Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3921500 A
Publication typeGrant
Publication dateNov 25, 1975
Filing dateJun 10, 1974
Priority dateJun 10, 1974
Also published asCA1036459A, CA1036459A1, DE2525817A1, DE2525817C2
Publication numberUS 3921500 A, US 3921500A, US-A-3921500, US3921500 A, US3921500A
InventorsSilcox William H
Original AssigneeChevron Res
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
System for operating hydraulic apparatus
US 3921500 A
Abstract
This invention is directed to a system for operating apparatus which includes submerged hydraulically actuated devices and has provision for cycling the hydraulic fluid continuously in a closed loop from a high pressure side from which the actuated device is energized to a low pressure side which receives hydraulic fluid discharged from the device, and includes a system for repressuring the discharged hydraulic fluid with a gas which may also be recycled in an independent closed loop, the repressured hydraulic fluid then being continually recycled to function as the energy-transmitting medium in the system. The repressuring portion of the system is arranged for automatic operation. The system is adaptable to the operation of subsea well control apparatus.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Silcox 5] Nov. 25, 1975 SYSTEM FOR OPERATING HYDRAULIC [73] Assignee: Chevron Research Company, San

Francisco, Calif.

22 Filed: June10, 1974 21 Appl. No.: 478,185

[58] Field of Search 91/4, 5; 60/325, 371, 403, 60/406, 416; l66/.5, .6

[56] References Cited UNITED STATES PATENTS 2,239,893 4/1941 Jackman 3,100,965 8/1963 Blackburn.

3,219,118 11/1965 Lewis l66/.6 3,653,635 4/1972 Bates et al. 166/.5

Primary Examiner-Edgar W. Geoghegan Attorney, Agent, or Firm-R. L. Freeland, Jr.; C. J. Gibeau 1 ABSTRACT This invention is directed to a system for operating apparatus which includes submerged hydraulically actuated devices and has provision. for cycling the hydraulic fluid continuously in a closed loop from a high pressure side from which the actuated device is energized to a low pressure side which receives hydraulic fluid discharged from the device, and includes a system for repressuring the discharged hydraulic fluid with a gas which may also be recycled in an independent closed loop, the repressured hydraulic fluid then being'continually recycled to function as the energytransmitting medium in the system. The repressuring ,portion of the system is arranged for automatic operation. The system is adaptable to the operation of subsea well control apparatus.

15 Claims, 4 Drawing Figures US. Patent Nov.25, 1975 Sheet3of3 3,921,500

SYSTEM FOR OPERATING HYDRAULIC APPARATUS BACKGROUND OF THE INVENTION This invention relates to a system for operating, and controlling the operation of, apparatus which uses a hydraulic fluid under pressure as a motive fluid for energizing various devices. The invention comprises means for retaining all of the hydraulic fluid within the apparatus in an arrangement which permits the fluid to be cycled continuously as the energy-transmitting medium for the selective operation of hydraulically actuated devices in the apparatus. Of particular interest for applications of the present invention are installations where the apparatus is submerged in a body of water and is not readily available for adjustment or repair, and where it is undesirable to permit any of the hydraulic fluid either to be purposely discharged from or to inadvertently escape from the apparatus into the surrounding water.

The arrangement of the apparatus which embodies the invention and the system of its use and control makes it especially suitable for installation as a control means for wellhead apparatus, particularly for well control apparatus which is submerged in a body of water and affixed to subsea oil wells.

As the oil resources in the deeper waters of the oceans are being developed more consideration is being given to procedures for producing wells without the necessity of erecting fixed platforms at the wellsite. The expense of fixed platforms increases rapidly as the water depth increases, and unless a sufficient number of very productive wells can be drilled and produced from a single platform installation, it becomes econom ically unfeasible to recover the oil at that location. Various proposals have been made heretofore to treat subsea wells individually, that is, to drill them at their respective dispersed locations, to equip each with its own wellhead apparatus, and then by pipelines to bring the production from the individual wells together at a central, fixed offshore platform or to an on-land location. Some such individual subsea wells have successfully been drilled, equipped and produced, and the art in this area is continuously developing. It is within this environment that the present invention has important significance although it will be appreciated, as the description proceeds hereinafter, that the invention has useful application apart from the field of offshore oil recovery.

Subsea systems for controlling the operation of wellhead apparatus, of which I am aware, now in use in field operations employ hydraulic fluid pumps, located either above the surface of the water or incorporated in the submerged apparatus, to provide a supply of power fluid to operate subsea devices. Accumulators for the hydraulic fluid are mounted on the subsea equipment to provide an adjacent reservoir for the pressurized power fluid. When the hydraulic pump is above the surface of the water, these submerged accumulators necessarily are charged through long hydraulic lines, which are exposed to damage and the possible leakage of hydraulic fluid into the ambient water. Additionally, the inherent pressure drop in the long hydraulic lines limits the response of the submerged apparatus when it places a heavy demand on the pressurized fluid supply. Conversely, in those systems where the hydraulic pump is mounted directly on the submerged equipment, there is a practical limitation on the size of the pump which can be used, since the weight, conformation, compactness, and the area exposed to wave forces are important considerations both from the standpoint of handling and installing the equipment from a floating vessel and because of the water forces it must resist when it is installed in place. These restrictions on the size of the submerged pump may be such that it is not practical to incorporate in the submerged equipment a pump of adequate size to keep the accumulators continuously charged to working pressure during normal operations. 1

In either of the foregoing cases, if the demand of the system for power fluid exceeds the rate at which the submerged accumulators can be recharged either through the long hydraulic lines from the surface or by the pump incorporated in the submerged equipment, service will be interrupted until the accumulators can be charged to working pressure. Obviously, this is an undesirable circumstance.

SUMMARY OF THE INVENTION The system of the present invention is designed to provide uninterrupted operation at rapid response rates, and when applied to submerged wells with the required operating hydraulic pressures at the submerged wellhead being unaffected by changes in water depth. To accomplish this, a plurality of hydraulic fluid accumulators are used and are separated into two functional portions of the system, one to provide a reservoir of fluid under pressure to energize the hydraulically actuated devices and the other to act as a low-pressure receiver for the hydraulic fluid discharged from the operating devices. The hydraulic portion of the system is a completely self-contained closed loop through which the hydraulic fluid content of the system is continuously recycled and which does not require replenishment during normal operation. When the system is applied to submerged wells, the hydraulic fluid discharged from the exhaust side of the hydraulically operated devices is discharged against substantially atmospheric pressure, regardless of the water depth. This latter feature circumvents the necessity for increasing the pressure in the energizing side of the hydraulic system as the depth of the water increases, as would be necessary if the hydraulic fluid were discharged against ambient hydrostatic pressure. Thus, the operational parameters of the system are not substantially changed by changes in the depths of water in which the apparatus may be installed.

