Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3921980 A
Publication typeGrant
Publication dateNov 25, 1975
Filing dateAug 5, 1974
Priority dateAug 5, 1974
Publication numberUS 3921980 A, US 3921980A, US-A-3921980, US3921980 A, US3921980A
InventorsRichard F Artzer
Original AssigneeWalt Disney Prod
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Ice cannon combined with frozen projectile supply structure and target structure
US 3921980 A
Abstract
A target shooting apparatus having a shooting station and a target station separated by a range area with a projectile launcher at the shooting station adapted to discharge frozen particles in a controlled trajectory at the target station. The projectile launcher is provided with a frozen projectile supply having a refrigeration plant for the freezing of an aqueous medium into a plurality of frozen projectiles and transport facilities are provided for delivering the frozen projectiles to the shooting station. In a typical embodiment, the refrigeration plant is a conventional ice cube maker with a suitable dispenser and pnuematic transport facilities for dispensing and delivering ice cubes to the breech of a simulated artillery piece such as a cannon for launching at a target such as a ship in an aquatic environment. The artillery piece has an outer housing which simulates the barrel of a cannon with an internal, resonator sleeve supported at its discharge end in which the barrel of the frozen projectile launcher is supported. The launcher is powered with a compressed gas and the resonator sleeve acoustically amplifies the release of air pressure from the barrel. The launcher is also provided with a breech body having a central, transverse bore in which is rotatably mounted a plug member. The plug member has a projectile chamber which, when the plug is rotated between loading and firing positions, assumes a generally coaxial extension with radial bores in the breech body.
Images(3)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent [191 Artzer [451 Nov. 25, 1975,

1 1 ICE CANNON COMBINED WITH FROZEN PROJECTILE SUPPLY STRUCTURE AND TARGET STRUCTURE [75] inventor: Richard F. Artzer, Orange, Calif.

[73] Assignee: Walt Disney Productions, Burbank,

Calif.

22 Filed: Aug. 5, 1974 21 Appl. No.: 494,723

[52] US. Cl 273/101; 62/331; 124/11 R; 273/106 R [51] Int. C1. A63B 65/12; F41F 1/04;F41 1 9/04 [58] Field of Search 124/5,11 R, 27; 273/101, 273/1054, 105.5, 106 R; 62/1, 331,340

[56] References Cited UNlTED STATES PATENTS 2,312,244 2/1943 Feltman 124/11 R 2,398,813 4/1946 Swisher 273/101 2,526,018 10/1950 Foster et a1. 124/11 R 2,607,333 8/1952 ODell 124/27 2,948,275 8/1960 Smith 124/27 3,159,011 12/1964 Kaluzny et a1. 62/345 3,359,001 12/1967 Silva 273/1054 3,371,505 3/1968 Raver et a1. 62/320 3,434,716 3/1969 Schwartz 273/105 R X 3,640,081 2/1972 Hadden 62/1 Primary Examiner-Richard J. Apley Assistant Examiner-R. T. Stouffer Attorney, Agent, or Firm-Fulwider, Patton, Rieber, Lee & Utecht [57] ABSTRACT A target shooting apparatus having a shooting station and a target station separated by a range area with a projectile launcher at the shooting station adapted to discharge frozen particles in a controlled trajectory at the target station. The projectile launcher is provided with a frozen projectile supply having a refrigeration plant for the freezing of an aqueous medium into a plurality of frozen projectiles and transport facilities are provided for delivering the frozen projectiles to the shooting station. in a typical embodiment, the refrigeration plant is a conventional ice cube maker with a suitable dispenser and pnuematic transport facilities for dispensing and delivering ice cubes to the breech of a simulated artillery piece such as a cannon for launching at a target such as a ship in an aquatic environment. The artillery piece has an outer housing which simulates the barrel of a cannon with an internal, resonator sleeve supported at its discharge end in which the barrel of the frozen projectile launcher is supported. The launcher is powered with a compressed gas and the resonator sleeve acoustically amplifies the release of air pressure from the barrel. The launcher is also provided with a breech body having a central, transverse bore in which is rotatably mounted a plug member. The plug member has a projectile chamber which, when the plug is rotated between loading and firing positions, assumes a generally coaxial extension with radial bores in the breech body.

