Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.


  1. Advanced Patent Search
Publication numberUS3920863 A
Publication typeGrant
Publication dateNov 18, 1975
Filing dateJan 11, 1973
Priority dateMay 6, 1969
Also published asUSB322621
Publication numberUS 3920863 A, US 3920863A, US-A-3920863, US3920863 A, US3920863A
InventorsRobert D Fraik
Original AssigneeMinnesota Mining & Mfg
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Method of providing and developing hidden entries
US 3920863 A
Previous page
Next page
Description  (OCR text may contain errors)

i United States Patent [191 Fraik Nov. 18, 1975 METHOD OF PROVIDING AND DEVELOPING HIDDEN ENTRIES [75] Inventor: Robert D. Fraik, Lincoln Township,

Washington County, Minn.

[44] Published under the Trial Voluntary Protest Program on January 28, 1975 as document no. B 322,621.

Related us. Application Data [60] Division of Ser. No. 23,036, March 26, 1970, Pat. No. 3,725,104, which is a continuation-in-part of Ser. No. 822,287, May 6, 1969, abandoned.

52 US. Cl 427/145; 35/9 R; 101/469; 101/470; 427/150; 250/316 51 Int. Cl. B41M 5/12; B41M 5/18 [58] Field of Search 35/9 R; 101/426, 469, 470;

[56] References Cited UNITED STATES PATENTS 2,168,098 8/1939 Groak 117/36.2 I 2,755,201

7/1956 Webber et a1. 117/36 2,949,381 8/1960 Steinhardt 117/36 3,076,406 2/1963 Florence 101/469 3,170,395 2/1965 Gundlach et a1. 101/469 3,262,386 7/1966 Gordon 101/469 3,363,338 1/1968 Skinner et al 35/36 3,363,556 1/1968 Shely et a1. 101/469 3,386,379 6/1968 Gundlach et a1. 101/469 3,451,143 6/1969 Thomas et a1. 101/469 3,476,578 11/19'69 Brinckman l17/36.2 I 3,481,760 12/1969 Clark et a1...... 117/36 2 3,617,324 11/1971 Thomas 117/1.7 3,632,364 1/1972 Thomas et a1. 117/1,7 3,672,842 ,6/1972 Florin 23/253 TP 3,725,104 4/1973 Fraik 1l7/l.7

Primary Examiner-Michael Sofocleous Attorney, Agent, or FirmAlexander, Sell, Steldt &

. DeLaHunt 57 ABSTRACT Paper-based feedback systems containing hidden 9 Claims, N0 Drawings METHOD OF PROVIDING AND DEVELOPING HIDDEN ENTRIES No. 822,287, filed May 6, 1969, now abondoned.

This invention relates to hidden entry technology.

That is, this invention relates to a method of providing a storable latent image which can easily be developed at a later time. The invention finds utility in education, toys, games, and any other field in whicha latent image or pattern of indicia should be invisible to the naked eye until a desired time (e. g. when the student or player responds or chooses a response to a problem or a game situation). I I

Most of the development inthe field of hidden entry printing hascentered around educational applications. See, for example, U.S. Pat. No. 3,363,336, to B. F. Skinner, issued Jan. 16, 1968. Various training and testing procedures, particularly the more complex ones, require feedback systems. Feedback,has been defined as information transfer from the instructional material to the student after a response is made by the student; see page 1 of a report sponsored by The Southwest Regional Laboratory for. Educational Research & Development (the SWRL), by Joel Strand berg, Ed. D., entitled Feedback Systems for Use with Paper-Based Instructional Products, dated Feb. 14, 1969. Paper-based feedback products are, generally speaking, receptor or copy-sheets, cards, or the like, containing hidden information which can be chemically, or physically revealed. As compared to mechanical or electrical visual devices such as teaching machines, paper-based products are economical and relatively simple to manufacture and use. Some paperbased products are limited to imparting true/false or yes/no feedback and hereinafter are said to have coded feedback capability, others can feed back detailed information, thereby stimulating high levels of reasoning leading to a subsequent response, and hereinafter are said to have latent image feedback capability. In the former systems, only a color code or a property of the ink or background of the receptor sheet is hidden; in the latter, an entire printed text is hidden. Needless to say, latent image feedback capability can be adapted to provide coded feedback capability, but not vice versa. The prior art systems, regardless of feedback capability, are based upon mimeographing, spirit duplicating, electrostatic photocopying, or high-production printing technology. A number of difficult problems are encountered when these techniques are adapted to paper-basedfeedback systems.