In the present system, the accumulator which is functioning as a pressurized chamber for the hydraulic fluid is charged by a pressurized gas, and the accumulator which is functioning as a receiving chamber for the discharged hydraulic fluid is vented by a gas line at substantially atmospheric pressure. The system is arranged so that the pressurizing gas line and the venting line can be connected alternately to each of the pressure and receiving accumulators so that when the receiving accumulator becomes filled with discharged hydraulic fluid the pressurized gas line can be connected to it to cause it to function as the pressure chamber while at the same time the venting gas line is connected to what formerly was the pressure accumulator, so that the latter now becomes the receiving chamber. Means are provided in the system to make this switchover of accumulators automatic when the receiving accumulator reaches its filled capacity of hydraulic fluid, so that continuous operation of the system is accomplished without the necessary attention of the human operator. However, considering the problems incident to the environment of an offshore oil well in deep ocean waters, it is advisable for such use to build into the system some degree of redundancy such as an alternate provision for manually controlled operation in the event the automatic operating features malfunction.

Sufficient chamber capacity is built into the apparatus to provide a reasonable amount of continuous operation from the same pressure chamber before the switchover of accumulators, as described above, is necessary. This chamber capacity may be provided in single pressure and receiving accumulators, as will be illustrated schematically hereinafter, or the desired chamber capacity may be provided by a plurality of accumulators connected together in groups to function substantially as the single accumulators illustrated.

It is a desirable feature of this invention in offshore installations that the medium for providing pressure for pressurizing the hydraulic fluid in the pressure chamber on the energizing side of the hydraulic system is through a pressure gas line and also that substantially atmospheric pressure is maintained in the receiving chamber through means of a venting gas line. In submerged systems the gas lines can be projected from compressors and gas receivers at the water surface downwardly through the water and connected to the submerged apparatus. Since all of the hydraulic components of the system then are submerged within and usually well below the surface of the water, the chance of hydraulic fluid escaping into the ambient water is considerably reduced. The gas lines to the surface pass through the near-surface area, where the water forces are the greatest, and thus are more exposed to damage than are the deeper hydraulic lines. Damage to the gas lines is, of course, undesirable, but does not create the condition of water contamination, as would occur with a break in a hydraulic line.

Operation of individual valves and devices in the apparatus is controlled remotely from an appropriate console. It is understood in the art that a valve may be actuated from a remote location through electrical, hydraulic or pneumatic transmission conduits, or through acoustic or electromagnetic radiation signals to initiate actuation of the valve, or by combinations of the foregoing. To simplify the description of the system, it will be described hereinafter as including 'gas transmission conduits for controlling the pressures in the hydraulic fluid accumulators and with electrically operated valves connected to electrical conductors for controlling the valves remotely. It will be understood, however, that the use of these specific elements in the description of the apparatus is by way of example and it is not intended to limit embodiments of the invention thereto. As noted previously, the automatic operation, which is a component feature of a portion of the system, is supplemented by means for manual remote operation as a precaution against compulsory shutdown.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic representation of the system of this invention and illustrates the disposition of the various valves when a particular accumulator is being used as a pressure chamber for pressurized hydraulic fluid v and an alternate accumulator is used as a receiving chamber for discharged hydraulic fluid.

FIG. 2 is a schematic representation showing the disposition of the valves in the system when an alternate accumulator is being used as the pressure chamber for pressurized hydraulic fluid and the first accumulator is being used as a receiving chamber to receive the discharged hydraulic fluid.

FIG. 3 is a schematic representation of the system of this invention as applied to well control apparatus which contains a plurality of hydraulically operated devices.

FIG. 4 is a representation in side elevation of a portion of control apparatus for a submerged wellhead and illustrates a manner of connecting the submerged apparatus to supply lines extending from the water surface.

DESCRIPTION OF A PREFERRED EMBODIMENT Although this invention can be employed beneficially in a variety of installations, it will be described hereinafter principally as applied to an offshore well wherein the well control apparatus is secured to a well opening submerged below the surface of a body of water.

The control system illustrated in FIGS. 1 and 2 can conveniently be divided into three principal subassemblies, as indicated by the dashed line enclosures numbered respectively 10, 12 and 14. The subassembly 10 includes a portion of the apparatus which may be established at a location spaced apart from the other portions of the system to which it may be operatively connected by appropriate detachable connectors in the gas and electrical lines which are common to the subassemblies. For example, subassembly 10 may be located above the surface of a body of water in which the remainder of the system is submerged as in being connected to a submerged well opening.

Subassembly 12 includes the principal assembly of the valves through which the system is operated. This subassembly may, for example, be encapsulated in a pod which can be lowered through the body of water and connected automatically in operative relationship to the submerged control devices.

Subassembly 14 includes the devices which ultimately are operated by the system and related apparatus such as may be affixed at the submerged location. For example, subassembly 14 may include the well control devices such as blowout preventers, which are a component part of the well control apparatus.

In accordance with this invention the well control devices, as represented schematically by the cylinder and piston arrangement 20 are energized by a pressurized hydraulic fluid. In the posture of the system illustrated in FIG. I, the accumulator 22 functions as a chamber for the hydraulic fluid under pressure. In the embodiment of the invention as applied to a submerged well, the receiver 22 preferably is installed as a part of the submerged wellhead apparatus, as illustrated in FIG. 4. In this location, the pressure chamber is placed immediately adjacent the well control devices operated by hydraulic fluid to eliminate the requirement of running hydraulic lines from the submerged apparatus to the surface of the water. Also, in this posture of the system, the accumulator 24 is connected as the chamber to receive the exhaust hydraulic fluid discharged from the operating well control device. The accumulator 24 also preferably is located in the submerged wellhead apparatus, as indicated in FIG. 4. As will be explained here inafter, the accumulators 22 and 24 are alternately switched in function to operate at one time as a pressure chamber and at another'time as a receiving chamber.

