Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3921435 A
Publication typeGrant
Publication dateNov 25, 1975
Filing dateOct 12, 1973
Priority dateOct 12, 1973
Also published asCA1009909A1
Publication numberUS 3921435 A, US 3921435A, US-A-3921435, US3921435 A, US3921435A
InventorsWillis W Howard
Original AssigneeExxon Production Research Co
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Apparatus for detecting valve failure in a reciprocating pump
US 3921435 A
Abstract
A system for detecting early failure of valves employed in reciprocating pump includes a temperature sensing element positioned on each valve or on the pump in the immediate vicinity of each valve, and means responsive to the sensing element for indicating temperature. An increase in the temperature of one valve over the temperature of the other valves provides an indication of valve failure.
Images(3)
Previous page
Next page
Description  (OCR text may contain errors)

United States Patent Howard 1 Nov. 25, 1975 15 APPARATUS FOR DETECTING VALVE 3,354,716 11/1967 Wiebe et al 73/168 F L N A RECIPROCATING PUMP 3,699,810 10/1972 Takahashi.. 73/168 Inventor: Willis W. Howard, Houston, Tex.

Exxon Production Research Company, Houston, Tex.

Filed: Oct. 12, 1973 Appl. No.: 406,043

Assignee:

References Cited UNITED STATES PATENTS Horbinski 73/359 Primary Examiner-Richard C. Queisser Assistant Examiner-Marcus S. Rasco Attorney, Agent, or Firm-Robert L. Graham [57] ABSTRACT A system for detecting early failure of valves employed in reciprocating pump includes a temperature sensing element positioned on each valve or on the pump in the immediate vicinity of each valve, and means responsive to the sensing element for indicating temperature. An increase in the temperature of one valve over the temperature of the other valves provides an indication of valve failure.

6 Claims, 4 Drawing Figures SCANNING TELE-THERMOMETER i 58 -37 l i 39 O O r 36 I H o 1 40 44 O 45 BRIDGE i CIRCUIT l O i 4| 0 i 42 3 I 28 I I II ,/c 13 f I l RECORDER as U.S. Patent Nov.25, 1975 Sheet10f3 3,921,435

US. Patent Nov. 25, 1975 Sheet20f3 3,921,435

mmomoomm r I l l l I I l I I I l I l l l I I I l I l l I I l I l l l I l I l l l l l I I l I l I I l I l I l l I I ll.

Sheet 3 of 3 3,921,435

US. Patent Nov. 25, 1975 MEE.

do HHFLLVHBdWEIi APPARATUS FOR DETECTING VALVE FAILURE IN A RECIPROCATING PUMP BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to and apparatus for detecting valve failure in reciprocating pumps.

2. Description of the Prior Art Reciprocating pumps are useful in the field of high pressure, high volume operations such as those found in oil well drilling operations, water flooding operations, and oil well stimulation. Such pumps normally employ a piston or plunger reciprocated through a pumping cycle which includes a suction stroke and a discharge (power) stroke. During each pumping cycle, liquid is drawn through the pump suction valve into the pump cylinder on the suction stroke and forced through the pump discharge valve at an elevated pressure on the power stroke. For the pump to function properly, each valve must maintain a fluid-tight seal. The reciprocating action of the pump imposes severe operating conditions on the valves which greatly shortens their effective lives. They are subjected to cyclic shock loads, high differential pressures, and abrasive or corrosive nature of the liquid being pumped. Because of the tendency of valves to fail repeatedly under these severe operating conditions, most pumps are designed to permit replacement of valves or valve parts. The valves are normally mounted in the pump body at convenient locations accessible through cover plates. Other designs include external valve pods or replaceable valve cages.

Reciprocating pumps designed for high pressure, high volume operation normally are high-speed multiplex plunger pumps having three, five, or more throws or units. Such pumps include a suction valve and discharge valve for each unit. A triplex pump, for example, includes three suction valves and three discharge valves interconnected by a common suction line and a common discharge line.