10 Claims, 10 Drawing Figures US. Patent Nov. 25, 1975 Sheet 1 0f 3 Ill!" llll US. Patent Nov. 25, 1975 Sheet 2 of3 3,921,980

FIG. 8 M Z:

Patent Nov. 25, 1975 Sheet 3 of 3 L4/|1 W VMY MK Q\\ 0m h V MAW Quit wm W K W h r xsw \.n W 58 o NhQ s? O\ m I ICE CANNON COMBINED WITH FROZEN PROJECTILE SUPPLY STRUCTURE AND TARGET STRUCTURE BACKGROUND OF THE INVENTION 1. Field of the Invention:

This invention relates to target shooting apparatus and, in particular to target shooting amusement devices.

2. Description of the Prior Art:

Target shooting apparatuses commonly found in amusement parks and the like are usually shooting galleries having small, hand guns where the cost of the projectiles and the labor in policing the target area and recovering the projectiles is relatively minor. Shooting apparatuses employing larger scale projectile launching means such as simulated, artillery pieces, mortars, cannons, rock throwing machines, rocket launchers and the like have not found acceptance, despite their obvious attractiveness, because of the large expense associated with the manufacture and supply of the necessary projectiles as well as the labor in policing the target station and retrieving or removing the spent projectiles. Accordingly, there has not previously been provided any target shooting apparatus having a shooting station and a target station separated by a range of substantial distance and simulated artillery pieces.

SUMMARY OF THE INVENTION This invention comprises a target shooting apparatus which employs frozen projectiles, preferably ice cubes, balls and the like, that can be launched by projectile launching means which simulate artillery pieces such as mortars, guns, cannons, rock throwing machines, rocket launchers and the like. In its preferred embodiment, the simulated artillery piece comprises an ice cannon and is used in combination with nautical targets such as boats, ships and the like which are supported at a target station, surrounded by an aquatic medium. The use of the frozen projectiles in the shooting apparatus eliminates the labor that would otherwise be required for the retrieving of spent projectiles, eliminates the need to interrupt the use of the apparatus for such retrieval, and also avoids the unsightly littering of the target station with spent projectiles. In the preferred embodiment, the frozen projectiles are manufactured with conventional refrigeration equipment such as an ice cube maker, thereby reducing, substantially, their cost of manufacture and providing inexpensive, expendable projectiles which degrade to innocuous waste products that disappear entirely into the target area environment.

The projectile launching means employed in the shooting apparatus, preferably, has a tubular housing which simulates the barrel of an artillery piece with a tubular, resonator member carried from its forward end and extending rearwardly and coaxially with the housing and terminating therein with a closed end plate. The barrel of the projectile launching means is mounted within the tubular housing with its forward end extending through and supported by the end plate of the resonator member. This construction provides means for acoustically amplifying the noise from the release of the compressed gas used in discharging the frozen projectile from the breach of the launching means.

The breach of the launching means is preferably provided with a plug member rotatably mounted therein and having a cross bore that forms the projectile chamber. The breach body includes two bores radially extending from the transverse bore which are aligned with the barrel of the launching means and with the frozen projectile delivery means so that the plug member can be rotated between loading and firing positions. Preferably, the projectile chamber of the plug bears a plastic liner to prevent the frozen particles from adhering to the surfaces of the chamber.

The delivery means for transporting the frozen projectiles from the site of their manufacture to the breech of the projectile launching means comprises a blower with conduit means extending from the blower discharge through the projectile dispensing means at the refrigeration site and conduit means extending from the dispensing means to the breech of the projectile launching means. In its preferred embodiment, the intake of the blower is connected to an exhaust port in the breech body whereby the projectiles are facilitated in their transport by the reduced pressure on the intake side of the blower.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates the target shooting apparatus;

FIGS. 2-4 illustrate the frozen projectile dispensing means employed in the invention;

FIG. 5 is a cross-sectional, elevation view of the projectile launching means;

FIGS. 6-9 illustrate the breach mechanism employed in the projectile launching means; and

FIG. 10 illustrates the electrical and pneumatic controls employed in the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings and particularly FIGS. 1-3 thereof, a preferred form of ice cannon apparatus embodying the present invention includes a simulated cannon C that receives ice cube projectiles 11 from a cold storage chest S by means of a delivery conduit 12. The ice cubes are made by a conventional ice cube maker 13 mounted upon cold storage chest S. The cannon C shoots the ice cubes 11 at a target 14 surrounded by an aquatic environment 14a, as indicated by trajectory line 15. The ice cubes are transported from cold storage chest S through delivery conduit 12 pneumatically, such conduit 12 being in communication with the discharge of an air source A disposed in chest S and a return line 16 connected to the suction of air source A. The ice cubes 11 are propelled from cannon C by air pressure, such cannon being connected by pipe 18 to a source of compressed air 19.

