Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS3922223 A
Publication typeGrant
Publication dateNov 25, 1975
Filing dateMar 25, 1974
Priority dateMar 25, 1974
Publication numberUS 3922223 A, US 3922223A, US-A-3922223, US3922223 A, US3922223A
InventorsBurkhartsmeier Gary L
Original AssigneeUs Navy
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Multiple chromatographic column system
US 3922223 A
Abstract
A multiple chromatographic column system comprising a multiple station column cabinet and a multiple outlet two stage pressure manifold. The system provides a reliable device which will perform pressurized multiple column chromatography.
Images(2)
Previous page
Next page
Claims  available in
Description  (OCR text may contain errors)

United States Patent Burkhartsmeier 1 Nov. 25, 1975 1 MULTIPLE CHROMATOGRAPHIC 3,185,211 5/1965 Crawford. Jr. et al... 55/386 x O l SYSTEM 3,4l7,779 l2/1968 Golay 55/386 X 3,478,886 11/1969 Hornbeck 210/198 C 1 51 Inventor'- y Burkhartsmeier, Oakland, 3,518.874 7/1970 Hrdina 210/198 c Calif. 3,583,230 6/1971 Patterson. 210/198 C ,1,4 194 l. ..10198 [73] Assignee: The United States of America as 3 8 O 5 5 5/ 7 Fm et a 2 l C represented by the Secretary of the Navy, Wa hington, D C Primary Examiner-John Adee Filed: Mar. 1974 ttorney, Agent, or FirmR. S. Sciascia; Charles D. B.

urry [21] Appl. No.: 454,655

57 ABSTRACT [52] US. Cl. 210/198 C; /386 1 [51] Int. Cl. B01D 15/08 A multiple chromatographic column system compris- [58] Field of Search 210/31 C, 198 C; 55/67, ing a multiple station column cabinet and a multiple 55/197, 386 outlet two stage pressure manifold. The system provides a reliable device which will perform pressurized [56] References Cited multiple column chromatography UNITED STATES PATENTS 3,156,548 11/1964 Perry 55/386 x 1 Clam" 3 Drawmg Flgures I 1'1 g 49 53 (r l 5| 63 e9 65 US. Patent Nov. 25, 1975 Sheet10f2 3,922,223

SOLVENT FIG. 1

US. Patent Nov. 25, 1975 Sheet 2 of2 3,922,223

MULTIPLE CI-IROMATOGRAPIIIC COLUMN SYSTEM BACKGROUND OF THE INVENTION 1. Field of the Invention The subject matter of the present invention is generally related to a device for performing pressurized column chromatography and more particularly a multiple chromatographic column system which will provide reliable pressurized multiple column chromatography.

2. Description of the Prior Art Pressure chromatography is presently carried out by securing the column, usually on a burette stand, and

applying pressure to the column by subjecting it to air from a laboratory flowmeter and discontinuing the flow of air when sufficient pressure has been achieved to yield adequate solvent flow through the column. Therefore, the actual pressure inside the column is never constant, thus the chromatographic parameters are continually changing and the reliability of the chro- I SUMMARY OF THE INVENTION Briefly, the present invention is a multiple chromatographic column system comprising a multiple station column cabinet and a multiple outlet two stage pressure manifold. The system provides a reliable device which will perform pressurized multiple column chromatography. I

STATEMENT OF THE OBJECTS OF THE INVENTION A primary object of the present invention is to provide a multiple chromatographic system which will provide a reliable method of performing pressurized column chromatography on a mass production basis.

Another object of the present invention is to provide a device which precisely provides constant chromatographic parameters thus making chromatographic procedures more convenient, efficient and reliable.

Another object of the present invention is to provide a multiple chromatographic system which increases the productivity of a chromatographic system operation.

Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying drawings wherein:

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an isometric illustration of the multiple chromatographic column system and particularly showing the multiple station column cabinet and the multiple outlet pressure manifold.

.umn of the multiple chromatographic column system illustrated in FIGS. 1 and 2.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIGS. 1 and 2, the multiple chromatographic column system is generally comprised of multiple outlet pressure manifold system 11 and multiple station column cabinet 13. The present column system illustrated in FIGS. 1 and 2 is limited to three chromatographic columns I-III; however, it is obvious that the number (n) of outlets could be unlimited.

Cabinet 13 is comprised of vertical support 15, manifold mounting brackets 17, shelf 19a, keyway 19b, and lower shelf 21. Shelf 19a functions as a positioning support guide for the pressure columns I-III and/or n. Lower shelf 21 is preferably made adjustable to allow clearance for various beaker configurations and effluent collection tubes. Pressure manifold system 11 may be secured to mounting brackets 17 by any number of 'well known mounting methods.