The failure of any one of these valves has normally been detected by a marked decrease in pumping rate or pumping pressure. It will be apparent that for a valve leakage to appreciably affect the output pressure or rate, the leakage or backflow through the faulty valve must be quite high. This means that the flow area past the valve must be large indicating that the valve or valve seat has been severely eroded. Such damage normally requires replacement of both the valve seat and valve which is not only expensive but frequently is time consuming because of the difficulty in pulling the valve seat.

Another problem associated with valve failure in multiplex pumps is that of identifying the faulty valve. The decrease in pumping pressure or rate indicates valve failure but provides no identification of the faulty valve. It is not uncommon for the operator to replace two or more valves before locating the damaged valve.

SUMMARY OF THE PRESENT INVENTION The present invention provides a simple and effective system for detecting and indicating valve failure in reciprocating pumps. A particularly attractive feature of the system is that it is capable of detecting and identifying incipient valve failure before the valve parts have become severely damaged.

invention relies on detecting an increase in the temperature of the valve of the pump in the immediate vicinity of the valve. During the early stages of valve leakage that is, before the flow area past the valve has been enlarged sufficiently to affect pump rate or pressure the heat of friction generated by the backflow of fluid past the leaking valve is greater than the rate at which the heat can be dissipated through the metal surrounding the valve. By monitoring the temperature of the valve or of the pump in the immediate vicinity of such valve and comparing that temperature with a normal operating temperature of the pump, valve failure can be detected almost as soon as the valve begins leaking. Experience has shown that the temperature increase occurs before other failure characteristics, e.g. decrease in rate or pressure, minifest themselves.

In a preferred embodiment. of the invention the system includes a temperature measuring step performed on each of the pump valves followed by the step of comparing such temperatures with one another. Since coincidental failure of two or more valves is unlikely, the valves which seal provide the normal operating temperature. A leaking valve will show a marked increase in temperature over the other valves.

Although the temperature of the suction valves can be measured and compared with temperature of the discharge valves to provide an indication of valve leakage, it is preferred that the suction valves be compared with suction valves and the discharge valves with discharge valves. Tests have shown that there is a slight difference in the normal operating temperature of each type of valve.

The temperature comparison step is preferably performed by plotting the temperature of the various valves. Any substantial upward deviation of the plot is indicative of a valve failure.

Also contemplated by the present invention is the step of plotting the differential temperature. The amount of temperature increase or differential required to indicate valve failure will depend upon several factors including the sensitivity of the equipment employed, the frequency at which the measurements are compared, and the type of fluid being pumped. For a given system, the normal temperature deviation can be determined through observing the thermal behavior of the valves under normal operating conditions. Any departure outside the limits of the normal deviation provides indication'of possible leakage. For most systems a deviation increase of about 5F above the normal operating temperature will provide a positive indication of valve failure.

The apparatus for detecting valve failure in a reciprocating pump includes a temperature sensor mounted on each valve or on the pump in the immediate vicinity of the valve, means for determining the normal operating temperature of the pump under substantially the same pumping conditions, and means for comparing the temperature of each valve with the normal operating temperature. In a preferred embodiment of the apparatus, the temperature sensing device may include an electric temperature-sensing element, such as a resistance thermometer (thermistor) or thermocouple, mounted externally of the pump in the immediate vicinity of each valve. The means for comparing. the temperatures may include for comparing the measured temperatures of a particular valve with a normal temperature or with the temperatures of the other valves on the same pump. Al-

3 though the comparision may be by a visual indication. a plot or record is preferred since it provides a permanent record, permits determination of normal temperature deviation, and facilitates detection of temperature deviation.

BRIEF DESCRIPTION OF THE' DRAWINGS FIG. 1 is a side elevational view of a fluid end of a plunger pump. (shown mostly in longitudinal cross-section) provided with temperature sensing elements.

FIG. 2 is an enlarged, longitudinal sectional view of a mounting assembly for attaching a temperature sensing element to a pump.

FIG. 3 is a schematic wiring diagram showing circuitry and instrumentation for monitoring the temperatures of the pump valves.