More particularly, ice cube maker 13 may be of the type manufactured by Queen Products Division, King- Seeley Thermos Co., Albert Lea, Minnesota, and sold by Sears, Roebuck & Co. under the trademark Scotsman. Such an ice cube maker makes ice cubes 11 of cylindrical cross-section. As shown in FIGS. 2 and 3, the lower portion of ice cube maker 13 is provided with a discharge chute 20 through which ice cubes 11 fall into the bowl 42 of a conventional vibratory parts feeder V, such as that sold by Syntron Division, FMC Corporation, Homer City, Pennsylvania, under the trademark Syntron" (Model Series EB). The vibratory parts feeder V is disposed within the cold storage chest S. Bowl 42 is formed with a spirally inclined track 44 on the inside perimeter thereof. For the particular use contemplated by the present invention, bowl 42 is modified to include a vertical terminal port 46 of cylindrical cross-section dimensioned to receive the ice cubes 11 on the extreme radially outer end of the track 44. This port is aligned substantially normal to the surface of bowl 42. Immediately adjacent port 46, bowl 42 is further modified to include an end stop 48 which directs ice cubes 11 into the upper end of the port.

connected to the lower surface of port 46 is the upper end of a vertical, flexible transparent feeder hose 50 of a cylindrical transverse cross-section slightly larger than the cross-sectional dimension of ice cubes 11. The lower end of hose 50 is attached to the upper end of a cavity 52 of a shuttle block 53 that is slidably carried within a housing 54, shown in detail in FIG. 4. Shuttle block 53 is actuated by a conventional slave air cylinder and plunger unit 56 secured to the base 60 of cold storage chest S. Shuttle block 53 serves to transfer ice cubes 11 from feeder hose 50 to an aperture 58 formed in housing 54 in alignment with and interposed in delivery conduit 12, when shuttle block 53 is shifted from its solid outline position of FIG. 4 to its dotted outline position of such figure under the influence of cylinder and the plunger unit 56. An ice cube 11 a is then moved through the section of delivery conduit 12 below shuttle block housing 54 into cannon C by air pressure. Shuttle block housing 54 is provided with a horizontally slidable plate 62 below cavity 52 which is selectively retracted to the left from its closed position of FIGS. 2, 3 and 4 by a conventional solenoid actuator unit 64 in these figures whereby unused ice cubes (not shown) remaining in bowl 42 may be dumped. In this manner, bowl 42 is periodically emptied to receive a new charge of fresh ice cubes 11 as substitutes for ice cubes which have deteriorated with time within the bowl.

Referring now to FIGS. -9, delivery conduit 12 extends from aperture 58 to the bottom of caisson 68 of cannon C and then upwardly to a vertical bore 70 extending upwardly from the bottom surface of a loader, generally designated 72. At the upper front surface of loader 72, return fitting 16 is connected to a horizontal bore 104 that intersects bore 70. Loader 72 directs ice cubes into the actual barrel 84 of cannon C and includes a breech body 86 wherein are formed bores 70 and 74. Body 86 pivotally supports a metallic swivel plug 88 by bearings 90. Swivel plug 88 is formed with a bore 91 wherein is disposed a synthetic plastic cup 92 having dimensions just slightly larger than those of ice cubes 11 to define a frozen projectile chamber. Cup 92 is of plastic construction rather than metallic construction to insure ice cubes will not stick therein. A loader arm 94 is keyed to a sideward extension 96 of swivel plug 88 by means of which such plug can be swung from its ice cube-receiving position of FIGS. 7 and 9 to its cube-firing position of FIGS. 6 and 8. Loader arm 94 is pivotally connected to the push rod of a slave air cylinder 96, which air cylinder is actuated by a master cylinder unit to be described hereinafter for swinging loader arm and hence the swivel plug 38 between its cube-receiving and cube-firing positions. An aperture 98 is coaxially formed in the closed end of cup 92 and a rubber bumper ring 99 is secured within such closed end.