One of the most difficult problems is to devise a means for providing a copy or receptor sheet with truly invisible and indetectible latent images or latent coded feedback.

A second, closely related problem is the visibility or legibility of the feedback. The relationship between the first and second problem is this: hidden images or codes which are truly invisible tend to be poorly legible upon development, and, conversely, the more legible or visible feedback systems are not free of visual cues prior to development. In other words, solutions to the-two problems tend to be mutuallyexclusive. 1

A third. problem concerns the efficiency of-obtaining the feedback. The ideal system would be virtually in- I stantaneous. Unfortunately, some chemical systems are slow, involving reaction times of a second or more. When an image is physically hidden by an overlay of ink, varnish, powder or the like, the overlay must be laboriously scraped off or erased, an even slower and certainly more cumbersome process of obtaining feedback than most chemical systems.

A fourthproblem is the adaptabllity of the system to short'runs and small-scale production. Ideally, educa tional tests should be revised frequently and should be economically reproduced in small quantities. Most printing (as opposed to duplicating) methods, even offset and letterpress techniques, require large runs to be economical. I

A fifth problem relates to the extent of adaptation required to convert a printing, mimeographing, duplicating, or photocopying technique to paper-based feedback systems. With some systems, equipment which may already be available to the educational institution cannot be used as such, but must be specially modified in order to produce paper sheets with feedback capability. Ideally, an inexpensive, short-run production system should be capable of being used with unmodified, existing equipment. Likewise, it is obviously desirable that the feedback system be operative using ordinary, untreated paper, and the means for developing, revealing, or activating the feedback should be simple and economical.

Two proposed chemical systems have latent image feedback capability. Both involve revealing the latent image through the use of a chemical pen containing a co-reactant for the active chemical component of the image. In both systems, it is very difficult to avoid the twin dilemma of visible cues prior to image development or illegible images after development. One system utilizes letterpress printing and the other is a spirit duplicating process. The spirit duplicating method has the advantage of being adaptable to short-run production, but it appears to have a tendency to involve long reaction times and to produce rather weakly visible images. The chemistry and procedural steps of spirit duplicating can be found in U.S. Pat. No. 3,076,406, issued Feb. 5, 1963 to Robert T. Florence.

Accordingly, this invention contemplates a paperbased feedback system utilizing hidden entry printing wherein a truly invisible latent image (printed on a receptor sheet by equipment now available and capable of economical short-run production) is rapidly and efficiently made visible with a chemical reactant.

This invention also contemplates a method of providing the feedback system and an easy to use, economically made writing instrument for dispensing the chemical reactant which makes the image visible.

Briefly, this invention involves adapting the technology of thermographic reproduction to paper-based feedback systems. Typical thermographic processes are described in U.S. Pat. No. 3,094,417, issued June 18, 1963 to Workman and U.S. Pat. No. 3,280,735, issued Oct. 25, 1966 to Clark etal. Thev Clark et al process,

ing to the master image is transferred to the receptor sheet.

In the latent image printing process of this invention, the vaporizable, heat transferable chemical alone does not produce a visible image. The vapor condenses on the surface of the receptor, which can consist of an untreated sheet of ordinary bond paper or punchcard stock, and thereby forms a stored, latent image. At a later time, as much as several weeks later, a chemical co-reactant is applied to the image area of the receptor sheet. The two chemicals react almost instantaneously to form a stable, colored complex and the image thereby becomes clearly visible and legible.