FIG. 4 is a plot illustrating the type of record obtainable with the system of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Although the present invention can be used with most any type of reciprocating pump. it finds particular advantageous application in high pressure plunger pumps. For purposes of illustration, the present invention will be described in connection with such a pump. As illustrated in FIG. 1, the fluid end of the plunger pump is of sectionalized construction comprising a cylinder body 10, a crossbore body 11, a suction valve assembly 12, and a discharge valve assembly 13. These components are connected together by coupling assemblies, each illustrated as 14. The coupling assemblies 14 each include a segmented collar and an internal seal ring for sealing the joint between the parts joined.

The suction and discharge valves are mounted in valve cages which are positioned externally of the pump body. The externally mounted valve cages facilitate valve replacement. Each valve cage includes housing members 18 and 19 joined by coupling assembly 20. In assembled condition the housing member 18 and 19 define an internal chamber which contains the valve parts. As best seen in FIG. 1, the suction valve includes disc valve 21, valve seat 22, retainer 23 and spring 24 assembled in the conventional manner. The discharge valve assembly 13 also includes these parts arranged to permit flow from the crossbore body 11 to the discharge line.

The operation of the pump involves reciprocating the plunger through a suction stroke and a power stroke. On the suction stroke, the plunger 16 moves from the broken line position to the solid line position of FIG. 1, drawing fluid through the suction valve 12 into the pump; on the power stroke the plunger, moving in the reverse direction, forces fluid out the discharge valve 13 at an elevated pressure.

In multiplex plunger pumps, the total pump assembly may be provided with two, three, five, or more throws or units. In such a pump, a common suction line connects to each of the suction valves and a common discharge line connects to each discharge valve. The pumps are normally constructed to operate in timed relation so that the output pressure is relatively constant.

The disc valves 21 for plunger pumps are normally constructed of forged steel or alloy and may be providedwith leather or plastic facings or, as illustrated, may be provided with metal facings. These valves 21 are normally of the flat disc or of the conical type (also known as skirt or wing valves). The seats 22 may be forged, heat-treated stainless steel. As evident from FIG. 1, the contact area between the valve 21 and valve seat 22 is small relative to the total area subjected to the internal pressure. This results in extremely high bearing or contact pressures. The high stresses and cyclic and impact loading on these parts normally cause the disc valve 21 to fail earlier and more frequently than other valve parts. If this failure can be detected early. the valve can be repaired merely by replacing member 21 before erosion damage to other valve parts or valve housing occurs.

The detection system of the present invention will be described with reference to a triplex pump, schematically illustrated in FIG. 3. Each of the pumping units similar to the one described previously and shown in FIG. 1 are connected to a common power end (not shown). For purposes of illustration the pumping units are identified by the references A, B, and C; and the pump components, e.g. crossbore body 11 and suction discharge valves 12 and 13, are identified by the same reference numerals shown in FIG. 1. It should be emphasized, however, that the detection system of the present invention may be used in monoblock constructions or other pump designs.

The detection system includes a temperature sensing element positioned in the immediate vicinity of a valve or valve housing of the pump and means responsive to the sensing element for determining the temperature of the element.

In the preferred embodiment, the temperature sensing element is an electrical device such as a resistance thermometer (e.g. thermistor) or a thermocouple. As schematically shown in FIG. 3, thermistors are provided on each of the six valves of the triplex pump. Thermistors are well known temperature sensing devices which operate on the electrical resistance principle. Thermistors 27 and 30 are on the suction and discharge valve assemblies of unit A, thermistors 28 and 31 on the suction and discharge valve assemblies of unit B, and thermistors 29 and 32 on the suction and discharge valve assemblies of unit C.

The thermistors are electrically connected to instrumentation which provides an indication of the temperature of each. The thermistors can be provided with separate temperature gage or recorder. The instrumentation in this embodiment includes a recorder 35 and a temperature meter 36, with multiplexer or scanning device 37. Each thermistor is connected to a channel output of the scanner 37. As illustrated, thermistors 27, 28, 29, 30, 31, and 32 are connected, respectively, to channel contacts 38, 39, 40, 41, 42, and 43.