The accumulator 22 is partitioned by a flexible diagram 26 which separates the chamber 28 for hydraulic fluid from a pressurizing gas chamber 30. The gas chamber is in communication with a conduit 32, which is detachably connected through a connector 34, FIG. I, in communication with a conduit 36 in the subassembly 12. The conduit 36 communicates through the valve 38 with a third conduit section 40, which in turn is in communication with a high-pressure gas receiver 42. Thus the high-pressure gas is conducted through the conduit arrangement described into the gas chamber 30 of accumulator 22 to apply gas pressure to the diaphragm 26 and to place the hydraulic content of the chamber 28 under pressure. Gas receiver 42 has sufficient capacity to exert a substantially constant pressure on the hydraulic fluid in chamber 28 as the fluid volume in the chamber decreases during operation of the apparatus.

The second accumulator 24 also is constructed with a flexible diaphragm 44 to separate the hydraulic fluid chamber 46 from the gas chamber 48 in a manner similar to that described for the accumulator 22. The gas content of accumulator 24 is in communication with the conduit 50 in subassembly 14. This conduit is placed in communication, through a detachable connector 52, with the conduit 54 in subassembly 12. The latter conduit communicates through valve 38 with conduit 56, which in turn communicates with a gas receiver 58. Receiver 58 is constructed with sufficient gas capacity to maintain the gas pressure in the accumulator 24 substantially constant as the volume of gas in this accumulator changes while the accumulator is receiving hydraulic fluid. Preferably, in this posture of the system the receiver 58 and the gas chamber 48 of the accumulator 24 are maintained at atmospheric pressure.

When accumulator 24 becomes filled with the hydraulic fluid discharged from device 20, valve 38 is operated to place gas chamber 48 of this accumulator in communication with the pressurized gas receiver 42 and simultaneously to place gas chamber 30 of accumulator 22 in communication with the low-pressure gas receiver 58 in a manner to be described more fully hereinafter. When this switchover occurs, chamber 46 of accumulator 24 becomes the reservoir of pressurized hydraulic fluid for operating the system and chamber 28 of accumulator 22 becomes the reservoir to receive the discharged hydraulic fluid.

Referring still to FIG. 1, conduit 60 for hydraulic fluid communicates with chamber 28 and is detachably connected through a connector 62 with a conduit 64 in subassembly l2. Conduit 64 is connected to a valve 66.

A similar hydraulic conduit 68 is in communication with chamber 46 and is connected through detachable connector 70 with a complementary conduit 72 is subassembly 12. Conduit 72 also is connected to valve 66.

In the posture of the system illustrated in FIG. 1, the pressurized hydraulic fluid from chamber 28 passes through valve 66 into conduit 74, which latter leads to a third valve 76 and to a fourth valve 78. The hydraulic fluid discharged from the operating device subsequently passes through conduit 80 and through valve 66 and thence to receiving chamber 46 in a manner to be described in more detail hereinafter.

Valve 76 is subassembly 12 directly controls the operation of the hydraulically operated device 20. Thus, in the position of this valve indicated in FIG. I, the pressurized hydraulic fluid passes from conduit 74 through valve 76 and into conduit 82 in communication with the valve. Conduit 82 is detachably connected through connector 84 to complementary conduit 86 in subassembly 14.

Hydraulically operated device 20 is indicated as a cylinder-and-piston arrangement, although obviously other forms of hydraulically operated devices may be employed in this system. The aforementioned conduit 86, which in the present instance carries pressurized hydraulic fluid to energize the hydraulically operated device, communicates with one end of cylinder 20. Second conduit 88 communicates with the other end of the cylinder. As will be understood in the art, the pressurized hydraulic fluid enters one end of the cylinder and pushes the piston toward the other end. As the piston moves it displaces hydraulic fluid which is exhausted or discharged from the cylinder through conduit 88. This conduit is connected through detachable connector 90 with conduit 92 in subassembly 12, which latter conduit is in communication with valve 76. The discharged hydraulic fluid flows through valve 76 into conduit and thence through valve 66 into the connected conduits 72 and 68 and into the hydraulic fluid chamber of accumulator 24.

The arrangement and integrated operation of the valves in the subassembly 12 is such that conduit 80 will always be connected in the hydraulic fluid circuit to carry discharged hydraulic fluid away from the hydraulically operated devices toward the appropriate receiving accumulator. Pressure-sensitive device 94 is in communication with conduit 80 and is connected in the system to operate simultaneously valves 38 and 66. For example, if valves 38 and 66 are operated by electrically energized solenoids, a pressure-activated electrical switch may be used in the device 94 to direct an electrical current to each of the valves simultaneously to cause each valve to be changed to an alternate position.

As explained heretofore, the conduit 80 is arranged in respect to the valves in communication with it to conduct discharged hydraulic fluid to the selected receiving chamber. When the hydraulic fluid receiving chamber is filled to capacity, as illustrated by chamber 46 in accumulator 24 when progressing from FIG. 1 to FIG. 2, the hydraulic pressure in the interconnected conduits 68, 72 and 80 will increase as more discharged fluid is directed toward the receiving accumulator. The pressure-sensitive device 94 is arranged to be activated by a predetermined increase in pressure in conduit 80 to energize the valves 38 and 66 to cause them to change position. The system then assumes the posture illustrated in FIG. 2.

, Referring to FIG. 2, the hydraulic fluid chamber 46 in accumulator 24 is represented as being filled to capacity. The resulting increase in pressure in conduit 80 has caused the pressure-sensitive device 94 to actuate valve 38 to place the pressurized gas receiver 42 in communication with the gas chamber 48 through the interconnected conduits 40, 54 and 50. As the same time, and through the same valve, the gas chamber 30 in accumulator 22 has been placed in communication with the atmospheric pressure gas receiver 58 through the intercommunicating conduits 56, 36 and 32. Simultaneously, the pressure-sensitive device 94 has activated valve 66 to place the conduit 74 in communication with the interconnected conduits 68 and 72, which latter now contain pressurized hydraulic fluid from chamber 46, and to place the conduit 80 in communication with the interconnected conduits 60 and 64 which lead to the hydraulic fluid chamber of accumulator 22. Thus, the functions of the two accumulators are switched and the first accumulator, which formerly contained the reservoir for pressurized hydraulic fluid, now becomes the receiving chamber, while the second accumulator, which formerly contained the receiving chamber, now becomes the reservoir for pressurized hydraulic fluid.