It is quite surprising that the thermoplastic reproduction technology of, for example, the Clark et al U.S. Pat. No. 3,280,735 can be adapted to the field of paper-based feedback systems and hidden entry printing. Thermographic systems generally contemplate the use of a coated receptor sheet coated with a normally stably solid imaging reactant (i.e., dye precursor) which is easily vaporized or sublimed, or some other imaging means, e.g. a heat transferable, visible dye, for producing an immediately visible, rather than a latent, image. It would be expected that the heat-transferable chemical condensed on the receptor sheet would have poor storage characteristics, i.e., poor shelf life. It would further be expected that, as compared to spirit systems, a thermographic system would produce an inferior, relatively low-contrast image upon development with a co-reactant, regardless of the chemistry of the system. For example, in the spirit duplicating system referred to previously, the latent image-forming chemical is leached onto the receptor with a solvent, and it would be expected that far more of this chemical would be transferred to the receptor or copy sheet than is the case with heat-transfer systems. Surprisingly, however, the latent images produced by this invention are storable for long periods of time and produce relatively high-contrast visible images upon development.

The preferred method of this invention comprises the following steps:

1. Providing a master or original for reproduction of the latent image: This step essentially involves printing, typing, or otherwise inscribing a master or original sheet with the intelligence which will be contained in the feedback. The image areas of the master will have a greater tendency to absorb heat or infrared energy than the uninscribed or background areas. Generally speaking, white, red and other infrared-reflecting colors provide suitable backgrounds, and black or other infrared absorbing colors provide suitable image areas. The master or original can be inscribed with typing, handwriting, photocopying, printing, or any other method which produces infrared absorbing images and a high contrast with the poorly-absorptive background. Notes or instructions not to be included in the latent image can be inscribed on the surface of the master in non-absorptive colors such as red or white.

2. juxtaposing original or master, vapor-supply medium, and receptor sheet: The imaged original or master is preferably placed on top of a receptor sheet which preferably is already inscribed with visible intelligence. That is, the receptor sheet will normally have been provided, by any suitable method, with visible instructional or other printed information, questions, pictorial representations and the like which will be arranged to be in register with the latent images to be formed. Alternatively, this visible image material can be provided by any means which does not develop the latent image, including the composite master system described subsequently. The background areas of the receptor sheet can be any color which provides high contrast with this visible material and the developed latent image, e.g. white or yellow. The most economical type of receptor sheet would consist essentially of ordinary bond paper, punchcard stock, or the like free of special coatings or other expensive treatments. However, the invention is not limited to untreated receptor sheets. Coatings or other treatments which do not render visible the latent image are consistent with the objectives of this invention. See, for example, U.S. Pat. No. 3,481,759 to D. A. Ostlie, issued Dec. 2, 1969, which describes the use of zinc salts in receptor sheet coatings. Zinc salts react with dithiooxamide or its derivatives to produce white or colorless complexes which are substantially invisible on a white background. It is also known that gallic acid and gallic acid esters, pyrogallol, catechol, and similar polyhydroxy benzene compounds form weak, colorless complexes with nickel salts. Interposed between the original or master and the receptor sheet is a layer of normally stably solid vaporizable reactant material, such as dithiooxamide, its derivatives, esters of gallic acid, and other materials described hereinafter. The layer can be in the form of a separate vapor supply sheet or a coating on the reverse side of the original. That is, the imaged original may comprise a sheet which is imaged with radiation-absorptive material on the first major surface and has a layer of the vaporizable reactant material on the second major surface.

The coating on the second major surface of the original sheet need not be coextensive in area with this surface but can consist of localized deposits. For example, the layer of normally stably solid vaporizable reactant material can be a mirror image of the image inscribed, typed, printed, etc., on the first surface of the master or original. This mirror image layer is provided as follows: (a) An original or master is placed against the transfer coating of a transfer sheet, the transfer coating containing a particulate material mixed with the vaporizable reactant material. (b) The first (exposed) surface of the master is typed, written, printed, or otherwise inscribed upon, using sufficient pressure to cause part of the aforementioned transfer coating to be deposited on the second (reverse) surface of the master in the form of a mirror image of the pattern of pressure applied to the first surface. See U.S. Pat. application Ser. No. 781,195, filed Dec. 4, 1968. If the master or original is an ordinary bond paper, the only vaporizable reactant material on the second surface is this mirror image, and heat-transfer of the mirror image to form a direct latent image on the receptor sheet can be effected with virtually any heat source, including infrared radiation, a heated roll, or a hot plate. If the master already has a coating or layer of dithiooxamide (or a derivative thereof) on the second surface, selective use of a transfer sheet having a transfer coating containing an ortho-dihydroxy or trihydroxy-benzene or -benz ic acid or ester (e.g. catechol, pyrogallol, gallic acid, an alkyl gallate, etc.) will provide a composite master capable of vapor transferring two separate texts: a dithiooxamide text and, for example, an alkyl gallate text. A nickel-coated receptor sheet will image the dithiooxamide text immediately, but the gallate text will remain latent or hidden. Subsequent treatment of the gallate latent images with an iron salt will provide feedback.