Horizontal bore 74 is aligned with actual barrel 84 of cannon C, as shown in FIGS. 6 and 8. Swivel plug 88 is formed with a port 100 that intersects cup aperture 98 when such block is in its loading position of FIGS. 7 and 9. At this time port 100 and aperture 98 are also aligned with a by-pass passage 102 formed in body 86 of loader 72, as seen in FIGS. 7-9. The upper end of bypass passage 102 is in communication with return line 16 by a branch passage 104, shown particularly in FIGS. 8 and 9, whereby the reduced pressure of the air blower A intake can be applied to facilitate movement of the ice cubes into the chambers in plug 88. With continued reference to FIGS. 8 and 9, loader 72 is also formed with a horizontal supply port 105 aligned with actual barrel 80 and intersecting bores 70 and 74. Port 105 is connected to an air line 106 that extends rearwardly within cannon C to an air valve 108 shown in FIG. 5. A small vacuum line 114 intersects airline 106 adjacent loader 72 for a purpose to be described hereinbelow.

Referring again to FIG. 1 and additionally to FIG. 5, the cannon C includes a simulated barrel 116 which houses the aforementioned actual barrel 84. The front end of actual barrel 84 terminates inwardly of the front end of simulated barrel 116. A cylinder 118 coaxially surrounds actual barrel 84. The rear end of such cylinder is closed by a cap 120. This arrangement provides a resonant structure for acoustically amplifying the noise accompanying the sudden release of compressed air that propels the ice cubes 1 1 along the trajectory 15 towards target 14.

The elevation and azimuth of cannon C may be controlled in a conventional manner so as to permit the cannon user to aim the cannon at target 14. A trigger 121 shown in FIG. 1 extends from the rear portion of simulated barrel 116. Such trigger is connected to the actuating lever 122 of air valve 108 by a lanyard 126. Disposed rearwardly of air valve 108 within simulated barrel 116 is an air storage container 128 connected to air valve 108 by a short pipe 130. Air accumulator 128 receives compressed air through a tube 131 which is shown broken in FIG. 5 in the interest of clarity. As indicated in FIG. 5, the lower end of tube 131 is connected is connected to a T-fitting 132 positioned within the lower portion of caisson 68. The lower end of T- fitting 132 is connected to the aforementioned air supply pipe 18 which is shown connected to compressed air source 19 in FIG. 1. Forwardly of T-fitting 132 caisson 68 supports an auxiliary air storage tank 134, such tank receiving air from the center outlet of the T- fitting. The front end of tank 134 is connected to a master cylinder and piston unit 136, the latter being in communication with the aforementioned slave cylinder and plunger unit 96 by tubing 138 and 140.

Referring now additionally to FIG. 10, in the operation of the aforedescribed ice cannon apparatus there is provided a source of electrical power E (such as 24 volts AC) which is connected across a coin box of conventional construction. The coin box includes a switch 151 which is adapted to be closed upon receipt of a predetermined value of coin. When the coin box switch 151 is closed the output therefrom energizes one set of terminals of two parallel push'to-close switches S-1 and S-4. Switch S-1 is disposed to be closed by the placement of the firing arm 124 in the fire position. In this position switch S1 energizes both a ready light 152 indicating that the cannon C is ready to be fired and the contactor of a series-connected switch S-3. Switch S-3 is operatively connected to be closed by the actuation of trigger 122 to energize a coil 153 which pulls in the armature of air valve 108 thereby suddenly discharging the compressed air within accumulator 128. This charge of compressed air travels forwardly through air line 106 to loader 142. At this time swivel block 88 is disposed in its fire position of FIGS. 6 and 8. Accordingly, the ice cube 11 b disposed within cup 92 will be shot forwardly through actual barrel 84 along trajectory towards target 14.

Also connected from the output of switch S-3 is the solenoid coil 154 of aforedescribed master control cylinder 134, which controls the operation of the aforedescribed slave cylinder 96. When energized through coil 154 the master control cylinder 134 rotates loader arm 94 and hence swivel block 88 to its load position of FIGS. 7 and 9. Upon reaching such load position, loader arm 94 depressespush-to-close switch S4 also connected to outlet of coin box 150 which in turn energizes a coil 156 of a switching relay 157 to initiate a count in a conventional timer 159. At the completion of the count of timer 159 a firing coil of the master control cylinder 134 is energized to activate the loader arm 94 and hence swivel block 88 to its fire position of FIGS. 6 and 8. When the swivel block 88 has been disposed in proper fire position, loader arm 94 closes switch 5-1 as described hereinabove.