It will be noted that the switchover of functions of the accumulators through the automatic operation of the pressure-sensitive device 94 maintains the conduit 74 as a pressure-fluid carrying conduit and, as noted previously, conduit 80 is maintained as the discharged-fluidcarrying conduit. Thus, when the functions of accumulators 22 and 24 are exchanged valve 76 remains in its original position to direct the energizing, pressurized hydraulic fluid through the interconnected conduits 82 and 86 to consistently power the device 20 in the chosen direction. By this invention the functions of the accumulators 22 and 24 are switched automatically to provide a continuous supply of energizing hydraulic fluid to the operating device 20 without adversely affecting the operation of the latter.

Various valves in the wellhead apparatus are arranged to be activated by an appropriate signal sent from a remote location. By way of example, the valve 76 is connected to a console 96 in subassembly through a signal-transmitting line 98. The console contains a plurality of separate stations, as represented schematically by the buttons 100, each of which can control the operation of a particular device in the submerged apparatus. The signal-transmitting line 98 may be a multiplexed system using a single pair of conductors to transmit the signals or a cable containing separate lines to each device, as will be understood in the art. A signal-generating means, such as a source of electrical power, is provided in subassembly 10, to provide a signal which is transmitted through line 98 to energize a selected unit in the assembly, such as the valve 76, and position it in a manner to cause the desired operation of he apparatus. For example, if device is a piston-actuated blowout preventer and valve 76 is positioned as illustrated in FIGS. 1 and 2, the blowout preventer will be powered to a closed condition. To open the blowout preventer, valve 76 is operated to place the pressurized fluid conduit 74 in communication with conduit 92 and the discharged fluid conduit 80 in communication with the conduit 82. Thus, the energizing pressurized hydraulic fluid will enter cylinder 20 at the appropriate end to power the piston in the direction to open the blowout preventer and the hydraulic fluid in the other end of the cylinder will be discharged through conduits 86 and 82 through valve 76 into conduit 80.

The portion of the hydraulic circuit in subassembly 12 has included in it a valve 78 which also is connected through a signal-transmitting means to console 96. In the position of the valve illustrated in FlG. l, the conduit 102, which is an extension of the pressurized hydraulic fluid conduit 74 is dead-ended in the valve.

However, this valve may be operated upon a signal from console 96 to place the discharged hydraulic fluid conduit 80 in communication with the pressure hydraulic fluid conduit 102, as indicated by the dotted line 104a in FIG. 1. This position of valve 78 provides a bypass for the hydraulic fluid and permits the fluid to flow from the pressurized chamber, which would be the hydraulic fluid chamber in accumulator 22 in the instance of FIG. 1 through valve 66 and valve 78 into conduit 80 and again through valve 66 and into interconnected conduits 72 and 68 and thence into hydraulic fluid receiving chamber of accumulator 24. Valve 78 is provided primarily to permit one of the accumulators to be filled with hydraulic fluid and the other to be emptied at the start of operations of the entire system, or to permit the system to be placed in this desired condition of operation after a shutdown or other delay which occurred when both chambers were partly filled with hydraulic fluid.

Desirably an auxiliary chamber, preferably in the form of an accumulator 106 which has a flexible diaphragm 108 dividing it into a hydraulic fluid-containing chamber 104 and a gas-containing chamber 110 is provided in the system. Hydraulic fluid chamber 104 is placed in communication with the discharge fluid conduit 80 and gas chamber 110 is placed in communication through conduit 112 with the vent line 56 to the atmospheric pressure gas receiver 58. The auxiliary chamber is placed in the system to function as an expansion chamber for the hydraulic fluid and to assist in maintaining the pressure in the discharge fluid conduit 80 substantially at atmospheric pressure, and also to provide some make-up fluid if the hydraulic system requires it.

In the system illustrated in FIGS. 1 and 2, the pressurized gas receiver 42 is connected to a compressor 114 which draws the gas from the low-pressure receiver 58. Thus, the pressurizing gas portion of the assembly also may be a closed system. Preferably, the compressor 114 is selected with a capacity to maintain the receiver 58 at substantially atmospheric pressure. However, if desired, the low-pressure side of the system can be operated at a pressure other than atmospheric, either at a greater or lesser pressure. The relative difference in pressure of the two receivers determines the pressure differential imposed by the hydraulic fluid across the operating device, as 20, and offers further control of the system.

As described heretofore, desirably, each of the valves and the pressure sensitive device 94 in subassembly 12 is connected to the control console in subassembly 10 by complementary signal-transmitting means, such as by electrical conductors. This permits the system to be operated manually as well as automatically and provides a means for continuing the operating of the system if the automatic features of it, such as the pressure sensitive device 94, should malfunction. In some installations, as in the offshore environment, it may be desirable to gather the gas lines and the electrical lines extending between subassemblies l0 and 12 into a single bundle to assist in handling these lines and preventing.

their becoming entangled with each other or the submerged apparatus. This bundle is indicated by the dotted circle 116 in FIGS. 1 and 2 and by the same numeral in FIG. 4.

Referring now to FIG. 3, the system of thisinvention is illustrated diagramatically as applied to a particular arrangement of well control apparatus. Similar appara tus as applied to a submerged well is schematically illustrated in FIG. 4 which further illustrates a feature to which this invention can be adapted for offshore operations. To illustrate this environment the numeral 117, FIG. 3, indicates the surface of a body of water 119 in which the wellhead is submerged.

The arrangement of devices indicated in subassembly 14 of FIG. 3 and by FIG. 4 is commonly known as a blowout preventer BOP) stack and is secured to the well opening during the time the well is being drilled and through some stages of its completion. When the well is completed a different arrangement of devices, called a Christmas tree", is secured to the opening of the well casing, as is known in the art. The system of the present invention can be applied to operate the control devices of a Christmas tree and other assemblages of apparatus, and the application of the invention to the installation represented in FIGS. 3 and 4 is merely illustrative, and it is not intended to limit the application of this invention to such an arrangement.

