide, the condensation product of one mole of coconut fatty acid with about 6 moles of ethylene oxide, the condensation product of one mole of tallow fatty alcohol with about 11 moles of ethylene oxide, a condensation product of one mole of primary alcohol containing from 12 to 13 carbon atoms and an average of 6.5 moles of ethylene oxide. a condensation product of one mole of primary alcohol containing from 12 to 15 carbon atoms and an average of 7.0 moles of ethylene oxide.

9. A composition in accordance with claim 7 wherein the hardening agent is a primary fatty acid amide containing from about 12 to 16 carbon atoms in the fatty acid acyl group.

10. A composition in accordance with claim 9 wherein a. the spray-dried granules comprise from about 40% to about 55% by weight of the composition and the anionic surfactant comprises from about 15% to about 25% by weight of the spray-dried granules;

b. the sodium silicate carrier granules comprise from about 45% to about 55% by weight of the composition;

0. the anionic surfactant concentration in the composition ranges between 8% and 12% by weight of the total composition;

(1. the nonionic surfactant concentration in the composition ranges between 19% and 21% by weight of the total composition; and

e. the ratio of the average particle sizes of the spraydried granules and the nonionic surfactant-containing carrier granules varies between about 0.1:] and 1.2:].

11. A composition in accordance with claim wherein a. the anionic surfactant is sodium linear alkyl benzene sulfonates with the alkyl group averaging about 12 carbon atoms in length;

b. the nonionic surfactant is selected from the group consisting of the condensation product of about 6 moles of ethylene oxide with one mole of coconut fatty alcohol, and a condensation product of one mole of primary alcohol containing from 12 to 13 carbon atoms and an average of 6.5 moles of ethylene oxide;

c. the hardening agent is selected from the group consisting of middle cut coconut acyl primary amide, tallow acyl primary amide. stearic primary amide. palmitic primary amide and oleic primary amide; and

d. the weight ratio of nonionic surfactant to anionic surfactant in the composition is about 2.0:].

12. A composition in accordance with claim 2 which additionally contains from about 1% to 35% by weight of the composition of solid acidic pH adjustment agent granules sufficient to lower the pH of a 0.12% by weight aqueous solution of said composition to within the pH range of from about 7 to 8.5.

13. A composition in accordance with claim 6 which additionally contains from about 1% to 35% by weight of the composition of solid acidic pH adjustment agent granules sufficient to lower the pH of a 012% by weight aqueous solution of said composition to within the pH range of from about 7 to 8.5.

14. A composition in accordance with claim 9 which additionally contains from about 10% to 20% by weight of the composition of solid. acidic pH adjustment agent granules, said pH adjustment agent being selected from the group consisting of citric acid, tannic acid, tartaric acid, maleic acid, gluconic acid, boric acid, glutamic acid, acetic acid, sulfamic acid, oxalic acid, mixtures of citric acid and lauric acid, sodium bisulfate and sodium bicarbonate.

15. A composition in accordance with claim 11 which additionally contain from about 10% to 20% by weight of the composition of citric acid pH adjustment agent granules; the ratio of the average citric acid granule size to the average particle size of the spray-dried and loaded carrier granules falling within the range of from about 0.5:] to about 2.0:].

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent; No, 5,920,586 Dated November 18,

Inventor(s) Leo R. Bonaparte et al. Page 1 of 2 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 9, line 16, "aa" should read a Column 9, line 32, "loaded" should read "loaded" 3* Column ll, line 2, "5" should read l5 Column 11, line 10, "loaded" should read "loaded" Column 18 should read as shown below:

ether sulfonate; the sodium salt of the sulfonic acid ester of the reaction product of one mole of tallow alcohol and three moles of ethylene oxide; or mixtures of these surfactants. 5 Substantially similar performance results and physical properties are realized when the coconut alcohol condensation product of the Example lll composition is replaced with an equivalent amount of the condensation product of one mole of secondary fatty alcohol containing about carbon atoms with about 9 moles of ethylene oxide (HLB 13.3), the condensation product of one mole of nonyl phenol with about 9.5 0 moles of ethylene oxide (HLB 13.5), the condensation product of one mole of tallow fatty alcohol with about ll moles ofethylene oxide (HLB 12.98), Neodol 23 65 (HLB 12.0), Neodol 25-9 (HLB 13.1), Pluronic L-43 (HLB 120), Triton X-45 (HLB l0.4), Tetronic 1504 (HLB 12.5), Tergitol l5-S-9 (HLB l3.3) or Kyro EOB (HLB 13.3). Substantially similar storage stability and flow properties are realized when in the Example lll compositions, the middle coconut alkyl primary amide hardening agent is replaced with an equivalent amount of tallow acyl primary amide, stearic primary amide, palmitic primary amide. oleic primary amide, tallow acyl monoethanolamide, tallow acyl diethanolamide, tallow fatty acid. coconut fatty acid or mixtures of these hardening agent.

Substantially similar performance results and physical properties are realized when the citric acid pl-l adjustment agent in the Example lll composition is replaced with an equivalent amount of tannic acid, tartaric acid, malcic acid, gluconic acid. boric acid, glutamic acid. acetic acid, sulfamic acid, oxalic acid, mix- Q turcs of citric acid and lauric acid, sodium bisulfate or sodium bicarbonate.

UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,920,586 Dated November 18,. 1975 Inventor(s) Leo R. Bonaparte et al. Page 2 of 2 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:

Column 18 continued CLEANING PERFORMANCE TEST The ability of the compositions of the instant invention to clean fabrics is demonstrated by a cleaning performance test. Such a test involves measurement of removal ofa particular type of soil from standard polyester/cotton swatches using laundering solutions containing the instant detergent compositions. The swatches tested are soiled with a mixture of air conditioner filter soil and an artificial lipid soil consisting of equal weight parts of oleic acid, octadecane and trioleum. Such a soil mixture simulates the type and amount of particulate and oily material commonly encountered in the washingliquor when a typical household laundry hundle is washed.

Swatches are washed in a mini-washer for 10 minutes under typical U.S. laundering conditions (l0OF., 7 grains/gal. hardness). The laundering solution contains 0.12% by weight of the composition to be tested (corresponding to a concentration to about I cup/l7-l9 gallons of water).

Increase in swatch whiteness is taken as an accurate indication of the effectiveness of soil removal by solutions of the detergent compositions tested. whiteness increase is measured by means ofa commercially available. photoelectric trichromatic colormeter, i.e. a Hun ter Color and Color Difference Meter manufactured by Henry A. Gardner Laboratory. lnc. Hunter Meter Whiteness measurements. confirmed by visual evaluation, indicate that compositions of the instant invention having the particular essential anionic and nonionic surfactant levels and anionic nonionic surfactant Signed and Scaled this Twentieth Day Of July 1976 [SEAL] A ties t:

RUTH C. MASON C. MARSHALL DANN Arresting Officer Commissioner ofPatents and Trademarks