Also connected to the output of switching relay 157 is a shuttle control coil 160 disposed to activate a master control cylinder 161 that controls the operation of aforedescribed cylinder and plunger unit 56 to thereby drive the shuttle block 5.3 from its solid outline position of FIG. 4 to its dotted outline position thereof whereby cavity 52 will be aligned with aperture 58. The ice cube 11 a shown in FIG. 4 will then be driven through delivery line 12 towards the loader 72. At the completion of the delay provided by timer 159 a return coil 162 on master cylinder 161 is energized so as to return shuttle block 53 to its solid outline position of FIG. 4 wherein another ice cube may fall into the cavity 52. The output signal of timer 159 also energizes a coil 170 on control valve 155 to move loading arm 94 and hence swivel block 88 to the fire position of FIGS. 6 and 8.

Timer 159 may be any conventional timer selectively set to provide a time delay that allows sufficient time for an ice cube to progress from shuttle block housing 54 to loader 72. Timer 159 may further include a conventional counter (not shown) which at the completion of a predetermined count of timing cycles disables the control system. In this manner a user of the cannon C will be provided with a plurality of shots for the coins dropped into coin box 150.

The invention has been described with reference to the presently preferred and illustrated mode of practice thereof. It is not intended that the invention be limited by the illustrated and preferred embodiment. Instead, it is intended that the invention be defined by the means and their obvious equivalents set forth in the following claims.

I claim:

1. A target shooting apparatus comprising:

a shooting station;

a target station positioned down range therefrom and having target means within the range of projectiles launched from said shooting station;

a frozen projectile supply means remote from said shooting station having refrigeration means for the freezing of an aqueous medium into a plurality of solid-form frozen projectiles;

frozen projectiles storage means communicating with said frozen projectile supply means for storing frozen projectiles supplied thereby;

frozen projectile transport means for delivering frozen projectiles singly to said shooting station;

dispensing means to discharge said frozen projectiles, singly, into said transport means from said storage means;

cold chest means surrounding said storage means and said dispensing means; and

projectile launching means at said shooting station including means communicating with said transport means to receive said frozen projectiles singly from said transport means and to place each of said projectiles into a location in said launching means from which it is to be launched, said projectile launching means further including means to direct said launching means towards said target means and to discharge said projectiles from said launching means in a controlled trajectory at said target means.

2. The target shooting apparatus of claim 1 wherein: said target station is surrounded by an aquatic environment.

3. The target shooting apparatus of claim 2 wherein:

said projectile launching means is a simulated artillery piece and said target means are simulated ships.

4. The target shooting apparatus of claim 1 wherein said projectile launching means comprises:

a base;

a tubular housing carried thereon and simulating the barrel of an artillery piece;

a tubular resonator member carried by the forward end of said housing and coaxially extending within said housing and terminating therein with a closed end plate;

a projectile barrel within said housing and extending through said end plate, coaxially with said resonating member for a substantial length of said resonating member and terminating in an open-ended discharge in said resonating member intermediate the ends thereof;

breech means at the rear of said barrel for introducing projectiles into said barrel; and

conduit and valve means to supply compressed gas to the breach means whereby projectiles positioned therein can be discharged from said launcher.

5. The target shooting apparatus of claim 4 wherein:

said housing is carried by means whereby the elevation and azimuth of said tubular housing can be fixedly adjusted to control the trajectory of said projectiles.

6. The target shooting apparatus of claim 5 wherein:

said housing also contains a pressured gas reservoir upstream of said conduit and valve means to accumulate a sufficient charge of compressed gas to tire said launcher.

7. The target shooting apparatus of claim 5 wherein:

said base bears wheels whereby said launching means is mobile.