In order for the comparison to be more accurate, thermistors 27-29 are connected in sequence to the first three channels, 38, 39, and 40, and thermistors 30-32 are connected in sequence to the second three channels, 41, 42, and 43. The empty channels of the scanner 37 may be connected to other temperature sensing elements, as for example on a second pump.

The scanner rotor 44 is indexed or stepped from one contact to the next in counterclockwise sequence. The residence or dwell time at each contact can ve varied depending on the construction of the instrument. Individual leads interconnect the channel contacts and the thermistors, and wire 45 electrically connects the rotor 44 to instrumentation 46 for converting the output of each thermistor to a value which is indicative of temperature. A suitable instrument 46 is a Wheatstone r bridge arrangement in which the thermistor constitutes one leg of the bridge. The bridge output may be delivered to a galvanometer or other temperature indicating instrument 36 and also to recorder- 35. Power may be supplied to the instrument in the form of standard alternating current in which case the instrument may be equipped'with a rectifier for converting to DC current.

The return path from each thermistor connects to ground wire. I

Since the system of the present invention relies on.

measuring the temperature generated by frictional flow, it willbe realized that each sensing elementshould be positioned as close to its associated valve disc 21 as possible. It has been found convenient in the.

pump construction provided with external valves, to position the sensing element on the external surface of the valve cage. As illustrated in FIG. 1, thermistor 27 is mounted on the downstream side of the suction valve 12 and" thermistor 30 is'mounted on the downstream side of discharge valve 13. Itis preferred that the sensing elements, e.g. thermistors, be in physical contact with the metal valve cage and be provided with insulation material to reduce ambient effects. FIG. 2 illustrates one arrangement for mounting the sensing device, e.g. thermistor 27, to thevalvecage. The thermistor 27 is embedded in a magnetic composition material which not only providesan insulation but also serves to maintain the thermistor 27 in contact with the metal cage. As illustrated, theimagnetic material is arranged,

in layers, with thelower layer 50 having a hole formed therein conforming to. the outer diameter of the thermistor 27 and the inner two layer 48 and 49 provided with a slot for the lead wire. .The top layer 47 covers the thermistor 27. The layers 47-50 are cemented or glued together and are preformed to the surface curvature of the valve cage. The lead from each thermistor may be a shielded single conductor, the shield providing the return path to the instrumentation.

Under pumping conditions, the temperature of each of the valve cages is continually monitored by the scanner 37 and is compared with a normal operating temperature under substantially the same pumping condition. The normal operating temperature may be determined by monitoring all of the valve cage temperatures. Since coincidental failure of two valves is unlikely, a temperature of one of the valve cages substantially greater than the temperature of the other valve cages will indicate valve failure. The amount of deviation from the normal required to indicate valve failure will vary depending upon several factors, including the type of pump, the pumping rate, and the type of liquid being pumped. As a practical matter, the operator probably will monitor the temperatures and carefully observe the direction of deviation of a particular valve cage. With experience, the deviation characteristics which provide an indication of valve failure for a particular pump can be ascertained.

Although the normal deviation is dependent upon the accuracy of the instrument, experience has shown that using the instrument of the type described above the deviation which provides an indication of valve failure is about 5F.

The detection system of the present invention was tested on a triplex pump of the following description:

Plunger size, inches 3.5 Plunger stroke, inches 18 Operating, rpm I40 -continued Crossborc flow passages. diameter, inches Val\ c size-finches Valve type. F v skirted disc Valve material steel with plastic facing A thermistor probe manufactured by Yellow Springs Instrument Company and sold under the trade designaw tion YSIS eries 400, probe number 409, described as attachable su'rfacetemperature was selected as the thermistor probe for eachof the valves of the triplex pump. The probes were mounted in magnetic stripping material which was purchased from Bickley Equipment Company of I-Io'ustomTexas. This particular arrangerelocating the probes if necessary. The lead wire-was type 9770 manufactured by 'Beldon. the scanner and bridge circuits were provided by a YSI Model 47 Scanning TeleThermometer manufactured and sold by Yellow Springs Instrument Company,-Inc. Of Yel-q.