The juxtaposition described above can be achieved by mounting the reverse side-coated master on a rotatable drum of an infrared duplicating machine and using receptor sheets as the feed. n

3. Irradiation: After the imaged original or master, the layer of vaporizable reactive material, ancl the receptor sheet have been properly juxtaposed, the imaged surface of the original or master is preferably exposed to intense infrared radiation. That is, the master is preferably between the radiation source and the receptor, the vapor-supply medium being interposed between master and receptor as described in step (2). The imaged portion of the original will naturally tend to absorb more radiation and become relatively hot comparedto, the poorly-absorptive background (including notes and instructions written in non-absorptive ink) or unimaged areas. Vapor will be caused to emanate from the layer of vaporizable reactant material in localized areas corresponding to the image on the master. The vapor will migrate or transfer to the receptor sheet.

4. Condensation: Since the receptor sheet, regardless of whether it is punchcard stock or-bond paper, contains no substances which are visibly reactive with the vapor from the vaporizable layer, the vapor will merely condense upon the fibers of the receptor'sheet. Alternatively, the vapor will react with a chemical in the sheet which will produce a colorless compound or a colored compound which does not contrast with the background of the sheet. The result will be a latent image comprising stable, solid, invisible deposits of the condensate of (or the invisible product derived from) vaporizable reactant in localized areas corresponding to the image areas of the original sheet.

5. Duplicating: Steps (3) and (4) can be repeated with additional receptor sheets many times. 'A single master or original sheet is capable of producing several dozen copies. Due to the ease and low cost of imaging a master, several hundred copies can be prepared economically. Steps (3) and (4) can be rapidly carried out on existing infrared copying or duplicating machines. Such machines are constructed and arranged to provide a line source of light including a tubular lamp having a linear filament and mounted within a focused reflective housing for progressive exposure of the printed surface of the original, all as described in Miller US. Pat. No. 2,740,895. Another suitable form of apparatus is described in ,Kuhrmeyer et al. US. Pat. No. 2,891,165.

6. Developing the latent image: The latent image comprising the invisible deposits referred to previously can be rendered visible by treating the surface of the receptor sheet with an image-forming (i.e., a colored chemical complex-forming) co-reactant dissolved'in a solvent also capable of dissolving the vaporizable reactantmaterial. Suitable solvents include both polar and non-polar organic liquids such as the hydrocarbons, particularly cyclohexane; the alcohols, particularly ethanol; and aldehydes and ketones, such as acetone and methylethyl ketone. Mixtures of these solvents can be used to control volatilityl The co-reactant can be dispensed from a writing instrument such as a felt-tipped pen, wherein theink reservoir contains the co-reactant- /solvent system; a wax crayon, wherein the wax itself serves as a reservoir, matrix, or solid solution medium for this system; or a sheetlike dispensing means such as a saturated blotter or a transfer sheet coated with awax system similar to that of the wax crayon described previously. For example,'U.S. Pat.- No. 2,168,098 toJ. Groak, issued Aug. 1, 1939 discloses a transfer sheet coated with a metal salt (e.g. an iron salt) admixed with 6 a wax (e.g. an ester wax), a polymeric binder (e.g. starch), and a material to facilitate the imaging reaction between the metal salt and a dye precursor such as gallicacid. The substrate for the coating is preferably flexible (e.g. paper) but can be more rigid than paper, e.g. a film of an organic synthetic polymer. Both the aforementioned transfer sheets and the wax crayons are particularly suitable for shipment with correspondence course materials. The wax crayons can comprise, for example, an organic or inorganic metal salt, a waxy polymer containing oxyalkylene units (e.g. polyoxyethylene glycols and esters-or ethers thereof), :and a reaction accelerator and/or a hardness controlling agent such as tributyl phosphate and/or a secondary amine substituted with two hydroxy-loweralkyl groups (e.g. diethanol amine).