Referring to FIGS. 1 and 2 and particularly to FIG. 2, pressure manifold system 11 is connected to an air pressure source S via air line 23 which is connected to adapter 25. Adapter 25 is coupled to filter regulator 27. Filter regulator 27 may include, if desired, a line pressure gauge 27A to measure the line air pressure from source S. Filter regulator 27 is a standard filter regulator and provides effective filtration as well as controlled pressure. a B02 Norgren Filter-Regulator or the like may be used. Filter regulator 27 is operatively coupled to manifold line-29. Manifold line 29 is formed by interposing conduit pipes 29A between standard pipe tees 31, 33, and ,35. The distal end of the last tee should be plugged. On/off needle valves 43, 45 and 47 are respectively connected to tees 31, 33 and 35 via reducers 37, 39 and 41. Reducers 37, 39 and 41 are preferably from about one-fourth inch to about one-half inch for proper air pressure maintenance; however, these measurements may vary depending on the specific operative limits desired. On/off needle valves 43, 45 and 47 provide the proper flow/no flow conditions to the individual columns I-n. Moreover, needle valves 43, 45 and 47 provide for independent as well as simultaneous operation of the individual columns .In. Secondary regulators -49, 51, and 53 are operatively coupled to needle valves 43, 45, and 47 respectively. Secondary regulators 49, 51, and 53 can be a Type R06 Norgren device which is a standard pressure relief secondary regulation device. Adapters 49A, 51A and 53A may be included in the system to measure column air pressure. A pressure gauge 57 such as a magnehelic gauge may be individually operatively coupled to each adapter to test the individual system column pressure for columns I-n if desired. Secondary regulators 49, 51, and 53 are operatively coupled to standard needle bleed valves 65, 67, and 69 via pipe tees 59, 61, and 63 respectively. Needle bleed valves 65, 67, and 69 allow for bleeding off the system pressure in the individual columns I-n if desired. The needle valves also allow the operator to bleed the internal pressure of each column I-n when the manifold needle valves are in the off position.

Referring again to FIG. 2, pressure tubings 77, 79 and 81 are connected to the distal ends of tees 59, 6 1,

and 63 via hose connectors 71, 73 and 75. These pressure tubings 77, 79 and 81 are connected to pressure columns 83, 85 and 87 which will be described below. Since columns 83, 85 and 87 are structually and functionally similar, then a description of one column will be deemed to apply to all of the columns I-n.

Referring to FIG. 3 pressure column (83, 85, and 87) is generally comprised of reservoir 89, column stem 91, threaded sector 93, seal 95, hollow adapter 97, filler cap 99, stop cock 102 and spout 105. Pressure column(s) (83, 85, 87) provides a reservoir for both the mobile phase gas liquid or solid as well as the stationary phase, gas, liquid or solid.

For purposes of illustration a mobile phase solvent and a stationary phase gel is used; however, the function of the unique multiple chromatographic column system would not be limited to the use of these particular constituents. Adapter 97 fits into the aperture located in filler cap 99. Seal 95, also having an aperture, is placed between hollow threaded section 93 and aligned with the base of adapter 97. Seal 95 and I adapter 97 are held in place by filler cap 99. The proinfiltrate the disc 101. Any standard sintered glass material will suffice for this specific type of filtration process. I

A teflon mesh disc 101A may be superimposed over the surface area of disc 101 to prevent destruction of porous chromatographic beads which may be used in ion exchange and gel permeation chromatographic processes.

To initiate operation of one of the columns the operator will initiate the main air supply, adjust the manifold pressure system by setting the main filter-regulator 27to about -15 p.s.i., open one of the needle valves 1 from manifold line 29 to the individual regulators. Fi-

nally, set the individual air regulators until the desired solvent flow is achieved.

To discontinue solvent flow close needle valve of the individual regulator(s) and momentarily crack the corresponding bleed valve to release the internal column pressure. 3 The system supplies an adjustable and a constant pressure to drive chromatographic columns. This system provides constant chromatographic parameters thus making chromatographic procedures more convenient, more efficient, and more reliable. In addition, this device makes it possible for one operator to simultaneously operate any number of chromatographic columns utilizing only one laboratory air outlet. This system greatly increases an operators productivity and provides a cost effective procedure. The danger to the column packing due to overpressurization is now eliminated.

Miniaturization of system 11 may be possible. The two-stage pressure manifold may be constructed of something other than brass fittings (i.e., nylon tubing and POLY-FLO connectors for cost reduction). Alternative construction materials for the cabinet necessitate that it provide unobstructed view of the column packing and must be impervious to organic solvents. The system functions to force the mobile phase material into stationary material under controlled pressure as well as volume.