low Springs, Ohio. This. instrument provided a meter calibrated indegrees F. frorn;60 v to 200F. The indexing mechanism was operated electrically and provided settings of 20 seconds, l Aaminutes' or five minutes for each of the eleven channels. This instrument operates on standard volt power; In the initial test-of the equipment, a recorder was nottused. The temperatures were visually observed from the meter during the sequencing of the scanner. However in order to describe the thermal behavior of the pump valves under various conditions, reference is made to the plot of FIG. 4. This plot represents a strip chart rec-order driven at 5 inches per minute. The ordinate of the plot is sealed in F and the abscissa in time (minutes). The At represents the dwell time of the rotor at each channel which, as indicated above, may be varied. Initially, the instrument will provide an identification channel which in the YSI Model 47 instrument is calibrated at 60F. The record of the identification temperature is shown at 51 on the plot. During initial operation, the pump valves will probably be in good working condition so that variations in temperature thereof will be within the normal expected deviation which is a function of the accuracy of the instruments. As the rotor 44 indexes through channels 38-43 the temperature of each thermistor will be recorded. Thus, the lines indicated 52-57 represent one cycle through channels 38-43, with a dwell time A t at each setting. The rotor 44 may continue or may reset to repeat the cycle. During the first cycle through the channels, the normal variation of temperature between the therrnistors is indicated by AT,. The normal variation as mentioned above will depend upon the accuracy of the instruments, but it should be within about 5F.

To illustrate the effects of changes in ambient conditions or changes in the temperature of the liquid being pumped, another cycle is indicated at a time subsequent to the first cycle. These temperature ranges are represented by numerals 61-66, and again represent the temperature of the thermistors 27-32 at the new pumping conditions. Here again the normal variation in temperature is within the expected range of AT,. It will be appreciated that experience will determine the value of the normal deviation or distribution and will determine the limits. If the temperature of any thermistor does not deviate from this normal value, the operator can be reasonably certain the valves are functioning properly. A valve failure will produce a record similar .to that shown in the third cycle which is at a time subsequent to the second cycle. As illustrated, the values 6770 and 72 of the thermistors mounted on the valves of units A and C are within the normal data distribution range (AT indicating that these valves are functioning properly. However, the temperature value 71 of channel 42 has increased well above the normal deviation indicating that the discharge valve of the second unit. B, has failed. The value of AT; was about 10F.

It should be realized thatkthe temperature increase of a faulty valve will not. under most conditions, increase markedly from one cycle to the next. but will show only a slight deviation. However. the trend will always be upward, whereas in a properly functioning valve. the deviation will fluctuate; that is. the temperature will increase and decrease within the normal distribution range.

Modifications of the improved apparatus include use of other types of thermometers or mounting means. Thennocouples positioned on the surface of the pump or in suitablethermowells inthe pump represent one alternative embodiment. Other alternatives will be apparent to those skilled in the art.

I claim:

1. Apparatus for detecting leakage of fluid past a valve of a reciprocating pump having at least two suction valve cages and at least-two discharge valve cages mounted externally of the pump body which comprisesp afa plurality of. temperature sensing elements. one

for each pump valve cage; b. means for mounting a temperature sensing element on the outer surface of each valve cage;

c. means responsive to said temperature sensing element for indicating the temperature of each valve cage; and

d. means for comparing the temperature of each of said valve cages with the temperature of at least one other of said valve cages.

2. Apparatus as defined in claim 1 wherein said temperature sensing element is an electric device capable of providing an electric output indicative of temperature.

3. Apparatus as defined in claim 2 wherein said electric device is a resistance thermometer and said means for indicating the temperature includes an instrument electrically connected to said resistance thermometer and means for visually indicating or recording the output of said resistance thermometer.