Other means can be used for dispensing the co-reactant and/or solvents and reaction accelerators, e.g., brush applicators,spray applicators, and the like. The development step is accelerated byorganic trialkyl and triaryl phosphates such as tributyl phosphate and triphenyl phosphate. Tributyl phosphate can also be used in place of the above-mentioned solvents.

Method steps l (5) described above are preferred because they provide good transfer of vaporizable reactive material to the receptor sheet. In short, various heat-transfer processes can be adapted for use with the present invention, including those which produce a mirror image and require the use of an intermediate transfer sheet and those in which the reverse side of the original or master contains a mirror image of vaporizable reactant material.

Excellent latent image feedback capability can be provided when the vaporizable reactant material is di-. thiooxamide (hereinafter referred to as DTO) or deriv-, atives of DTO. The preferred co-reactants for these vaporizable materials are the organic carboxylic acid salts or inorganic salts of metals such as nickel, copper, co,- balt, and cadmium. The preferred DTO derivatives are the N,N.-disubstituted compounds, e.g. N,N'-dibenzyl' dithiooxamide (hereinafter referred to as .DBDTO);

N ,N '-dimethyl dithiooxamide; N ,N -2-hydroxyethyl dithiooxamide; and other N ,N '-di-organic radical-substituted DTO compounds. Since the vapor pressure of DTO is higher at room temperature than, that of any. of the N,N-disubstituted DTO compounds, the DTOderivatives, particularly DBDTO, provide the most lasting, i.e., the most storable, latent images- The organic carboxylic acid anions of the preferred metal salt co-reactants are preferably acetate, rosinate,

oleate, 2-alkyl-hexanoate, or naphthenate. Other long chain acid anions besides the rosinate and oleate are operative, e.g. the fatty acid anions such as stearate anion.

A receptor sheet properly provided with a latent image of one of the preferred vaporizable reactant ma terials can be developed with a preferred co-reactant to produce a dark, legible image weeks or even months after this receptor sheet has been prepared. Yet, prior to development, the latent image cannot be detected even under a microscope. DBDTO forms a latent image which can be developed to a visible image with a nickel salt from 3 to 10 months after the condensation step, provided the receptor sheet is kept in a closed file or drawer. Even when a DBTO-imaged receptor sheet is mishandled, i.e., left exposed to freely-circulating-air rather than kept within a closed space, weak but visible images can be developed even after 6 weeks or more of 7 such mishandling.

Other chemical systems are adaptablefor use with this invention. For example, dimethylglyoxime provides a latent image which is somewhat less storable but otherwise excellent. The known ortho-dihydroxyor trihydroxyaromatic imaging compounds are also operative, e.g. gallic acid and its esters, pyrogallol, catechol, and derivatives of these, e.g. higher acyl-substituted pyrogallols. These ortho-dior trihydroxyaromatic compounds do not provide colored complexes when reacted with nickel salts. However, they are known to coreact with iron salts to produce strongly colored complexes. Both inorganic iron salts such as ferric chloride or ferric nitrate and organic salts such as ferric benzoate or ferric octoate are suitable coreactants. Diphenyl carbazone, S-diphenyl carbazide, a,a-dipyridyl, protocatechuic acid, S-hydroxyquinoline, oxalic acid, I- hydroxy-4-methyoxy naphthalene, amonium thiocyanate, National Aniline Color Precursors Nos. 1, 2, and 4, thiourea, l-naphthaldehyde benzoylhydrazone, the metal behenates, octadecyl amine vanadate, methyl orange etc. can be used but tend to be less suitable to this invention.

Thus, the preferred embodiment of this invention provides a printed form suitable for use in paper-based feedback systems wherein part of the printing is visible (e.g. test instructions and the like) and other parts are hidden entries comprising latent images.

The following non-limiting example illustrates the principles and practice of this invention.