8. The target shooting apparatus of claim 1 wherein said dispensing means comprises a vibratory feeder having a vibrating pan bearing a spiral track on its insaid dispensing means includes a shuttle block recipro-' cally carried by a housing and having a cavity to receive frozen projectiles from said dispensing port and transfer said projectiles singly into said conduit of said transport'means.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US2312244 *May 26, 1941Feb 23, 1943Feltman Charles APneumatic amusement machine gun
US2398813 *Sep 23, 1943Apr 23, 1946Edison General Elec ApplianceGun-training apparatus
US2526018 *Dec 15, 1947Oct 17, 1950Thomas R FosterBall projecting machine
US2607333 *Jul 19, 1947Aug 19, 1952O'dell James WSnowball gun
US2948275 *Aug 20, 1958Aug 9, 1960Robert D SmithSnowball maker and launcher
US3159011 *Jul 6, 1962Dec 1, 1964David MeyerApparatus for manufacture of flying targets
US3359001 *Mar 9, 1964Dec 19, 1967Olin MathiesonFrangible target compacted of particulate ice or carbon dioxide
US3371505 *Mar 2, 1964Mar 5, 1968Borg WarnerAuger icemaker
US3434716 *Aug 26, 1966Mar 25, 1969Arthur SchwartzSinkable toy target
US3640081 *Apr 2, 1969Feb 8, 1972Olin MathiesonHollow spherical ice bodies and method of making the same
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4077629 *Jan 31, 1977Mar 7, 1978Lawrence Peska Associates, Inc.Sea battle game apparatus
US4194304 *Nov 2, 1978Mar 25, 1980The United States Of America As Represented By The Secretary Of The ArmyLoader and recoil simulation trainer for artillery crews
US4833961 *Feb 16, 1988May 30, 1989Ari AdiniMethod, device and ammunition for dispersing rioters
US5727538 *Apr 5, 1996Mar 17, 1998Shawn EllisElectronically actuated marking pellet projector
US5881707 *Jan 15, 1997Mar 16, 1999Smart Parts, Inc.Pneumatically operated projectile launching device
US5967133 *Sep 30, 1997Oct 19, 1999Smart Parts, Inc.Pneumatically operated projectile launching device
US6035843 *Jan 16, 1996Mar 14, 2000Smart Parts, Inc.Pneumatically operated projectile launching device
US6349711Mar 20, 2000Feb 26, 2002Smart Parts, Inc.Low pressure electrically operated pneumatic paintball gun
US6644295Apr 1, 2002Nov 11, 2003Smart Parts, Inc.Pneumatic assembly for a paintball gun
US6644296Apr 2, 2002Nov 11, 2003Smart Parts, Inc.Dynamic paintball gun control
US6675791Jan 17, 2002Jan 13, 2004Akalmp, Inc.Pressure regulator for pneumatic guns
US6705194 *Sep 24, 2001Mar 16, 2004Jet Energy, Inc.Selfrechargeable gun and firing procedure
US6810871Oct 17, 2003Nov 2, 2004Smart Parts, Inc.Pneumatic assembly for a paintball gun
US6827529Jul 30, 1999Dec 7, 2004Lancer Ice Link, LlcVacuum pneumatic system for conveyance of ice
US6889681Aug 1, 2000May 10, 2005Akalmp, Inc.Electronic pneumatic paintball gun
US6901923Sep 16, 2004Jun 7, 2005Smart Parts, Inc.Pneumatic assembly for a paintball gun
US7044119Feb 5, 2004May 16, 2006Smart Parts, Inc.Pneumatic assembly for a paintball gun
US7100593Aug 15, 2003Sep 5, 2006Smart Parts, Inc.Pneumatically operated projectile launching device
US7185646Oct 27, 2003Mar 6, 2007Smart Parts, Inc.Pneumatic assembly for a paintball gun
US7237544Dec 22, 2003Jul 3, 2007Smart Parts, Inc.Pneumatic paintball gun and components
US7461646Feb 21, 2007Dec 9, 2008Smart Parts, Inc.Bolt for pneumatic paintball gun
US7516961Apr 12, 2008Apr 14, 2009Zylka Brian KToy water cannon game
US7543820 *Mar 26, 2007Jun 9, 2009Richard KingPaintball targets with entertainment value