4. Apparatus as defined in claim 2 wherein the means for mounting said electric device on said pump valve cage includes magnetic insulating materialadapted to magnetically attach each electric device to its associated valve cage and to insulate said thermometer from external effects.

5. Apparatus as defined in claim 2 wherein said means for comparing said temperatures includes a temperature recorder electrically connected to said instrument for automatically plotting temperature of each thermometer as a function of time.

6. Apparatus as defined in claim 1 wherein the means for comparing the temperature of each valve cage includes means for comparing the temperature of each suction valve with the temperature of at least one other suction valve cage. and for comparing the temperature of each discharge valve cage with the temperature of at least one other discharge valve cage.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2779810 *May 16, 1955Jan 29, 1957Horbinski Richard DThermocouple assembly
US3354716 *Sep 17, 1964Nov 28, 1967William S HansenCombined rate of flow, pressure and temperature gage
US3699810 *Jul 16, 1970Oct 24, 1972Japan Aircraft Mfg CoDevice for monitoring a fluid pressure system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4232551 *Mar 19, 1979Nov 11, 1980General Electric CompanyLeak detector for vaporization cooled transformers
US4705459 *Aug 19, 1985Nov 10, 1987Dowell Schlumberger IncorporatedMethod of observing the pumping characteristics of a positive displacement pump
US4781064 *Dec 24, 1986Nov 1, 1988Yates Maurice AProtection for hydraulic machines
US4854162 *Jun 27, 1988Aug 8, 1989Ford Motor CompanyMethod of locating friction generating defects in a multiple bearing assembly
US5628229 *Mar 31, 1994May 13, 1997Caterpillar Inc.Method and apparatus for indicating pump efficiency
US6082737 *Aug 20, 1997Jul 4, 2000John Crane Inc.Rotary shaft monitoring seal system
US6092370 *Sep 16, 1997Jul 25, 2000Flow International CorporationApparatus and method for diagnosing the status of specific components in high-pressure fluid pumps
US7097351Sep 30, 2003Aug 29, 2006Flowserve Management CompanySystem of monitoring operating conditions of rotating equipment
US8161800 *Dec 30, 2008Apr 24, 2012General Electric CompanyMethods and systems for valve leak simulation
US8366402 *Dec 20, 2005Feb 5, 2013Schlumberger Technology CorporationSystem and method for determining onset of failure modes in a positive displacement pump
US8543245 *Nov 20, 2009Sep 24, 2013Halliburton Energy Services, Inc.Systems and methods for specifying an operational parameter for a pumping system
US20100162797 *Dec 30, 2008Jul 1, 2010Sean SummersMethods and systems for valve leak simulation
US20110125332 *Nov 20, 2009May 26, 2011Halliburton Energy Services, Inc.Systems and Methods for Specifying an Operational Parameter for a Pumping System
DE3512533A1 *Apr 6, 1985Oct 16, 1986Mueller A & K Gmbh Co KgVerfahren zur pruefung des schliesszustandes, der dichtigkeit oder des durchtrittsquerschnittes an einem beeinflussungsorgan, insbesondere einem absperrorgan fuer elektrisch leitende fluessigkeiten, sowie einrichtung zur durchfuehrung des verfahrens
DE102009040397A1 *Sep 7, 2009Mar 17, 2011Siemens AktiengesellschaftDiagnosesystem für ein Ventil
WO1999014498A2 *Sep 16, 1998Mar 25, 1999Flow Int CorpTemperature control system in a high pressure pump for failure detection of valves and plunger seal
Classifications
U.S. Classification374/5, 73/168, 374/E13.1, 73/40, 374/E01.5
International ClassificationG01M13/00, G01M3/18, F04B49/10, F04B53/10, G01K1/02, G01M3/00, G01K13/00
Cooperative ClassificationG01M3/002, G01K13/00, F04B49/10, G01K1/026, G01M3/184, G01M13/00, F04B53/10
European ClassificationF04B49/10, G01M3/18E, F04B53/10, G01M13/00, G01K13/00, G01M3/00B, G01K1/02D