EXAMPLE Twenty-five sheets of a commercially available bond paper were mimeographed with a text setting forth a medical school examination problem. Opposite a list of visible, mimeographed entries on the bond sheets, spaces were provided for hidden entries. The top surface of a master was. imaged with infrared-absorbing ink. The images consisted of textual feedback arranged to provide the hidden entries in the spaces on the mimeographed sheets, the bottom surface of the master being a DBDTO coating. The mimegraphed side of a bond sheet was placed against the bottom surface of the master, and the juxtaposed sheets were fed to an infrared thermographic copying machine (3M Model 47 Therrno-Fax copier, also known as the Secretary). The juxtaposing and copying steps were repeated with the master and twenty-five bond sheets to provide 25 copies of the examination problem, with hidden entries in register with the text of the problem and in the appropriate spaces. A representative sampling of the latent-imaged bond sheets was examined under a microscope, but no latent images could be detected.

The reservoir of a felt tipped pen was filled with nickel rosinate dissolved in tributyl phosphate and cyclohexane. A few minutes after the first bond sheets had been run off on the thermographic copying machine, the spaces opposite the visible entries on this sheet were rubbed with the tip of the felt pen. Dark purple images corresponding to the master images were obtained almost instantaneously.

About half of the remaining, undeveloped bond sheets were placed in a tile folder which was kept in a closed file cabinet for 8 weeks. At various times during the 8-week period, sheets were removed and rubbed with the felt pen as before. In every case, dark, easily legible, purple images were obtained. A similar image was obtained when one of the sheets was rubbed with a 8 wax crayon containing nickel rosinate and triphenyl phosphate and another sheet was rubbed with a falt pen containing a nickel 2-ethylhexanoat e solution.

The remaining hidden entry-containing bond sheets were allowed to lay on a table top in a well-lighted and -ventilated room. After 6 to 8 weeks, weak but legible blue or purple images could still be obtained with either of the felt pens described previously.

The person skilled in the art will appreciate that many modifications of this invention are possible. For example, due to the high contrast ratio of the developed latent image to the background of the receptor sheet, instructional materials prepared according to this invention could be adapted for use with machine grading systems employing photoelectric sensing. Such machine grading systems would merely be required to detect the presence or absence of a developed image.

What is claimed is:

l. A method of developing a latent image to provide feedback in a paper-based feedback system, said latent image comprising an image-forming reactant material selected from the group consisting of dithiooxamide, the N,N-disubstituted derivatives of dithiooxamide, and an iron-complexing compound capable of forming a colored complex when reacted with the ions of an iron salt, said iron-complexing compound having a benzene ring and at least two hydroxyl groups substituted in adjacent positions on said ring, said method comprising contacting said latent image with a solid wax matrix means containing an image-forming coreactant, to transfer a portion of said image-forming coreactant from said wax matrix means to said latent image and to react and render said latent image visible.

2. The method according to claim 1 wherein said image forming coreactant comprises a metal salt and said wax matrix contains an image-forming reaction accelerator.

3. The method according to claim 2 wherein said reaction accelerator is selected from the group consisting of organic trialkyl phosphates and organic triaryl phosphates.

4. A method of developing a latent image to provide feedback in a paper-based feedback system, said latent image comprising an image-forming reactant material selected from the group consisting of dithiooxamide, the N,N'-disubstituted derivatives of dithiooxamide, and an iron-complexing compound capable of forming a colored complex when reacted with the ions of an iron salt, said iron-complexing compound having a benzene ring and at least two hydroxyl groups substituted in adjacent positions on said ring, said method comprising contacting said latent image with a sheet-like means for dispensing an image-forming coreactant to transfer said image-forming coreactant from said sheet-like means to said latent image and to react and render said latent image visible. V

5. A method of providing and developing hidden entries comprising the steps'of:

1. providing intelligence in the form of preferentially radiation-absorptive image areas upon the surface of a significantly less radiation-absorptive paperlike original sheet;

2. juxtaposing said original sheet, a layer containing a normally stably solid vaporizable reactant material, and a receptor sheet, said receptor sheet being essentially free of materials capable of reacting with said vaporizable reactant material to produce contrasting colored complexes, said normally stably nal sheet to a heat source to induce in the said image areas a localized increase in temperature and a corresponding localized vapor transfer of said vaporizable reactant material from said layer to said receptor sheet;

4. permitting the vapor transferred, vaporizable reactant material to condense on said receptor sheet, thereby providing a storable latent image in localized areas of said receptor sheet corresponding to said image areas of said original sheet; and

5. contacting said storable latent image with a solid wax matrix means containing an image-forming-co- 10 reactant whereby a portion of said image forming coreactant is transferred from said wax matrix means to said storable latent image and said image is rendered visible.