What is claimed is:

1. A chromatographic column system for forcing a mobile phase material through a stationary phase material comprising:

a. an air source;

b. said air source connected to the input of a primary regulator;

c. the output of said regulator connected to the input of a manifold;

d. the output of said manifold connected to the input of at least one on/off needle valve;

e. the output of said at least one on/off needle valve connected to at least one secondary regulator;

f. the output of said at least one secondary regulator connected both to at least one needle bleed valve and to at least one pressure column;

g. the output of said at least one pressure column connected to at least one filter;

h. the pressure in said at least one pressure column is maintained on or about a constant value; and

i. said at least one on/off needle valve, said at least one secondary regulator, said at least one needle bleed valve, said at least one pressure column, and said at least one filter respectively comprise a plurality of on/off needle valves, a plurality of secondary regulators, a plurality of needle bleed valves, a plurality of pressure columns and a plurality of filters.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3156548 *Mar 21, 1960Nov 10, 1964Sinclair Research IncGas chromatography apparatus
US3185211 *Nov 29, 1962May 25, 1965Warner Lambert PharmaceuticalFraction collector
US3417779 *Jan 9, 1967Dec 24, 1968Perkin Elmer CorpSelectable concentration gas mixing apparatus
US3478886 *Mar 31, 1967Nov 18, 1969Atomic Energy CommissionGraft-copolymer column support material for liquid-liquid partition chromatography
US3518874 *Apr 28, 1965Jul 7, 1970Ceskoslovenska Akademie VedApparatus for analyzing mixtures of substances in one or a plurality of chromatographic columns
US3583230 *Jun 12, 1968Jun 8, 1971Sondell Research Dev CoSample injection method and apparatus
US3810545 *Dec 29, 1972May 14, 1974Du PontCentrifuge chromatography apparatus and system
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US4079009 *Oct 12, 1976Mar 14, 1978Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften, E.V.Apparatus for multiple column chromatography
US4341635 *Dec 16, 1980Jul 27, 1982Helena Laboratories CorporationMicrochromatographic column and method
US4394263 *Dec 4, 1981Jul 19, 1983Carlo Erba Strumentazione S.P.A.Connecting device for pneumatic and/or hydraulic circuits in column chromatography
US4604198 *May 18, 1984Aug 5, 1986Amf Inc.High flow volume, small pressure drop, minimum hold up volume
US4797209 *Dec 1, 1987Jan 10, 1989Amicon Wright Ltd.Adjustable distribution cell apparatus
US5207918 *May 31, 1991May 4, 1993Helena Laboratories CorporationColumn analyzer system
US5228988 *Oct 22, 1991Jul 20, 1993Helena Laboratories CorporationMounting column in rack, introducing fluid, collecting eluate, shaking rack to transfer last drop to receptacle, moving to second receptacle
US5265642 *Jul 9, 1992Nov 30, 1993Sp Industries Limited PartnershipPressure relief valve in a cap
US5358641 *May 10, 1993Oct 25, 1994Helena Laboratories CorporationColumn analyzer system and improved chromatograph column for use in the system
US5441645 *Sep 16, 1994Aug 15, 1995Helena Laboratories CorporationColumn analyzer system and improved chromatograph column for use in the system
US5443734 *Aug 3, 1993Aug 22, 1995Applied Separations, Inc.Programmable solid phase extraction and elution device
US5512168 *Jun 7, 1995Apr 30, 1996Applied Separations, Inc.Programmable solid phase extraction and elution device
US5589063 *Jun 6, 1995Dec 31, 1996Helena Laboratories CorporationColumn analyzer system and improved chromatograph column for use in the system
US5595664 *Jun 6, 1995Jan 21, 1997Helena Laboratories CorporationColumn analyzer system and improved chromatograph column for use in the system
US6911151 *Nov 22, 1999Jun 28, 2005Sepiatec GmbhLiquid chromatography separating lines are supplied by single delivery unit, separating lines being arranged so that they run parallel, separating lines combined with sample loading system, injection system, and multichannel detector
US7578915 *Aug 29, 2003Aug 25, 2009Northeastern UniversityHydrophilic polymeric gel; capillary separation
US7846335 *Oct 13, 2006Dec 7, 2010Xendo Holding B.V.manifold comprising a plurality of connectors for connecting the chromatographic separation columns and/or feed or extraction tubing; central duct comprises a closable duct valve, and a plurality of branch ducts; purification of biopharmaceutical products; disposable, no need to clean the valves
US8828234Dec 7, 2010Sep 9, 2014Xendo Holding B.V.Device for chromatographic separations
US8920645 *Dec 7, 2006Dec 30, 2014Tarpon Biosystems Inc.Disposable chromatography valves and system
US20110114549 *Nov 13, 2009May 19, 2011Agilent Technolgies, Inc.Microfluidic device comprising separation columns
EP0179349A1 *Oct 8, 1985Apr 30, 1986The Perkin-Elmer CorporationSolvent pressurization
EP0425297A2 *Oct 26, 1990May 2, 1991Helena Laboratories CorporationColumn analyzer system
EP1563886A1 *Jan 24, 2005Aug 17, 2005Fuji Photo Film Co., Ltd.Extraction system
WO2000031528A1 *Nov 22, 1999Jun 2, 2000Analyticon AgDevice and method for the parallel separation of substances by liquid chromatography
Classifications
U.S. Classification210/198.2, 96/104
International ClassificationG01N30/00, G01N30/46, B01D15/08, G01N30/32
Cooperative ClassificationG01N30/466, G01N30/32, B01D15/08
European ClassificationG01N30/32, G01N30/46E, B01D15/08