A BOP stack normally comprises a series of vertically interconnected BOPs of different types, which can be operated independently of each other to control the well opening as circumstances require. In the apparatus illustrated in the drawings, the numeral 118 represents a bag-type BOP and the numerals 120, 122, 124 and 126 represent respective ram-type BOPs. The numerals 128 and 130 indicate elements of an assemblage made principally for offshore operations and represent hydraulically powered connectors, the connector 130 being used to detachably connect the BOP stack to the well casing and the connector 128 being used to detachably connect a marine riser 132 to the top of the BOP stack in a manner known to the art. It will be appreciated that not all of the devices indicated in the drawings need necessarily be included in the assemblage as represented to be within the purview of this invention and more or less, or different, forms of operating units may be assembled as the situation requires without departing from the inventive concept.

' As stated heretofore, it is desirable that each of the hydraulically operated devices in the well head assemblage is selectively operable independently of the others. To this end, each device has associated with it a respective valve by which to control the hydraulic fluid circuit to it. Thus, for each of the operating units included in the assembly of apparatus indicated in subassembly 14 of FIG. 3, there is a control valve in subassembly 12. The valves which control the connectors and the BOPs of the wellhead apparatus, such as valves 134 and 136, maybe similar in form and function to the previously described valve 76.

In FIG. 3, the accumulator 24 is functioning as the pressure chamber and accumulator 22 is the receiving chamber. The conduit 74 carrying pressurized hydraulic fluid to the various control valves takes the form of a manifold 138 from which individual branch conduits, as140 and 142, lead to the respective controlvalves, as 134 and 136. The conduit 80, which carries the discharge hydraulic fluid away from the operating devices, also takes the form of a manifold 144, which is connected by individual branch conduits to respective valves as indicated by conduits 146 adn 148 connected to respective valves 134 and 136. The individual control valves are, of course, connected to the respective hydraulically actuated devices through corresponding interconnected conduits, such as conduits l50and 152 for the pressure line of the hydraulic actuator 153 of connector device and interconnected conduits 154 and 156 for the return line for discharged hydraulic fluid.

The well control system illustrated in FIG. 3 includes kill valve 158 and bleed valve 160, the use of which is well known in the art. Each of these valves has a respective control valve in subassembly 12, as 162 and 164, which is connected to the pressure fluid and discharge fluid manifolds 130 and 144. The kill and bleed valves illustrated are spring-biased to a closed position. Hence, only a single hydraulic fluid conduit is required for each, as represented by the interconnected conduits 166 and 168 for valve 158. The corresponding control valves 162 and 164 are arranged to be positioned to introduce a pressurized hydraulic fluid into the corresponding conduits to open the kill or bleed valve or alternatively to be positioned to connect the same corresponding conduit with the discharge manifold to release pressure from the kill or bleed valve to cause it to close as valve operation requires. The unit 170 in subassembly 12 of FIG. 3 represents a pressure reducing valve for controlling the pressure in the bag-type BOP 1 18. I

As described in relation to FIG. 1, all of the conduits interconnecting subassembly l2 and subassembly 14 may be connected together by detachable connectors, which permit the subassemblies to be connected to and disconnected from each other in operating relationship. For working in submerged wells the detachable connectors may be operated from a remote location as from the surface of the water, without requiring diver assistance. By this arrangement, all. of the control valves and the component portions of the hydraulic and electrical circuits, and including pressure-responsive device 94, may be incorporated in a pod 172 as illustrated in FIG. 4. The pod is arranged to be lowered from the surface of the water into engagement with a pod receiver 174. Each of the appropriate hydraulic lines in the pod is in communcation with a corresponding connector portion as 176 which mates with a complementary connector portion 178 on the pod receiver, which latter portion is in communication with the appropriate hydraulic conduit as, for example, conduit 50 on the wellhead control apparatus, which latter corre sponds to subassembly 14. Where required, electrical connection can be made between the two subassemblies in a similar manner. It will be appreciated also that a system of detachable connectors may be used to interconnect the conduits and signal lines between subassemblies 10 and 12.

Various conduits connected to the pod receiver 174 are schematically indicated in FIG. 4. The conduits are gathered together in a bundle 180 or otherwise neatly arranged on the wellhead apparatus and the individual conduits are directed to the hydraulically operated devices to which they pertain as schematically illustrated by the lines 50 and 68 to accumulator 24, all of which is known to the art. The cable bundle 116 contains the gas lines and electrical lines, where applicable, connecting the pod with the surf-ace console 96 and gas receivers 42 and 58, as has been mentioned heretofore. The cable bundle also contains the stress cable 182 by which the pod is raised and lowered through the water.

Because of the particular problems inherent in the offshore environment, it is advisable to provide duplicate pods 172, duplicate pod holders 174, and duplicate hydraulic circuitry 180 to afford a better chance for continued operation should a malfunction occur in one of the pod assemblies. This redundancy of equipment is familiar to the art, and hence it is not necessary for the present teaching to describe it in more detail.

As described with relation to valve 76 of FIG. 1, each of the control valves, as represented by way of example by valves 134 and 136 and 170 of FIG. 3, is controllable by an actuating signal from a remote location. Thus, the valves may be connected through individual electrical conductors with the control console 96 at the surface of the water so that, in addition to the automatic operation built into the system as described heretofore, each of the hydraulically operated devices in the wellhead equipment can be controlled manually independently of the other devices.

It is apparent that equivalents may be substituted for the particular elements described heretofore, and other modifications may be made to the system illustrated as a preferred embodiment without departing from the inventive 'concept,and it is intended that the invention encompass such equivalents and modifications within the scope of the appended claims.

What is claimed is:

1. Means for operating an assembly of apparatus containing hydraulically actuated devices comprising:

a first chamber and a second chamber in said apparatus;

a hydraulic fluid in said chambers;

means for selectively increasing and reducing pressure in said chambers individually;

a hydraulic fluid actuated device in said apparatus;

a first conduit means communicating with said device for conducting a pressurized hydraulic fluid thereto for the actuation of said device;

a second conduit means communicating with said device for conducting discharged hydraulic fluid therefrom;

means for selectively increasing the pressure in the first said chamber to an amount greater than the pressure in the second said chamber to condition said first chamber as a pressure chamber for said hydraulic fluid and to condition said second chamber as a receiving chamber for the discharged said hydraulic fluid;

means operable subsequently for increasing the pressure in said second chamber while simultaneously reducing the pressure in said first chamber thereby to condition said second chamber as a pressure chamber for said hydraulic fluid and said first chamber as a receiving chamber for the discharged said hydraulic fluid; and