6. The method according to claim 5 wherein said layer of normally stably solid vaporizable reactant material comprises a coating on one major surface of the said original sheet; said juxtaposing, exposing, and permitting steps are repeated with additional receptor sheets to form additional copies of said latent-imaged receptor sheet.

7. A method according to claim 6 wherein the said coreactant is a metal salt, the metal of said metal salt being selected from the group consisting of nickel, copper, cobalt, and cadmium.

- 8. A method according to claim 5 wherein said original sheet contains a layer of said iron-complexing compound, said layer comprising a mirror image of said latent image. 1

9. A method according to claim 5 wherein said heat source is a source of infrared radiation.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2168098 *Feb 16, 1938Aug 1, 1939Groak JosefTransfer copying material
US2755201 *Jan 8, 1954Jul 17, 1956Du PontStabilized ink compositions, transfer sheets coated therewith and methods of making same
US2949381 *Apr 4, 1958Aug 16, 1960Amos SteinhardtDuplicating sheet coated with a colorless waxy transfer material
US3076406 *Sep 28, 1954Feb 5, 1963Dick Co AbDuplicating method and element for use therein
US3170395 *Oct 7, 1963Feb 23, 1965Xerox CorpDuplicating
US3262386 *Nov 23, 1959Jul 26, 1966Little Inc ADuplicating method
US3363338 *Dec 10, 1965Jan 16, 1968Meredith Publishing CompanyMethod and devices for teaching writing skills
US3363556 *Mar 22, 1962Jan 16, 1968Minnesota Mining & MfgElectrophotographic imaging and copying process
US3386379 *Apr 26, 1963Jun 4, 1968Xerox CorpDuplicating with color producing reagents
US3451143 *Aug 24, 1966Jun 24, 1969Dick Co AbSpirit duplication with visible and concealed images
US3476578 *Jun 22, 1966Nov 4, 1969Agfa Gevaert NvThermographic method for producing thermostable prints
US3481760 *Jun 23, 1967Dec 2, 1969Minnesota Mining & MfgThermographic copying sheets
US3617324 *Oct 17, 1968Nov 2, 1971Dick Co AbMethod for forming a concealed image by sublimination
US3632364 *Sep 3, 1968Jan 4, 1972Dick Co AbPrinted sheets containing concealed images and method & materials for preparation and visual development of same
US3672842 *Jun 2, 1969Jun 27, 1972Walter FlorinWriting instrument and indicator method
US3725104 *Mar 26, 1970Apr 3, 1973Minnesota Mining & MfgMethod of providing and developing hidden entries
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4232083 *Jul 22, 1975Nov 4, 1980Minnesota Mining And Manufacturing CompanyColor precursor, activators, fingerprints
US5151595 *Oct 16, 1990Sep 29, 1992Simon Marketing, Inc.Imaging device and method for developing, duplicating and printing graphic media
US5311017 *Jun 23, 1992May 10, 1994Simon Marketing, Inc.For reproducing an image
US5321263 *May 10, 1993Jun 14, 1994Simon Marketing, Inc.Recording target
US5334836 *Nov 29, 1991Aug 2, 1994Simon Marketing, Inc.Imaging device having a passive compliant card scanner and a validation sensor
US5431452 *Aug 23, 1993Jul 11, 1995Wallace Computer Services, Inc.Hidden entry system and image-developing device therefor
US5484169 *Feb 17, 1995Jan 16, 1996Wallace Computer Services, Inc.Hidden entry system and image-developing device therefor
U.S. Classification427/145, 101/470, 250/316.1, 434/328, 427/150, 101/469
International ClassificationB41M5/035, A63F3/06
Cooperative ClassificationB41M5/0356, A63F3/0685
European ClassificationB41M5/035D, A63F3/06F4