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2522447 *Nov 23, 1948Sep 12, 1950Monsanto ChemicalsDetergent compositions
US3306858 *Jun 17, 1965Feb 28, 1967Economics LabProcess for the preparation of storage stable detergent composition
US3654168 *Jul 28, 1969Apr 4, 1972Conrad J GaiserDetergent composition containing amorphous sodium silicate and method of washing fabric
US3674700 *Apr 14, 1969Jul 4, 1972Gaiser Conrad JDetergent tablet of amorphous sodium silicate having inherent binding properties,containing a surfactant,and method of making such tablet
US3703470 *Oct 6, 1970Nov 21, 1972Chemed CorpStorage stable detergent composition
US3708428 *Jan 24, 1968Jan 2, 1973L McdonaldDetergent compositions containing silica colloids
US3709837 *Dec 30, 1970Jan 9, 1973Philadelphia Quartz CoSpray dried detergents containing sodium-potassium double silicate
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US3960780 *Oct 31, 1975Jun 1, 1976Kao Soap Co., Ltd.Non-caking alkyl ether sulfate-containing detergent composition
US4064063 *Jun 25, 1975Dec 20, 1977Henkel Kommanditgesellschaft Auf AktienProcess for the manufacture of spray dried detergents containing nonionic tensides
US4076643 *Oct 9, 1974Feb 28, 1978Solvay & Cie.Hydroxycarboxylic polymer or copolymer and surfactant
US4457854 *Sep 30, 1982Jul 3, 1984Colgate Palmolive CompanyHigh bulk density carbonate-zeolite built heavy duty nonionic laundry detergent
US4639326 *Jul 3, 1985Jan 27, 1987Lever Brothers CompanyProcess for the preparation of a powder detergent composition of high bulk density
US4675124 *Apr 18, 1986Jun 23, 1987Henkel Kommanditgesellschaft Auf AktienGranular detergent of improved detergency containing 2 ethoxylated alcohols, an ethoxylated amine and an anionic
US4818424 *Apr 29, 1988Apr 4, 1989Lever Brothers CompanyConcurrent; treating composite powder with liquid
US4992079 *Dec 27, 1988Feb 12, 1991Fmc CorporationProcess for preparing a nonphosphate laundry detergent
US5174927 *Sep 6, 1991Dec 29, 1992The Procter & Gamble CompanyDetergent and builders
US5194639 *Sep 6, 1991Mar 16, 1993The Procter & Gamble CompanyPreparation of polyhydroxy fatty acid amides in the presence of solvents
US5254281 *Jan 8, 1992Oct 19, 1993The Procter & Gamble CompanyHardness, lather
US5288431 *Jun 9, 1993Feb 22, 1994The Procter & Gamble CompanyLiquid laundry detergent compositions with silicone antifoam agent
US5332528 *Jun 17, 1993Jul 26, 1994The Procter & Gamble CompanyWith anionic surfactants
US5338486 *Jan 21, 1993Aug 16, 1994The Procter & Gamble CompanyReacting fatty acid ester and N-alkyl glucamine in the presence of fatty alcohol ethoxylate and catalyst
US5338487 *Jan 26, 1993Aug 16, 1994The Procter & Gamble CompanyReacting fatty acid ester and N-alkylglucamine in the presence of catalyst
US5354425 *Dec 13, 1993Oct 11, 1994The Procter & Gamble CompanyTissue paper treated with polyhydroxy fatty acid amide softener systems that are biodegradable
US5380891 *Jun 11, 1993Jan 10, 1995The Procter & Gamble CompanyPhase transfer assisted process for glucamide detergents
US5382375 *Nov 27, 1991Jan 17, 1995Mukunghwa Fats & Oils Co., Ltd.Low pollution powder detergent composition containing fatty acid ester
US5449770 *Jan 14, 1992Sep 12, 1995The Procter & Gamble CompanyReacting N-alkylamine, reducing sugar and pressurized hydrogen in presence of nickel catalyst; colorless, odorless; by-product inhibition
US5454982 *Dec 13, 1994Oct 3, 1995The Procter & Gamble CompanyDetergent composition containing polyhydroxy fatty acid amide and alkyl ester sulfonate surfactants