means for selectively connecting said first conduit to the chamber conditioned as said pressure chamber while simultaneously connecting said second conduit to the chamber conditioned as said receiving chamber without venting to the ambient atmosphere said means operable for increasing the pressure in said second chamber while simultaneously reducing the pressure in said first chamber as said receiving chamber to enable said hydraulic fluid to flow from said pressure chamber to actuate said device and thence to flow from said device to said receiving chamber;

said chambers and said conduits and said device forming a closed system for retaining all of said hydraulic fluid within said apparatus during the continued operation thereof. 2. Means in accordance with claim 1, wherein said hydraulic fluid operated device comprises a plurality of discrete hydraulic fluid operated units, and wherein said discrete units have operatively connected thereto respective complementary said first and said second conduit means, respective valve means in said respective complementary conduit means, and means for operating a said respective valve means independently of other said respective valve means to operate a selected said discrete unit independently of other said discrete units, means for operating said plurality of discrete units by hydraulic fluid from a common said pressure chamber, and means for conveying said discharged hydraulic fluid from said plurality of ,units to a common said receiving chamber. 3. Means in accordance with claim 2 including: means for maintaining the pressure in said common pressure chamber at a substantially constant amount of the increased pressure; and means for maintaining the pressure in said common receiving chamber at a substantially constant amount of the reduced pressure; while units of said plurality of discrete units are being operated. 4. Means in accordance with claim 3 wherein: the pressure in said common receiving chamber is maintained at substantially atmospheric pressure. 5. Means for operating apparatus in accordance with claim 1 wherein said means operable subsequently to increase the pressure in said second chamber while simultaneously reducing the pressure in said first chamber comprises a pressure activated device associated with the said receiving chamber, v means operatively connected to said pressure activated device and operative to increase the pressure in one of said chambers while simultaneously reducing the pressure in the other said chamber, said pressure activated device operating when the pressure in said receiving chamber exceeds a preselected amount to cause the pressure in said receiving chamber to be increased to condition said receiving chamber to become a subsequent said pressure chamber and simultaneously to cause the pressure in said pressure chamber to be reduced to condition said pressure chamber to become a subsequent said receiving chamber. 6. Means for operating apparatus in accordance with claim 1 including a pressurizing gas for placing pressure in said pressure chamber, a pressure activated device associated with the said receiving chamber in operative relationship, valve means for directing said pressurizing gas to one of said chambers and for releasing said pressurizing I gas from the other said chamber, means connecting said pressure activated device and said valve means in operative relationship, v said pressure activated device being arranged to operate said valve means when the pressure in the chamber conditioned as a said receiving chamber exceeds a preselected amount.

said valve means operating to direct said pressurizing gas to said receiving chamber to condition said re ceiving chamber as a subsequent said pressure chamber and to release said gas from said pressure chamber to condition said pressure chamber as a subsequent said receiving chamber.

7. Means for operating apparatus in accordance with claim 6 including, i

a high pressure gas receiver and a low pressure gas receiver,

said high pressure gas receiver comprising said means for placing pressure in said pressure chamber,

means for selectively operably connecting said high pressure gas receiver alternatively and sequentially to one of said first and said second chambers to condition said one chamber as a said pressure chamber while simultaneously operably connecting said low pressure gas receiver to the other said chamber to condition said other chamber as a said receiving chamber.

8. Means in accordance with claim 7 wherein said apparatus is positioned at a body of water,

said gas receivers are located above the surface of said body of water and a substantial portion of said apparatus including said chambers is submerged below the surface of said water, I

respective conduit means connecting said gas receivcrs with said chambers in said submerged apparatus,

valve means in said respective conduit means, and

means for operating said valve means automatically to selectively place the said respective conduit means in communication alternatively with selected said chambers,

9. Apparatus in accordance with claim 2 wherein said units and said respective valve means and said means for operating said respective valve means are submerged in a body of water,

a remote control means for controlling the operation of said means for operating said respective valve means,

said remote control means being located above the surface of said body of water,

and means for transmitting a controlling signal from said remote control means to said submerged apparatus to initiate the operation of a said respective valve means.

10. A control system for a device submerged in a body of water comprising:

a first chamber and a second chamber with each said chamber constructed to receive and discharge selectively and alternately a hydraulic fluid,

a hydraulic fluid in said chambers,

a high pressure source of gas for pressurizing said chambers,

a first conduit means communicating with said source,

a low pressure reservoir for said gas,

a second conduit means communicating with said low pressure reservoir,

a first valvemeans in said first and said second conduit means for connecting said high pressure source to one of said chambers to condition said one chamber as a high pressure chamber for said hydraulic fluid and for connecting said low pres sure reservoir to the other said chamber to condition said otherchamber, as a low pressure chamber for said hydraulic fluid,

said first valve means being operable selectively and alternately to reverse the said high pressure and said low pressure conditions of each of said chambers, without venting said gas to the ambient atmosphere to selectively condition one of said chambers as said low pressure reservoir,

a device submerged in a body of water actuated by hydraulic fluid in said system,

a high pressure conduit means connectable to said device for conducting pressurized hydraulic fluid to said device to actuate said device,

a low pressure conduit means connectable to said device for conducting discharged said hydraulic fluid away from said device,

a second valve means in communication with said high pressure conduit and. said low pressure conduit and operable for placing said high pressure conduit in communication with the said one chamber conditioned as a high pressure chamber and for placing said low pressure conduit in communica-. tion with the said other chamber conditioned as a. low pressure chamber,

and means for operating said first and said second valve means.

11. A control system in accordance with claim 10 including means responsive to a predetermined increase in pressure in said low pressure conduit for automatically initiating operation of said first and said second valve means.

12. A control system in accordance with claim 10 wherein said control system is a system for controlling the operation of apparatus on a submerged well and said device is positioned at the submerged wellhead including said source of pressurizing gas and said low pressure reservoir located above the surface of said water,

said first and said second conduit means extending from respectively the said. source of pressurizing gas and said low pressure reservoir through the said body of water to the submerged apparatus,

a signal-generating means located above the surface of said water for controlling the operation of said system remotely,

and means for transmitting a controlling signal from said signal-generating means to the submerged apparatus to energize the said submerged device.