US7556032Feb 11, 2005Jul 7, 2009Smart Parts, Inc.Pneumatic paintball gun
US7591262Mar 14, 2006Sep 22, 2009Smart Parts, Inc.Pneumatic paintball gun and bolt
US7617819Mar 14, 2006Nov 17, 2009Smart Parts, Inc.Pneumatic assembly for a paintball gun
US7617820Jun 15, 2004Nov 17, 2009Smart Parts, Inc.Pneumatic paintball gun
US7624723Jun 17, 2005Dec 1, 2009Smart Parts, Inc.Paintball gun kit
US7640925Mar 14, 2006Jan 5, 2010Smart Parts, Inc.Pneumatic assembly for a paintball gun
US7640926Dec 16, 2005Jan 5, 2010Smart Parts, Inc.Pneumatic assembly for a paintball gun
US7866308 *Nov 16, 2009Jan 11, 2011Smart Parts, Inc.Pneumatic paintball gun with volume restrictor
US8409184 *Oct 28, 2009Apr 2, 2013Cpsi Holdings LlcCryo-medical injection device and method of use
US8747397 *Nov 21, 2012Jun 10, 2014Cpsi Holdings LlcCryotreatment pellet
US20040084040 *Oct 17, 2003May 6, 2004Danial JonesPneumatic assembly for a paintball gun
US20040134476 *Aug 15, 2003Jul 15, 2004Smith David L.Pneumatically operated projectile launching device
US20050028802 *Sep 16, 2004Feb 10, 2005Danial JonesPneumatic assembly for a paintball gun
US20050115550 *Oct 27, 2003Jun 2, 2005Smart Parts, Inc.Pneumatic assembly for a paintball gun
US20050115554 *Feb 5, 2004Jun 2, 2005Smart Parts, Inc.Pneumatic assembly for a paintball gun
US20050133014 *Dec 22, 2003Jun 23, 2005Jones Danial S.Pneumatic paintball gun and components
US20060011186 *Feb 11, 2005Jan 19, 2006Danial JonesPneumatic paintball gun
US20060011187 *Jun 17, 2005Jan 19, 2006Gardner William JrPaintball gun kit
US20060011188 *Jun 15, 2004Jan 19, 2006Danial JonesPneumatic paintball gun
US20060047421 *Apr 27, 2005Mar 2, 2006Microsoft CorporationComputing point-to-point shortest paths from external memory
US20060090739 *Dec 16, 2005May 4, 2006Danial JonesPneumatic assembly for a paintball gun
US20060157043 *Mar 14, 2006Jul 20, 2006Smart Parts, Inc.Pneumatic assembly for a paintball gun
US20060162715 *Mar 13, 2006Jul 27, 2006Smart Parts, Inc.Paintball gun having a pneumatic assembly
US20060207586 *Mar 14, 2006Sep 21, 2006Danial JonesPneumatic assembly for a paintball gun
US20070068502 *Oct 6, 2006Mar 29, 2007Jones Danial SPneumatic paintball gun with volume restrictor
US20070186916 *Apr 20, 2007Aug 16, 2007Smart Parts, Inc.Grip routed gas supply for a paintball gun
US20070209650 *Feb 21, 2007Sep 13, 2007Smart Parts, Inc.Bolt for pneumatic paintball gun
US20070273100 *Mar 26, 2007Nov 29, 2007Richard KingPaintball targets with entertainment value
US20100282232 *Nov 11, 2010Smart Parts, Inc.Pneumatic paintball gun with volume restrictor
US20110060323 *Oct 28, 2009Mar 10, 2011Baust John MResorbable Probe Including a Device and Method for Minimally Invasive Tissue Sensitization and Treatment
US20130079761 *Nov 21, 2012Mar 28, 2013Cpsi Holdings LlcCryo-medical injection device and method of use
CN101451798BDec 30, 2008Apr 25, 2012东南大学Gas gun system for shooting hail
EP2065671A1Nov 29, 2007Jun 3, 2009Ugo NeviMachine shooting bullets of ice
WO2000008396A1 *Aug 2, 1999Feb 17, 2000Lancer Ice Link L L CVacuum pneumatic system for conveyance of ice
WO2009069171A2 *Nov 28, 2008Jun 4, 2009Nevi UgoMachine shooting bullets of ice
Classifications
U.S. Classification273/405, 473/569, 124/73, 62/331, 124/77
International ClassificationF41B11/00, A63F9/02, F25C5/00, F41J11/00
Cooperative ClassificationF25C5/002, F41B11/57, F41J11/00, F41B11/00, A63F9/0252
European ClassificationF41B11/57, F41B11/00, F25C5/00B, A63F9/02G, F41J11/00