US5494599 *Apr 9, 1992Feb 27, 1996The Procter & Gamble CompanyAgglomeration of high active pastes to form surfactant granules useful in detergent compositions
US5616277 *Jun 25, 1996Apr 1, 1997The Procter & Gamble CompanyImproved solubility; containing low foam surfactant
US5625098 *Jun 5, 1995Apr 29, 1997The Procter & Gamble CompanyProcess for preparing N-alkyl polyhydroxyalkyl amines in aqueous/hydroxy solvents
US5654192 *Jun 5, 1995Aug 5, 1997Institut Francais Du PetroleComposition containing a surface active compound and glycolipids and decontamination process for a porous medium polluted by hydrocarbons
US5686399 *Feb 5, 1996Nov 11, 1997The Procter & Gamble CompanyApplying a mixture of an arylsulfonic acid, sulfamic acid, an amine oxide, a quaternary ammonium compound and water to a surface
US5700771 *Mar 7, 1995Dec 23, 1997The Procter & Gamble CompanyPolyhydroxy fatty acid amide surfactants in percarbonate bleach-containing compositions
US5723673 *Jun 7, 1995Mar 3, 1998The Procter & Gamble CompanyProcess for preparing amides of N-alkyl polyhydroxyalkyls
US5767057 *Aug 25, 1994Jun 16, 1998Henkel-Ecolab Gmbh & Co. OhgContaining nonionic surfactants and sugar acids or salts of sugar acids with other conventional detergent additives
US5777165 *Jun 7, 1995Jul 7, 1998The Procter & Gamble CompanyProcess for preparing amides of N-alkyl polyhydroxyalkyl amines
US5958864 *Sep 5, 1996Sep 28, 1999Henkel Kommandiggesellschaft Auf AktienProducing free-flowing alkali metal silicate by spray-drying aqueous mixture of amorphous alkali metal silicate and impregnating with aqueous dispersion or solution of detergent components and drying
US5990068 *Mar 10, 1998Nov 23, 1999Amway CorporationPowder detergent composition having improved solubility
US6008174 *Oct 23, 1997Dec 28, 1999Amway CorporationPowder detergent composition having improved solubility
US6060444 *Jun 16, 1997May 9, 2000Ecolab Inc.Polyoxyethylene glycol, sodium carbonate, sequestering agent, and nonionic surfactant; homogenizing, extrusion
US6080711 *Mar 10, 1998Jun 27, 2000Amway CorporationDetergent base that includes phosphate or carbonate carrier; nonionic surfactant as sole detergent surfactant; post-added fumaric acid acidulant and discrete whitening agent particles
US6177397Mar 10, 1997Jan 23, 2001Amway CorporationFree-flowing agglomerated nonionic surfactant detergent composition and process for making same
US6262010Nov 18, 1999Jul 17, 2001Unilever Home & Personal Care Usa, A Division Of Conopco, Inc.Nonionic surfactant component comprising from 20 to 30 wt % of nonionic surfactant on a non-spray-dried particulate sodium sesquicarbonate; sodium salt of a solid water-soluble organic acid.
US6291420 *Jan 27, 1997Sep 18, 2001Rhodia ChimieDetergent,
US6303558May 26, 1998Oct 16, 2001Lever Brothers Co., Division Of ConopcoDetergent composition containing at least two granular components
US6369015Nov 18, 1999Apr 9, 2002Unilever Home & Personal Care, Usa Division Of Conopco, Inc.For use in low-temperature and/or low agitation wash processes, more particularly for washing by hand
US6369020Nov 18, 1999Apr 9, 2002Unilever Home & Personal Care UsaAs laundry detergent
US6673765 *Apr 17, 2000Jan 6, 2004Ecolab Inc.Mixing anionic, cationic, nonionic or amphoteric surfactants, hardeners, metal carbonates and water in extruders, then solidifying to form ductile detergents used for cleaning, rinsing, sanitization, deodorizing, laundering or lubrication