13. A control system for a subsea well including submerged hydraulically operated well control devices comprising a remotely operated submerged hydraulic fluid system for operating said well control devices,

a plurality of chambers in said submerged system,

said plurality of chambers including at least one high pressure chamber and at least one low pressure chamber for a hydraulic fluid,

a first reservoir of high pressure gas for pressurizing said high pressure chambers,

a second reservoir at substantially atmospheric pressure for connection to said low pressure chambers to maintain said low pressure chambers at substantially atmospheric pressure,

said first and said second reservoirs located above the surface of said body of water,

respective conduits extending from said reservoir to the submerged said chambers,

first valve means in said conduits and located in said submerged system,

means for operating said first valve means to place said first reservoir in communication with selected first chambers of said plurality of chambers to condition said selected first chambers to be high pressure chambers for said hydraulic fluids,

means for operating said first valve means to place said second reservoir in communication with selected second chambers of said plurality of chambers to condition said selected second chambers to be said low pressure chambers,

means for operating said first valve means to reverse the communication of said high pressure reservoir with said plurality of chambers to place said high pressure reservoir in communication with said selected second chambers to condition said second chambers as high pressure chambers and to place said atmospheric pressure reservoir in communication with said selected first chambers to condition said first chambers as low pressure chambers,

second conduit means in said submerged hydraulic systems,

said second conduit means connecting respective ones of said plurality of chambers with corresponding ones of said well control devices,

second valve means in said second conduit means,

means for operating said second valve means to connect a respective said high pressure chamber in communication with a corresponding one of said well control devices to introduce energizing said hydraulic fluid to said one device, and to connect a respective said low pressure chamber in communication with said one device to conduct said hydraulic fluid discharged from said onedevice to said low pressure chamber,

and means for initiating the operating of said first valve means and said second valve means,

said submerged hydraulic fluid system forming a closed system for retaining all of the said hydraulic fluid within the said system during the continued operation thereof.

14. A control system in accordance with claim 13 including means for positioning said initiating means above the surface of said body of water, and

means for transmitting a control signal from said initiating means to said submerged system.

15. A control system in accordance with claim 13 including a pressure sensitive device in communication with said low pressure chambers,

means operatively connecting said pressure sensitive device to said first and said second valve means,