US6746997Sep 3, 2002Jun 8, 2004Church & Dwight Co., Inc.Surfactant blend comprising alkylaryl-o-ethoxylate having relatively low ethoxy content and alkylaryl-o-ethoxylate having relatively high ethoxy content together with their respective sulfates
US7727947 *May 11, 2009Jun 1, 2010The Procter & Gamble CompanyProcess for the preparation of a solid laundry detergent composition comprising light density silicate salt
US7732394 *May 11, 2009Jun 8, 2010The Procter & Gamble Companywith detersive surfactant, sodium carbonate salt, sodium sulphate salt, and sodium tripolyphosphate builder; free from zeolite builder and nonionic detersive surfactants
US7910647 *Jun 8, 2006Mar 22, 2011Henkel Ag & Co. KgaaAdhesion inhibition of microorganisms by non-ionic surfactants
US20120208740 *Feb 13, 2012Aug 16, 2012Chemlink Laboratories, LlcMethod for preparing a solid form of acetic acid and products thereof
EP0200953A2 *Apr 11, 1986Nov 12, 1986Henkel Kommanditgesellschaft auf AktienGranular detergent
EP0354331A1 *Jun 26, 1989Feb 14, 1990Henkel Kommanditgesellschaft auf AktienDetergent additive with improved flushing property
EP1133548A1 Nov 24, 1999Sep 19, 2001Unilever N.V.Detergent compositions in tablet form
EP1566431A1 *Feb 23, 2004Aug 24, 2005THE PROCTER & GAMBLE COMPANYLaundry detergent composition comprising an anionic detersive surfactant sulphamic acid and/or water soluble salts thereof
EP1566432A1 *Feb 23, 2004Aug 24, 2005THE PROCTER & GAMBLE COMPANYLaundry detergent composition comprising an anionic detersive surfactant sulphamic acid and/or water soluble salts thereof
WO1990000189A1 *Jun 26, 1989Jan 11, 1990Henkel KgaaWashing agent additives with improved dispersibility
WO1992018603A1 *Apr 9, 1992Oct 13, 1992Procter & GambleAgglomeration of high active pastes to form surfactant granules useful in detergent compositions
WO1993004153A1 *Aug 11, 1992Mar 4, 1993Procter & GambleProcess for making granular automatic dishwashing detergent
WO1997007194A1 *Aug 6, 1996Feb 27, 1997Artiga Gonzalez Rene AndresMethod of producing an amorphous alkali silicate followed by impregnation
WO1997010325A1 *Sep 5, 1996Mar 20, 1997Artiga Gonzalez Rene AndresMethod for preparing an amorphous alkali silicate with impregnation
WO1997028240A1 *Jan 27, 1997Aug 7, 1997Gilles GuerinSystem containing a non-ionic surfactant and an alkali metal silicate
WO1997033957A1 *Mar 10, 1997Sep 18, 1997Amway CorpPowder detergent composition having improved solubility
WO1997033959A1 *Mar 10, 1997Sep 18, 1997Amway CorpFree-flowing agglomerated nonionic surfactant detergent composition and process for making same
WO1999006517A1 *Jul 29, 1998Feb 11, 1999Aubay EricMethod for preparing a divided solid system based on a non-ionic surfactant and an alkaline metal silicate and use of said system in detergency
WO2000031223A1 *Nov 8, 1999Jun 2, 2000Lever Hindustan LtdGranular detergent components and particulate detergent compositions containing them
WO2005083047A1 *Feb 23, 2005Sep 9, 2005Brooker Alan ThomasLaundry detergent composition comprising an anionic detersive surfactant sulphamic acid and/water soluble salts thereof
WO2005083048A1 *Feb 18, 2005Sep 9, 2005Brooker Alan ThomasLaundry detergent composition comprising an anionic detersive surfactant sulphamic acid and/or water soluble salts thereof
WO2006111260A1 *Mar 31, 2006Oct 26, 2006Henkel KgaaWashing or cleaning agent
Classifications
U.S. Classification510/349, 510/441, 510/324, 510/443, 510/511, 510/351
International ClassificationC11D3/08, C11D1/72, C11D17/00, C11D3/00, C11D1/83
Cooperative ClassificationC11D17/0034, C11D1/72, C11D3/08, C11D1/83
European ClassificationC11D1/83, C11D1/72, C11D3/08, C11D17/00C