said pressure sensitive device being arranged to be actuated at a predetermined pressure to initiate the operation of said first and said second valve means to reverse the communication of said high pressure and said atmospheric pressure reservoirs with the respective said chambers and to reverse the communication of said high pressure chamber and said low pressure chamber with said one device.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2239893 *Jan 10, 1940Apr 29, 1941Timken Roller Bearing CoPower reverse gear
US3100965 *Sep 29, 1959Aug 20, 1963Charles M BlackburnHydraulic power supply
US3219118 *Jan 12, 1962Nov 23, 1965Hydril CoSubmarine well head tool servicing apparatus
US3653635 *Nov 17, 1969Apr 4, 1972Joe Stine IncWave motion compensating apparatus for use with floating hoisting systems
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4174000 *Feb 16, 1978Nov 13, 1979Fmc CorporationMethod and apparatus for interfacing a plurality of control systems for a subsea well
US4234043 *Oct 17, 1977Nov 18, 1980Baker International CorporationRemovable subsea test valve system for deep water
US4378848 *Sep 25, 1980Apr 5, 1983Fmc CorporationMethod and apparatus for controlling subsea well template production systems
US4880060 *Aug 31, 1988Nov 14, 1989Halliburton CompanyValve control system
US5213162 *Feb 14, 1992May 25, 1993Societe Nationale Elf Aquitaine (Production)Submarine wellhead
US5456325 *Apr 19, 1994Oct 10, 1995Southwest Research InstituteMethod and apparatus for driving a probe into the earth
US5878569 *Sep 3, 1997Mar 9, 1999Caterpillar Inc.Energy conversion system
US6046685 *Sep 17, 1997Apr 4, 2000Baker Hughes IncorporatedRedundant downhole production well control system and method
US6257162Sep 20, 1999Jul 10, 2001Coflexip, S.A.Underwater latch and power supply
US6343654 *Nov 29, 1999Feb 5, 2002Abb Vetco Gray, Inc.Electric power pack for subsea wellhead hydraulic tools
US6484806 *Jan 30, 2001Nov 26, 2002Atwood Oceanics, Inc.Methods and apparatus for hydraulic and electro-hydraulic control of subsea blowout preventor systems
US7156169Dec 17, 2003Jan 2, 2007Fmc Technologies, Inc.Electrically operated actuation tool for subsea completion system components
US7216714 *Aug 17, 2005May 15, 2007Oceaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US7216715 *May 5, 2006May 15, 2007Oceaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US7222674 *May 5, 2006May 29, 2007Oceaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US7243729 *Oct 18, 2005Jul 17, 2007Oceaneering International, Inc.Subsea junction plate assembly running tool and method of installation
US7318489 *Jan 19, 2005Jan 15, 2008Shell Oil CompanyHydraulic motor arrangement and method of operating a hydraulic motor
US7690433May 5, 2006Apr 6, 2010Oceeaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US7891429 *Feb 9, 2006Feb 22, 2011Saipem America Inc.Riserless modular subsea well intervention, method and apparatus
US7926501Dec 21, 2007Apr 19, 2011National Oilwell Varco L.P.Subsea pressure systems for fluid recovery
US7984764 *Sep 25, 2009Jul 26, 2011Schlumberger Technology CorporationAccumulator for subsea equipment
US8002041 *Sep 25, 2009Aug 23, 2011Schlumberger Technology CorporationAccumulator for subsea equipment
US8011434 *Feb 20, 2008Sep 6, 2011M.S.C.M. LimitedSubsea securing devices
US8220773Dec 18, 2008Jul 17, 2012Hydril Usa Manufacturing LlcRechargeable subsea force generating device and method
US8464525Jan 30, 2008Jun 18, 2013National Oilwell Varco, L.P.Subsea power fluid recovery systems
US8464797 *Jun 16, 2010Jun 18, 2013Hydril Usa Manufacturing LlcSubsea control module with removable section and method
US8485260 *Mar 30, 2012Jul 16, 2013Transocean Offshore Deepwater DrillingModular backup fluid supply system
US8602109Dec 18, 2008Dec 10, 2013Hydril Usa Manufacturing LlcSubsea force generating device and method
US8651190 *Oct 28, 2010Feb 18, 2014Hydril Usa Manufacturing LlcShear boost triggering and bottle reducing system and method
US8746346Dec 29, 2010Jun 10, 2014Vetco Gray Inc.Subsea tree workover control system
US8857520Apr 27, 2011Oct 14, 2014Wild Well Control, Inc.Emergency disconnect system for riserless subsea well intervention system
US9175538 *Dec 6, 2010Nov 3, 2015Hydril USA Distribution LLCRechargeable system for subsea force generating device and method
US9234400 *Mar 8, 2012Jan 12, 2016Subsea 7 LimitedSubsea pump system
US20050133216 *Dec 17, 2003Jun 23, 2005Fmc Technologies, Inc.Electrically operated actuation tool for subsea completion system components
US20050188688 *Jan 19, 2005Sep 1, 2005Bruno BestHydraulic motor arrangement and method of operating a hydraulic motor
US20060037758 *Aug 17, 2005Feb 23, 2006Oceaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US20060090898 *Oct 18, 2005May 4, 2006Oceaneering International, Inc.Subsea junction plate assembly running tool and method of installation
US20060201681 *May 5, 2006Sep 14, 2006Oceaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US20060201682 *May 5, 2006Sep 14, 2006Oceaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US20060201683 *May 5, 2006Sep 14, 2006Ocaneering International, Inc.Modular, distributed, ROV retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
US20060231264 *Feb 9, 2006Oct 19, 2006Boyce Charles BRiserless modular subsea well intervention, method and apparatus
US20080185046 *Dec 21, 2007Aug 7, 2008Frank Benjamin SpringettSubsea pressure systems for fluid recovery
US20080202760 *Feb 20, 2008Aug 28, 2008M.S.C.M. LimitedSubsea securing devices
US20080267786 *Jan 30, 2008Oct 30, 2008Frank Benjamin SpringettSubsea power fluid recovery systems
US20090038804 *Aug 9, 2007Feb 12, 2009Going Iii Walter SSubsurface Safety Valve for Electric Subsea Tree
US20100012327 *Sep 25, 2009Jan 21, 2010Schlumberger Technology CorporationAccumulator for subsea equipment
US20100071907 *Sep 25, 2009Mar 25, 2010Schlumberger Technology CorporationAccumulator for subsea equipment
US20100155071 *Dec 18, 2008Jun 24, 2010Ryan GustafsonSubsea Force Generating Device and Method
US20100155072 *Dec 18, 2008Jun 24, 2010Ryan GustafsonRechargeable Subsea Force Generating Device and Method
US20110005770 *May 3, 2010Jan 13, 2011Schlumberger Technology CorporationSubsea control system
US20110088913 *Oct 16, 2009Apr 21, 2011Baugh Benton FConstant environment subsea control system
US20110265885 *Jun 16, 2010Nov 3, 2011Hydril Usa Manufacturing LlcSubsea Control Module with Removable Section and Method
US20120103629 *Oct 28, 2010May 3, 2012Hydril Usa Manufacturing LlcShear boost triggering and bottle reducing system and method
US20120138159 *Dec 6, 2010Jun 7, 2012Hydril Usa Manufacturing LlcRechargeable System for Subsea Force Generating Device and Method
US20120186820 *Mar 30, 2012Jul 26, 2012Transocean Offshore Deepwater Drilling Inc.Modular Backup Fluid Supply System
US20140075929 *Sep 17, 2012Mar 20, 2014Caterpillar Global Mining LlcHydraulic anti-cavitation system
US20140124211 *Mar 8, 2012May 8, 2014Roger Warnock, JR.Pump system
US20150096758 *Sep 27, 2014Apr 9, 2015Transocean Innovation Labs, LtdManifolds for providing hydraulic fluid to a subsea blowout preventer and related methods
CN101709630BNov 30, 2009Nov 7, 2012四川华宇石油钻采装备有限公司Integrated control module for safe shutdown system of wellhead
CN103590306A *Nov 20, 2013Feb 19, 2014山东理工大学Hydraulic device for rotary road building equipment
CN103590306B *Nov 20, 2013Oct 14, 2015山东理工大学一种用于旋转式筑路设备的液压装置
EP0027025A1 *Sep 30, 1980Apr 15, 1981Fmc CorporationApparatus for controlling subsea well template production systems
EP0627544A2 *Jun 3, 1994Dec 7, 1994Cooper Cameron CorporationControl module for subsea valve actuation
EP0627544A3 *Jun 3, 1994Jul 19, 1995Cooper Ind IncControl module for subsea valve actuation.
EP2199535A1 *Dec 7, 2009Jun 23, 2010Hydril USA Manufacturing LLCSubsea force generating device and method
EP2466060A3 *Dec 5, 2011Feb 24, 2016Hydril USA Manufacturing LLCCircuit functional test system and method
WO2001021478A1 *Sep 20, 2000Mar 29, 2001Coflexip, S.A.Underwater latch and power supply
WO2001021480A1 *Sep 20, 2000Mar 29, 2001Coflexip, S.A.Underwater vehicle
WO2006023690A3 *Aug 18, 2005Mar 15, 2007Oceaneering Int IncA modular, distributed, rov retrievable subsea control system, associated deepwater subsea blowout preventer stack configuration, and methods of use
WO2007045260A1 *Oct 19, 2005Apr 26, 2007Cooper Cameron CorporationSubsea equipment
WO2008096170A1 *Feb 5, 2008Aug 14, 2008National Oilwell Varco, L.P.A method for recovering fluid used in powering an underwater apparatus submerged in deep water
WO2008096174A1 *Feb 7, 2008Aug 14, 2008National Oilwell Varco, L.P.A method for recovering fluid from an underwater apparatus submerged in deep water
WO2012024440A3 *Aug 17, 2011Dec 20, 2012Wild Well Control, Inc.Retrieving a subsea tree plug
WO2012149445A1 *Apr 27, 2012Nov 1, 2012Wild Well Control, Inc.Emergency disconnect system for riserless subsea well intervention system
WO2017023362A1 *Feb 3, 2016Feb 9, 2017National Oilwell Varco, L.P.Flow responsiveness enhancer for a blowout preventer
Classifications
U.S. Classification91/4.00R, 166/338, 166/368, 60/416, 60/325
International ClassificationF15B21/04, F15B1/02, F15B11/072, E21B33/064, E21B33/035, F15B1/00
Cooperative ClassificationE21B33/064, E21B33/0355
European ClassificationE21B33/035C, E21B33/064